Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Reactive Oxygen Species (ROS): Key Components in Cancer Therapies

Author(s): Biswa Mohan Sahoo*, Bimal Krishna Banik, Preetismita Borah and Adya Jain

Volume 22, Issue 2, 2022

Published on: 08 June, 2021

Page: [215 - 222] Pages: 8

DOI: 10.2174/1871520621666210608095512

Price: $65

Abstract

Abstract: Reactive Oxygen Species (ROS) refers to the highly reactive substances which contain oxygen radicals. Hypochlorous acid, peroxides, superoxide, singlet oxygen, alpha-oxygen, and hydroxyl radicals are the major examples of ROS. Generally, the reduction of oxygen (O2) in molecular form produces superoxide (•O2 −) anion. ROS are produced during a variety of biochemical reactions within the cell organelles, such as endoplasmic reticulum, mitochondria, and peroxisome. Naturally, ROS are also formed as a byproduct of the normal metabolism of oxygen. The production of ROS can be induced by various factors such as heavy metals, tobacco, smoke, drugs, xenobiotics, pollutants, and radiation. From various experimental studies, it is reported that ROS acts as either a tumor-suppressing or a tumor-promoting agent. The elevated level of ROS can arrest the growth of tumors through the persistent increase in cell cycle inhibition. The increased level of ROS can induce apoptosis by both intrinsic and extrinsic pathways. ROS is considered to be a tumor-suppressing agent as the production of ROS is due to the use of most of the chemotherapeutic agents in order to activate cell death. The cytotoxic effect of ROS provides impetus towards apoptosis, but in higher levels, ROS can cause initiation of malignancy that leads to uncontrolled cell death in cancer cells. In contrast, some species of ROS can influence various activities at the cellular level, including cell proliferation. This review highlights the genesis of ROS within cells by various routes and their role in cancer therapies.

Keywords: Reactive oxygen species, generation, cancer, pathway, therapy, free radical.

