Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

PiWi RNA in Neurodevelopment and Neurodegenerative Disorders

Author(s): Vishal Chavda*, Kajal Madhwani and Bipin Chaurasia*

Volume 15, Issue 3, 2022

Published on: 29 June, 2021

Article ID: e290621194376 Pages: 15

DOI: 10.2174/1874467214666210629164535

Price: $65

Abstract

The discovery of the mysterious dark matter of the genome expands our understanding of modern biology. Beyond the genome, the epigenome reveals a hitherto unknown path of key biological and functional gene control activities. Extraordinary character-P element wimpy testis-induced (PiWi)-interacting RNA (piRNA) is a type of small non-coding RNA that acts as a defender by silencing nucleic and structural invaders. PiWi proteins and piRNAs can be found in both reproductive and somatic cells, though germ line richness has been partially unravelled. The primary function is to suppress invading DNA sequences known as Transpose of Elements (TEs) that move within genomic DNA and downstream target genes via Transcriptional Gene Silencing (TGS) and Post-Translational Gene Silencing (PTGS). Germline piRNAs preserve genomic integrity, stability, sternness, and influence imprinting expression. The novel roles of somatic tissue-specific piRNAs have surprised researchers. In metazoans, including humans, piRNA regulates neurodevelopmental processes. The PiWi pathway regulates neural heterogeneity, neurogenesis, neural plasticity, and transgenerational inheritance of adaptive and long-term memory. Dysregulated piRNA causes neurodevelopmental, neurodegenerative, and psychiatric illness. A faulty piRNA signature results in inadvertent gene activation via TE activation, incorrect epigenetic tags on DNA, and/or histones. Imprinting expression is influenced by germline piRNAs, which maintain genomic integrity, stability, and sternness. New roles for piRNAs specific to somatic tissues have been discovered. Metazoans, including humans, are regulated by piRNA. In addition, the PiWi pathway regulates neuronal heterogeneity and neurogenesis as well as brain plasticity and transgenerational inheritance of adaptive and long-term memory. When piRNA is dysregulated, it can lead to neurodegenerative and psychiatric illnesses. Inappropriate gene activation or inactivation is caused by aberrant piRNA signatures, TE activation, inappropriate epigenetic marks on DNA, and/or histones. Defective piRNA regulation causes abnormal brain development and neurodegenerative aetiology, which promotes life-threatening disorders. Exemplification of exciting roles of piRNA is still in its early stages, so future research may expand on these observations using novel techniques and launch them as potential biomarkers for diagnostics and therapeutics. In this review, we summarised the potential gene molecular role of piRNAs in regulating neurobiology and serving as novel biomarkers and therapeutic targets for life-threatening disease.

Keywords: piRNA (PiWi -interacting RNAs), PiWi, cancer, neurodevelopment, neurodegeneration, biomarker, therapeutics.

Graphical Abstract
[1]
Saleh, A.; Macia, A.; Muotri, A.R. Transposable elements, inflammation, and neurological disease. Front. Neurol., 2019, 10, 894.
[http://dx.doi.org/10.3389/fneur.2019.00894] [PMID: 31481926]
[2]
Jehn, J.; Gebert, D.; Pipilescu, F.; Stern, S.; Kiefer, J.S.T.; Hewel, C. Conserved and ubiquitous expression of piRNAs and PIWI genes in mollusks antedates the origin of somatic PIWI/piRNA expression to the root of bilaterians. bioRxiv, 2018, 250761.
[3]
Yang, Z.; Pillai, R.S. Fly piRNA biogenesis: Tap dancing with Tej. BMC Biol., 2014, 12(1), 77.
[http://dx.doi.org/10.1186/s12915-014-0077-1] [PMID: 25335561]
[4]
Théron, E.; Dennis, C.; Brasset, E.; Vaury, C. Distinct features of the piRNA pathway in somatic and germ cells: From piRNA cluster transcription to piRNA processing and amplification. Mob. DNA, 2014, 5(1), 28.