Graphical Abstract
[1]
Apel, K.; Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 2004, 55, 373-399.
[http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701] [PMID: 15377225]
[2]
Inoue, M.; Sato, E.F.; Nishikawa, M.; Park, A.M.; Kira, Y.; Imada, I.; Utsumi, K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr. Med. Chem., 2003, 10(23), 2495-2505.
[http://dx.doi.org/10.2174/0929867033456477] [PMID: 14529465]
[3]
Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling; Oxidat; Med. Cell Longev, 2016, pp. 1-18.
[4]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[5]
Kumari, S.; Badana, A.K. G, M.M.; G, S.; Malla, R. Reactive oxygen species: A key constituent in cancer survival. Biomark. Insights, 2018, 131177271918755391
[http://dx.doi.org/10.1177/1177271918755391] [PMID: 29449774]
[6]
Li, Z.Y.; Yang, Y.; Ming, M.; Liu, B. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem. Biophys. Res. Commun., 2011, 414(1), 5-8.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.046] [PMID: 21951851]
[7]
Bauer, G. Targeting extracellular ROS signaling of tumor cells. Anticancer Res., 2014, 34(4), 1467-1482.
[PMID: 24692674]
[8]
Wang, J.; Yi, J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol. Ther., 2008, 7(12), 1875-1884.
[http://dx.doi.org/10.4161/cbt.7.12.7067] [PMID: 18981733]
[9]
Orient, A.; Donkó, A.; Szabó, A.; Leto, T.L.; Geiszt, M. Novel sources of reactive oxygen species in the human body. Nephrol. Dial. Transplant., 2007, 22(5), 1281-1288.
[http://dx.doi.org/10.1093/ndt/gfm077] [PMID: 17347280]
[10]
Fridovich, I. Overview: biological sources of O2-. Methods Enzymol., 1984, 105, 59-61.
[http://dx.doi.org/10.1016/S0076-6879(84)05008-4] [PMID: 6328206]
[11]
Jia, P.; Dai, C.; Cao, P.; Sun, D.; Ouyang, R.; Miaoa, Y. The role of reactive oxygen species in tumor treatment. RSC Advances, 2020, 10, 7740-7750.
[http://dx.doi.org/10.1039/C9RA10539E]
[12]
Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(Pt 2), 335-344.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[13]
Szatrowski, T.P.; Nathan, C.F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res., 1991, 51(3), 794-798.
[PMID: 1846317]
[14]
OuYang, L.Y.; Wu, X.J.; Ye, S.B.; Zhang, R.X.; Li, Z.L.; Liao, W.; Pan, Z.Z.; Zheng, L.M.; Zhang, X.S.; Wang, Z.; Li, Q.; Ma, G.; Li, J. Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J. Transl. Med., 2015, 13(1), 47.
[http://dx.doi.org/10.1186/s12967-015-0410-7] [PMID: 25638150]
[15]
Murdoch, C.; Muthana, M.; Coffelt, S.B.; Lewis, C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer, 2008, 8(8), 618-631.
[http://dx.doi.org/10.1038/nrc2444] [PMID: 18633355]
[16]
Bedard, K.; Krause, K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 2007, 87(1), 245-313.
[http://dx.doi.org/10.1152/physrev.00044.2005] [PMID: 17237347]
[17]
Molavian, H.R.; Goldman, A.; Phipps, C.J.; Kohandel, M.; Wouters, B.G.; Sengupta, S.; Sivaloganathan, S. Drug-induced reactive oxygen species (ROS) rely on cell membrane properties to exert anticancer effects. Sci. Rep., 2016, 6, 27439.
[http://dx.doi.org/10.1038/srep27439] [PMID: 27278439]
[18]
Boveris, A.; Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J., 1973, 134(3), 707-716.
[http://dx.doi.org/10.1042/bj1340707] [PMID: 4749271]
[19]
Colleen, R.; Chandell, N.S. The two faces of Reactive oxygen species in cancer. Annu. Rev. Cancer Biol., 2017, 1, 79-98.
[http://dx.doi.org/10.1146/annurev-cancerbio-041916-065808]
[20]
Lavi, R.; Sinyakov, M.; Samuni, A.; Shatz, S.; Friedmann, H.; Shainberg, A.; Breitbart, H.; Lubart, R. ESR detection of 1O2 reveals enhanced redox activity in illuminated cell cultures. Free Radic. Res., 2004, 38(9), 893-902.
[http://dx.doi.org/10.1080/1071576010001642646] [PMID: 15621706]
[21]
Tarpey, M.M.; Wink, D.A.; Grisham, M.B.; Matthew, B.; Grisham, M.B. Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 286(3), R431-R444.
[http://dx.doi.org/10.1152/ajpregu.00361.2003] [PMID: 14761864]
[22]
Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol., 2018, 80, 50-64.
[http://dx.doi.org/10.1016/j.semcdb.2017.05.023] [PMID: 28587975]
[23]
Assi, M. The differential role of reactive oxygen species in early and late stages of cancer. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2017, 313(6), R646-R653.
[http://dx.doi.org/10.1152/ajpregu.00247.2017] [PMID: 28835450]
[24]
Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[25]
Schumacker, P.T. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell, 2006, 10(3), 175-176.
[http://dx.doi.org/10.1016/j.ccr.2006.08.015] [PMID: 16959608]
[26]
Storz, P. Reactive oxygen species in tumor progression. Front. Biosci., 2005, 10, 1881-1896.
[http://dx.doi.org/10.2741/1667] [PMID: 15769673]
[27]