[http://dx.doi.org/10.1186/s13100-014-0028-y] [PMID: 25525472]
[5]
Halic, M.; Moazed, D. Transposon Silencing by piRNAs. Cell. Cell, 2009, 138, 1058-1060. Available from: https://pubmed.ncbi.nlm.nih.gov/19766558/ [Cited 2020 Aug 29]
[6]
Han, B.W.; Zamore, P.D. piRNAs. Curr. Biol., 2014, 24(16), R730-R733.
[http://dx.doi.org/10.1016/j.cub.2014.07.037] [PMID: 25137579]
[7]
Beyret, E.; Lin, H. Pinpointing the expression of piRNAs and function of the PIWI protein subfamily during spermatogenesis in the mouse. Dev. Biol., 2011, 355(2), 215-226.
[http://dx.doi.org/10.1016/j.ydbio.2011.04.021] [PMID: 21539824]
[8]
Pandya, G.M.; Ramani, U.V.; Janmeda, M.; Dangar, N.S.; Tyagi, K.; Brahmkshtri, B.P. PiRNA: Basics and their association with PIWI proteins. Curr. Trends Biotechnol. Pharm., 2014, 8(3), 303-308.
[9]
Quénerch’du, E.; Anand, A.; Kai, T. The piRNA pathway is developmentally regulated during spermatogenesis in Drosophila. RNA, 2016, 22(7), 1044-1054. Available from: https://pubmed.ncbi.nlm.nih.gov/27208314.
[http://dx.doi.org/10.1261/rna.055996.116]
[10]
Stein, L.D.; Bao, Z.; Blasiar, D.; Blumenthal, T.; Brent, M.R.; Chen, N. The genome sequence of caenorhabditis briggsae: A platform for comparative genomics. PLoS Biol, 2003, 1(2) Available from: https://pubmed.ncbi.nlm.nih.gov/14624247/. [Cited 2020 Sep 15].
[11]
Waterston, R.H.; Lindblad-Toh, K.; Birney, E.; Rogers, J.; Abril, J.F.; Agarwal, P. Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420(6915), 520-562. Available from: https://pubmed.ncbi.nlm.nih.gov/12466850/. [Cited 2020 Sep 15].
[12]
Li, C.; Vagin, V.V.; Lee, S.; Xu, J.; Ma, S.; Xi, H.; Seitz, H.; Horwich, M.D.; Syrzycka, M.; Honda, B.M.; Kittler, E.L.; Zapp, M.L.; Klattenhoff, C.; Schulz, N.; Theurkauf, W.E.; Weng, Z.; Zamore, P.D. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell, 2009, 137(3), 509-521.
[http://dx.doi.org/10.1016/j.cell.2009.04.027] [PMID: 19395009]
[13]
Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; Funke, R.; Gage, D.; Harris, K.; Heaford, A.; Howland, J.; Kann, L.; Lehoczky, J.; LeVine, R.; McEwan, P.; McKernan, K.; Meldrim, J.; Mesirov, J.P.; Miranda, C.; Morris, W.; Naylor, J.; Raymond, C.; Rosetti, M.; Santos, R.; Sheridan, A.; Sougnez, C.; Stange-Thomann, Y.; Stojanovic, N.; Subramanian, A.; Wyman, D.; Rogers, J.; Sulston, J.; Ainscough, R.; Beck, S.; Bentley, D.; Burton, J.; Clee, C.; Carter, N.; Coulson, A.; Deadman, R.; Deloukas, P.; Dunham, A.; Dunham, I.; Durbin, R.; French, L.; Grafham, D.; Gregory, S.; Hubbard, T.; Humphray, S.; Hunt, A.; Jones, M.; Lloyd, C.; McMurray, A.; Matthews, L.; Mercer, S.; Milne, S.; Mullikin, J.C.; Mungall, A.; Plumb, R.; Ross, M.; Shownkeen, R.; Sims, S.; Waterston, R.H.; Wilson, R.K.; Hillier, L.W.; McPherson, J.D.; Marra, M.A.; Mardis, E.R.; Fulton, L.A.; Chinwalla, A.T.; Pepin, K.H.; Gish, W.R.; Chissoe, S.L.; Wendl, M.C.; Delehaunty, K.D.; Miner, T.L.; Delehaunty, A.; Kramer, J.B.; Cook, L.L.; Fulton, R.S.; Johnson, D.L.; Minx, P.J.; Clifton, S.W.; Hawkins, T.; Branscomb, E.; Predki, P.; Richardson, P.; Wenning, S.; Slezak, T.; Doggett, N.; Cheng, J.F.; Olsen, A.; Lucas, S.; Elkin, C.; Uberbacher, E.; Frazier, M.; Gibbs, R.A.; Muzny, D.M.; Scherer, S.E.; Bouck, J.B.; Sodergren, E.J.; Worley, K.C.; Rives, C.M.; Gorrell, J.H.; Metzker, M.L.; Naylor, S.L.; Kucherlapati, R.S.; Nelson, D.L.; Weinstock, G.M.; Sakaki, Y.; Fujiyama, A.; Hattori, M.; Yada, T.; Toyoda, A.; Itoh, T.; Kawagoe, C.; Watanabe, H.; Totoki, Y.; Taylor, T.; Weissenbach, J.; Heilig, R.; Saurin, W.; Artiguenave, F.; Brottier, P.; Bruls, T.; Pelletier, E.; Robert, C.; Wincker, P.; Smith, D.R.; Doucette-Stamm, L.; Rubenfield, M.; Weinstock, K.; Lee, H.M.; Dubois, J.; Rosenthal, A.; Platzer, M.; Nyakatura, G.; Taudien, S.; Rump, A.; Yang, H.; Yu, J.; Wang, J.; Huang, G.; Gu, J.; Hood, L.; Rowen, L.; Madan, A.; Qin, S.; Davis, R.W.; Federspiel, N.A.; Abola, A.P.; Proctor, M.J.; Myers, R.M.; Schmutz, J.; Dickson, M.; Grimwood, J.; Cox, D.R.; Olson, M.V.; Kaul, R.; Raymond, C.; Shimizu, N.; Kawasaki, K.; Minoshima, S.; Evans, G.A.; Athanasiou, M.; Schultz, R.; Roe, B.A.; Chen, F.; Pan, H.; Ramser, J.; Lehrach, H.; Reinhardt, R.; McCombie, W.R.; de la Bastide, M.; Dedhia, N.; Blöcker, H.; Hornischer, K.; Nordsiek, G.; Agarwala, R.; Aravind, L.; Bailey, J.A.; Bateman, A.; Batzoglou, S.; Birney, E.; Bork, P.; Brown, D.G.; Burge, C.B.; Cerutti, L.; Chen, H.C.; Church, D.; Clamp, M.; Copley, R.R.; Doerks, T.; Eddy, S.R.; Eichler, E.E.; Furey, T.S.; Galagan, J.; Gilbert, J.G.; Harmon, C.; Hayashizaki, Y.; Haussler, D.; Hermjakob, H.; Hokamp, K.; Jang, W.; Johnson, L.S.; Jones, T.A.; Kasif, S.; Kaspryzk, A.; Kennedy, S.; Kent, W.J.; Kitts, P.; Koonin, E.V.; Korf, I.; Kulp, D.; Lancet, D.; Lowe, T.M.; McLysaght, A.; Mikkelsen, T.; Moran, J.V.; Mulder, N.; Pollara, V.J.; Ponting, C.P.; Schuler, G.; Schultz, J.; Slater, G.; Smit, A.F.; Stupka, E.; Szustakowki, J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Wagner, L.; Wallis, J.; Wheeler, R.; Williams, A.; Wolf, Y.I.; Wolfe, K.H.; Yang, S.P.; Yeh, R.F.; Collins, F.; Guyer, M.S.; Peterson, J.; Felsenfeld, A.; Wetterstrand, K.A.; Patrinos, A.; Morgan, M.J.; de Jong, P.; Catanese, J.J.; Osoegawa, K.; Shizuya, H.; Choi, S.; Chen, Y.J.; Szustakowki, J. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822), 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[14]
SanMiguel, P.; Tikhonov, A.; Jin, Y.K.; Motchoulskaia, N.; Zakharov, D.; Melake-Berhan, A.; Springer, P.S.; Edwards, K.J.; Lee, M.; Avramova, Z.; Bennetzen, J.L. Nested retrotransposons in the intergenic regions of the maize genome. Science, 1996, 274(5288), 765-768.
[http://dx.doi.org/10.1126/science.274.5288.765] [PMID: 8864112]
[15]
Kazazian, H.H. Mobile elements: Drivers of genome evolution.Science; American Association for the Advancement of Science, 2004, 303, pp. 1626-1632. Available from: https://science.sciencemag.org/content/303/5664/1626. [Cited 2020 Sep 15].
[16]
Muñoz-López, M.; García-Pérez, J.L. DNA transposons: Nature and applications in genomics. Curr. Genomics, 2010, 11(2), 115-128.
[http://dx.doi.org/10.2174/138920210790886871] [PMID: 20885819]
[17]
Krishnan, P; Damaraju, S. The challenges and opportunities in the clinical application of noncoding RNAs: The road map for mirnas and pirnas in cancer diagnostics and prognostics. Int J Genomics, 2018, 2018, 5848046.
[18]
Zuo, L.; Wang, Z.; Tan, Y.; Chen, X.; Luo, X. piRNAs and their functions in the brain. Int. J. Hum. Genet., 2016, 16(1-2), 53-60.
[http://dx.doi.org/10.1080/09723757.2016.11886278] [PMID: 27512315]
[19]
Lim, R.S.M.; Kai, T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin. Cell Dev. Biol., 2015, 47-48, 17-31.
[http://dx.doi.org/10.1016/j.semcdb.2015.10.025] [PMID: 26582251]
[20]
Czech, B.; Hannon, G.J. One loop to rule them all: The ping-pong cycle and pirna-guided silencing. Trends Biochem. Sci., 2016, 41(4), 324-337.
[http://dx.doi.org/10.1016/j.tibs.2015.12.008] [PMID: 26810602]
[21]
Mani, S.R.; Juliano, C.E. Untangling the web: The diverse functions of the PIWI/piRNA pathway. Mol. Reprod. Dev., 2013, 80(8), 632-664.
[http://dx.doi.org/10.1002/mrd.22195] [PMID: 23712694]
[22]
Yu, Y.; Xiao, J.; Hann, S.S. The emerging roles of PIWI-interacting RNA in human cancers. Cancer Manag. Res., 2019, 11, 5895-5909.
[http://dx.doi.org/10.2147/CMAR.S209300] [PMID: 31303794]
[23]
Pal-Bhadra, M.; Bhadra, U.; Birchler, J.A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell, 2002, 9(2), 315-327. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11864605. [Cited 2020 Jul 16].
[http://dx.doi.org/10.1016/S1097-2765(02)00440-9]
[24]
Akkouche, A.; Mugat, B.; Barckmann, B.; Varela-Chavez, C.; Li, B.; Raffel, R.; Pélisson, A.; Chambeyron, S. Piwi is required during drosophila embryogenesis to license dual-strand pirna clusters for transposon repression in adult ovaries. Mol. Cell, 2017, 66(3), 411-419.e4.
[http://dx.doi.org/10.1016/j.molcel.2017.03.017] [PMID: 28457744]
[25]
Busch, J.; Ralla, B.; Jung, M.; Wotschofsky, Z.; Trujillo-Arribas, E.; Schwabe, P.; Kilic, E.; Fendler, A.; Jung, K. Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J. Exp. Clin. Cancer Res., 2015, 34(1), 61.