Edderkaoui, M.; Hong, P.; Vaquero, E.C.; Lee, J.K.; Fischer, L.; Friess, H.; Buchler, M.W.; Lerch, M.M.; Pandol, S.J.; Gukovskaya, A.S. Extracellular matrix stimulates reactive oxygen species production and increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH oxidase. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(6), G1137-G1147.
[http://dx.doi.org/10.1152/ajpgi.00197.2005] [PMID: 16037546]
[28]
Donadelli, M.; Costanzo, C.; Beghelli, S.; Scupoli, M.T.; Dandrea, M.; Bonora, A.; Piacentini, P.; Budillon, A.; Caraglia, M.; Scarpa, A.; Palmieri, M. Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochim. Biophys. Acta, 2007, 1773(7), 1095-1106.
[http://dx.doi.org/10.1016/j.bbamcr.2007.05.002] [PMID: 17555830]
[29]
Marchetti, M.; Resnick, L.; Gamliel, E.; Kesaraju, S.; Weissbach, H.; Binninger, D. Sulindac enhances the killing of cancer cells exposed to oxidative stress. PLoS One, 2009, 4(6)e5804
[http://dx.doi.org/10.1371/journal.pone.0005804] [PMID: 19503837]
[30]
Carew, J.S.; Zhou, Y.; Albitar, M.; Carew, J.D.; Keating, M.J.; Huang, P. Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications. Leukemia, 2003, 17(8), 1437-1447.
[http://dx.doi.org/10.1038/sj.leu.2403043] [PMID: 12886229]
[31]
Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett., 2017, 387, 95-105.
[http://dx.doi.org/10.1016/j.canlet.2016.03.042] [PMID: 27037062]
[32]
Raza, M.H.; Siraj, S.; Arshad, A.; Waheed, U.; Aldakheel, F.; Alduraywish, S.; Arshad, M. ROS-modulated therapeutic approaches in cancer treatment. J. Cancer Res. Clin. Oncol., 2017, 143(9), 1789-1809.
[http://dx.doi.org/10.1007/s00432-017-2464-9] [PMID: 28647857]
[33]
Chio, I.I.C.; Tuveson, D.A. ROS in Cancer: the burning question. Trends Mol. Med., 2017, 23(5), 411-429.
[http://dx.doi.org/10.1016/j.molmed.2017.03.004] [PMID: 28427863]
[34]
Pelicano, H.; Carney, D.; Huang, P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat., 2004, 7(2), 97-110.
[http://dx.doi.org/10.1016/j.drup.2004.01.004] [PMID: 15158766]
[35]
Manda, G.; Nechifor, M.T.; Neagu, T.M. Reactive Oxygen Species, Cancer and anti-Cancer Therapies. Curr. Chem. Biol., 2009, 3, 22-46.
[http://dx.doi.org/10.2174/187231309787158271]
[36]
Feinendegen, L.E.; Neumann, R.D. The issue of risk in complex adaptive systems: the case of low-dose radiation induced cancer. Hum. Exp. Toxicol., 2006, 25(1), 11-17.
[http://dx.doi.org/10.1191/0960327106ht579oa] [PMID: 16459709]
[37]
Moore, J.V.; West, C.M.; Whitehurst, C. The biology of photodynamic therapy. Phys. Med. Biol., 1997, 42(5), 913-935.
[http://dx.doi.org/10.1088/0031-9155/42/5/012] [PMID: 9172267]
[38]
Wilson, B.C. Photodynamic therapy for cancer: principles. Can. J. Gastroenterol., 2002, 16(6), 393-396.
[http://dx.doi.org/10.1155/2002/743109] [PMID: 12096303]
[39]
Sibata, C.H.; Colussi, V.C.; Oleinick, N.L.; Kinsella, T.J. Photodynamic therapy in oncology. Expert Opin. Pharmacother., 2001, 2(6), 917-927.
[http://dx.doi.org/10.1517/14656566.2.6.917] [PMID: 11585008]
[40]
Hsi, R.A.; Rosenthal, D.I.; Glatstein, E. Photodynamic therapy in the treatment of cancer: current state of the art. Drugs, 1999, 57(5), 725-734.
[http://dx.doi.org/10.2165/00003495-199957050-00005] [PMID: 10353297]
[41]
Yokomizo, A.; Ono, M.; Nanri, H.; Makino, Y.; Ohga, T.; Wada, M.; Okamoto, T.; Yodoi, J.; Kuwano, M.; Kohno, K. Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Res., 1995, 55(19), 4293-4296.
[PMID: 7671238]
[42]
Sasada, T.; Iwata, S.; Sato, N.; Kitaoka, Y.; Hirota, K.; Nakamura, K.; Nishiyama, A.; Taniguchi, Y.; Takabayashi, A.; Yodoi, J. Redox control of resistance to cis-diamminedichloroplatinum (II) (CDDP): protective effect of human thioredoxin against CDDP-induced cytotoxicity. J. Clin. Invest., 1996, 97(10), 2268-2276.
[http://dx.doi.org/10.1172/JCI118668] [PMID: 8636406]
[43]
Ravi, D.; Muniyappa, H.; Das, K.C. Endogenous thioredoxin is required for redox cycling of anthracyclines and p53-dependent apoptosis in cancer cells. J. Biol. Chem., 2005, 280(48), 40084-40096.
[http://dx.doi.org/10.1074/jbc.M507192200] [PMID: 16159878]
[44]
Zhu, H.; Sarkar, S.; Scott, L.; Danelisen, I.; Trush, M.A.; Jia, Z.; Li, Y.R. Doxorubicin redox biology: Redox cycling, topoisomerase inhibition, and oxidative stress. React. Oxyg. Species (Apex), 2016, 1(3), 189-198.
[http://dx.doi.org/10.20455/ros.2016.835] [PMID: 29707645]
[45]
Renschler, M.F. The emerging role of reactive oxygen species in cancer therapy. Eur. J. Cancer, 2004, 40(13), 1934-1940.
[http://dx.doi.org/10.1016/j.ejca.2004.02.031] [PMID: 15315800]
[46]
Tong, L.; Chuang, C.C.; Wu, S.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett., 2015, 367(1), 18-25.
[http://dx.doi.org/10.1016/j.canlet.2015.07.008] [PMID: 26187782]