[http://dx.doi.org/10.1186/s13046-015-0180-3] [PMID: 26071182]
[26]
Kwon, C.; Tak, H.; Rho, M.; Chang, H.R.; Kim, Y.H.; Kim, K.T.; Balch, C.; Lee, E.K.; Nam, S. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem. Biophys. Res. Commun., 2014, 446(1), 218-223.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.112] [PMID: 24602614]
[27]
Donkin, I.; Versteyhe, S.; Ingerslev, L.R.; Qian, K.; Mechta, M.; Nordkap, L.; Mortensen, B.; Appel, E.V.; Jørgensen, N.; Kristiansen, V.B.; Hansen, T.; Workman, C.T.; Zierath, J.R.; Barrès, R. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab., 2016, 23(2), 369-378.
[http://dx.doi.org/10.1016/j.cmet.2015.11.004] [PMID: 26669700]
[28]
Han, Y.N.; Li, Y.; Xia, S.Q.; Zhang, Y.Y.; Zheng, J.H.; Li, W. PIWI proteins and piwi-interacting RNA: Emerging roles in cancer. Cell. Physiol. Biochem., 2017, 44(1), 1-20.
[http://dx.doi.org/10.1159/000484541] [PMID: 29130960]
[29]
Ng, K.W.; Anderson, C.; Marshall, E.A.; Minatel, B.C.; Enfield, K.S.S.; Saprunoff, H.L.; Lam, W.L.; Martinez, V.D. Piwi-interacting RNAs in cancer: Emerging functions and clinical utility. Mol. Cancer, 2016, 15(1), 5.
[http://dx.doi.org/10.1186/s12943-016-0491-9] [PMID: 26768585]
[30]
Iwasaki, Y.W.; Siomi, M.C.; Siomi, H. PIWI-interacting RNA: Its biogenesis and functions. Annu Rev Biochem, 2015, 84, 405-433. Available from: https://pubmed.ncbi.nlm.nih.gov/25747396/. [Cited 2020 Aug 29].
[31]
Ochoa Thomas, E.; Zuniga, G.; Sun, W.; Frost, B. Awakening the dark side: Retrotransposon activation in neurodegenerative disorders. Curr. Opin. Neurobiol., 2020, 61, 65-72.
[http://dx.doi.org/10.1016/j.conb.2020.01.012] [PMID: 32092528]
[32]
Spadaro, P.A.; Bredy, T.W. Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Front. Genet., 2012, 3, 132.
[http://dx.doi.org/10.3389/fgene.2012.00132] [PMID: 22811697]
[33]
Watson, C.N.; Belli, A.; Di Pietro, V. Small non-coding RNAs: New class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front. Genet., 2019, 10, 364.
[http://dx.doi.org/10.3389/fgene.2019.00364] [PMID: 31080456]
[34]
Kim, K.W. PIWI proteins and piRNAs in the nervous system. Mol. Cells, 2019, 42(12), 828-835.
[PMID: 31838836]
[35]
Ishizu, H.; Iwasaki, Y.W.; Hirakata, S.; Ozaki, H.; Iwasaki, W.; Siomi, H.; Siomi, M.C. Somatic primary pirna biogenesis driven by cis-acting RNA elements and trans-acting yb. Cell Rep., 2015, 12(3), 429-440.
[http://dx.doi.org/10.1016/j.celrep.2015.06.035] [PMID: 26166564]
[36]
Lee, E.J.; Banerjee, S.; Zhou, H.; Jammalamadaka, A.; Arcila, M.; Manjunath, B.S.; Kosik, K.S. Identification of piRNAs in the central nervous system. RNA, 2011, 17(6), 1090-1099.
[http://dx.doi.org/10.1261/rna.2565011] [PMID: 21515829]
[37]
Leighton, L.J.; Wei, W.; Ratnu, V.S.; Li, X.; Zajaczkowski, E.L.; Spadaro, P.A. Hippocampal knockdown of Piwil1 and Piwil2 enhances contextual fear memory in mice. bioRxiv, 2018, 298570 Available from: https://www.biorxiv.org/content/10.1101/298570v1
[38]
Landry, C.D.; Kandel, E.R.; Rajasethupathy, P. New mechanisms in memory storage: PiRNAs and epigenetics. Trends Neurosci., 2013, 36(9), 535-542.
[http://dx.doi.org/10.1016/j.tins.2013.05.004] [PMID: 23827695]
[39]
Sohn, E.J.; Jo, Y.R.; Park, H.T. Downregulation MIWI-piRNA regulates the migration of Schwann cells in peripheral nerve injury. Biochem. Biophys. Res. Commun., 2019, 519(3), 605-612.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.008] [PMID: 31540693]
[40]
Nandi, S.; Chandramohan, D.; Fioriti, L.; Melnick, A.M.; Hébert, J.M.; Mason, C.E.; Rajasethupathy, P.; Kandel, E.R. Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc. Natl. Acad. Sci. USA, 2016, 113(45), 12697-12702.
[http://dx.doi.org/10.1073/pnas.1609287113] [PMID: 27791114]
[41]
Moore, R.S.; Kaletsky, R.; Murphy, C.T. Piwi/PRG-1 argonaute and tgf-β mediate transgenerational learned pathogenic avoidance. Cell, 2019, 177(7), 1827-1841.e12.
[http://dx.doi.org/10.1016/j.cell.2019.05.024] [PMID: 31178117]
[42]
Peng, J.C.; Lin, H. Beyond transposons: The epigenetic and somatic functions of the Piwi-piRNA mechanism. Curr. Opin. Cell Biol., 2013, 25(2), 190-194.
[http://dx.doi.org/10.1016/j.ceb.2013.01.010] [PMID: 23465540]
[43]
Posner, R.; Toker, I.A.; Antonova, O.; Star, E.; Anava, S.; Azmon, E.; Hendricks, M.; Bracha, S.; Gingold, H.; Rechavi, O. Neuronal small rnas control behavior transgenerationally. Cell, 2019, 177(7), 1814-1826.e15.
[http://dx.doi.org/10.1016/j.cell.2019.04.029] [PMID: 31178120]
[44]
Xiao-Jie, L.; Hui-Ying, X.; Qi, X.; Jiang, X.; Shi-Jie, M. LINE-1 in cancer: Multifaceted functions and potential clinical implications. Genet. Med., 2016, 18(5), 431-439.
[http://dx.doi.org/10.1038/gim.2015.119] [PMID: 26334179]
[45]
Jönsson, M.E.; Garza, R.; Johansson, P.A.; Jakobsson, J. Transposable elements: A common feature of neurodevelopmental and neurodegenerative disorders. Trends Genet., 2020, 36(8), 610-623.
[http://dx.doi.org/10.1016/j.tig.2020.05.004] [PMID: 32499105]
[46]
Guo, C.; Jeong, H.H.; Hsieh, Y.C.; Klein, H.U.; Bennett, D.A.; De Jager, P.L.; Liu, Z.; Shulman, J.M. Tau activates transposable elements in alzheimer’s disease. Cell Rep., 2018, 23(10), 2874-2880.
[http://dx.doi.org/10.1016/j.celrep.2018.05.004] [PMID: 29874575]
[47]
Wakisaka, K.T.; Tanaka, R.; Hirashima, T.; Muraoka, Y.; Azuma, Y.; Yoshida, H.; Tokuda, T.; Asada, S.; Suda, K.; Ichiyanagi, K.; Ohno, S.; Itoh, M.; Yamaguchi, M. Novel roles of drosophila fus and aub responsible for pirna biogenesis in neuronal disorders. Brain Res., 2019, 1708, 207-219.
[http://dx.doi.org/10.1016/j.brainres.2018.12.028] [PMID: 30578769]
[48]
Sun, W.; Samimi, H.; Gamez, M.; Zare, H.; Frost, B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci., 2018, 21(8), 1038-1048.
[http://dx.doi.org/10.1038/s41593-018-0194-1] [PMID: 30038280]
[49]
Dharap, A; Nakka, VP; Vemuganti, R. Altered expression of PiRNA in rat brain following transient focal ischemia. Stroke, 42(4), 1105-1109.
[50]
Kaur, H.; Sarmah, D.; Saraf, J.; Vats, K.; Kalia, K.; Borah, A.; Yavagal, D.R.; Dave, K.R.; Ghosh, Z.; Bhattacharya, P. Noncoding RNAs in ischemic stroke: Time to translate. Ann. N. Y. Acad. Sci., 2018, 1421(1), 19-36.
[http://dx.doi.org/10.1111/nyas.13612] [PMID: 29683506]
[51]
Schulze, M.; Sommer, A.; Plötz, S.; Farrell, M.; Winner, B.; Grosch, J.; Winkler, J.; Riemenschneider, M.J. Sporadic Parkinson’s disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs. Acta Neuropathol. Commun., 2018, 6(1), 58.
[http://dx.doi.org/10.1186/s40478-018-0561-x] [PMID: 29986767]
[52]
Qiu, W.; Guo, X.; Lin, X.; Yang, Q.; Zhang, W.; Zuo, L. HHS Public Access., 2018, 69156469, 170-177.
[53]
Roy, J.; Sarkar, A.; Parida, S.; Ghosh, Z.; Mallick, B. Small RNA sequencing revealed dysregulated piRNAs in Alzheimer’s disease and their probable role in pathogenesis. Mol. Biosyst., 2017, 13(3), 565-576.
[http://dx.doi.org/10.1039/C6MB00699J] [PMID: 28127595]
[54]
Saldi, T.K.; Gonzales, P.K.; LaRocca, T.J.; Link, C.D. Neurodegeneration, heterochromatin, and double-stranded RNA. J. Exp. Neurosci., 2019, 13, 1179069519830697.
[http://dx.doi.org/10.1177/1179069519830697] [PMID: 30792577]
[55]
Jain, G.; Stuendl, A.; Rao, P.; Berulava, T.; Pena Centeno, T.; Kaurani, L.; Burkhardt, S.; Delalle, I.; Kornhuber, J.; Hüll, M.; Maier, W.; Peters, O.; Esselmann, H.; Schulte, C.; Deuschle, C.; Synofzik, M.; Wiltfang, J.; Mollenhauer, B.; Maetzler, W.; Schneider, A.; Fischer, A. A combined miRNA-piRNA signature to detect Alzheimer’s disease. Transl. Psychiatry, 2019, 9(1), 250.
[http://dx.doi.org/10.1038/s41398-019-0579-2] [PMID: 31591382]
[56]
Sun, T.; Han, X. The disease-related biological functions of PIWI-interacting RNAs (piRNAs) and underlying molecular mechanisms. ExRNA, 2019, 1(1), 1-16. Available from: https://link.springer.com/articles/10.1186/s41544-019-0021-1. [Cited 2020 Sep 16].
[57]
Qu, X.; Liu, J.; Zhong, X.; Li, X.; Zhang, Q. PIWIL2 promotes progression of non-small cell lung cancer by inducing CDK2 and Cyclin A expression. J. Transl. Med., 2015, 13(1), 301.
[http://dx.doi.org/10.1186/s12967-015-0666-y] [PMID: 26373553]
[58]
Reeves, M.E.; Firek, M.; Chen, S.T.; Amaar, Y.G. Evidence that RASSF1C stimulation of lung cancer cell proliferation depends on IGFBP-5 and PIWIL1 expression levels. PLoS One, 2014, 9(7), e101679.
[http://dx.doi.org/10.1371/journal.pone.0101679] [PMID: 25007054]
[59]
Li, D.; Luo, Y.; Gao, Y.; Yang, Y.; Wang, Y.; Xu, Y.; Tan, S.; Zhang, Y.; Duan, J.; Yang, Y. piR-651 promotes tumor formation in non-small cell lung carcinoma through the upregulation of cyclin D1 and CDK4. Int. J. Mol. Med., 2016, 38(3), 927-936.
[http://dx.doi.org/10.3892/ijmm.2016.2671] [PMID: 27431575]
[60]
Fathizadeh, H.; Asemi, Z. Epigenetic roles of PIWI proteins and piRNAs in lung cancer. Cell Biosci., 2019, 9(1), 102.
[http://dx.doi.org/10.1186/s13578-019-0368-x] [PMID: 31890151]
[61]
Zhang, S.J.; Yao, J.; Shen, B.Z.; Li, G.B.; Kong, S.S.; Bi, D.D.; Pan, S.H.; Cheng, B.L. Role of piwi-interacting RNA-651 in the carcinogenesis of non-small cell lung cancer. Oncol. Lett., 2018, 15(1), 940-946.
[PMID: 29399156]
[62]
Weng, W.; Liu, N.; Toiyama, Y.; Kusunoki, M.; Nagasaka, T.; Fujiwara, T.; Wei, Q.; Qin, H.; Lin, H.; Ma, Y.; Goel, A. Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer. Mol. Cancer, 2018, 17(1), 16.
[http://dx.doi.org/10.1186/s12943-018-0767-3] [PMID: 29382334]
[63]
Gao, C.L.; Sun, R.; Li, D.H.; Gong, F. PIWI-like protein 1 upregulation promotes gastric cancer invasion and metastasis. OncoTargets Ther., 2018, 11, 8783-8789.
[http://dx.doi.org/10.2147/OTT.S186827] [PMID: 30584336]
[64]
Liu, Y.; Dou, M.; Song, X.; Dong, Y.; Liu, S.; Liu, H.; Tao, J.; Li, W.; Yin, X.; Xu, W. The emerging role of the piRNA/piwi complex in cancer. Mol. Cancer, 2019, 18(1), 123.
[http://dx.doi.org/10.1186/s12943-019-1052-9] [PMID: 31399034]
[65]
Rajan, K.S.; Velmurugan, G.; Gopal, P.; Ramprasath, T.; Babu, D.D.V.; Krithika, S.; Jenifer, Y.C.; Freddy, A.; William, G.; Kalpana, K.; Ramasamy, S. Abundant and altered expression of piwi-interacting rnas during cardiac hypertrophy. Heart Lung Circ., 2016, 25(10), 1013-1020.
[http://dx.doi.org/10.1016/j.hlc.2016.02.015] [PMID: 27067666]
[66]
Saugstad, J.A. Non-coding RNAs in stroke and neuroprotection. Front. Neurol., 2015, 6, 50.
[PMID: 25821444]
[67]
Chavda, V.; Madhwani, K. Coding and non-coding nucleotides’: The future of stroke gene therapeutics. Genomics, 2021, 113(3), 1291-1307.
[http://dx.doi.org/10.1016/j.ygeno.2021.03.003] [PMID: 33677059]
[68]
Fu, A.; Jacobs, D.I.; Hoffman, A.E.; Zheng, T.; Zhu, Y. PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis, 2015, 36(10), 1094-1102.
[http://dx.doi.org/10.1093/carcin/bgv105] [PMID: 26210741]
[69]
Wang, Z.; Liu, N.; Shi, S.; Liu, S.; Lin, H. The role of PIWIL4, an argonaute family protein, in breast cancer. J. Biol. Chem., 2016, 291(20), 10646-10658.
[http://dx.doi.org/10.1074/jbc.M116.723239] [PMID: 26957540]
[70]
Mai, D.; Ding, P.; Tan, L.; Zhang, J.; Pan, Z.; Bai, R.; Li, C.; Li, M.; Zhou, Y.; Tan, W.; Zhou, Z.; Li, Y.; Zhou, A.; Ye, Y.; Pan, L.; Zheng, Y.; Su, J.; Zuo, Z.; Liu, Z.; Zhao, Q.; Li, X.; Huang, X.; Li, W.; Wu, S.; Jia, W.; Zou, S.; Wu, C.; Xu, R.H.; Zheng, J.; Lin, D. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics, 2018, 8(19), 5213-5230.
[http://dx.doi.org/10.7150/thno.28001] [PMID: 30555542]
[71]
Sun, W.; Samimi, H.; Gamez, M.; Zare, H.; Frost, B.; Studies, A. HHS Public Access., 2019, 21(8), 1038-1048.
[72]
Migicovsky, Z.; Kovalchuk, I. Epigenetic memory in mammals. Front. Genet., 2011, 2, 28.
[PMID: 22303324]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy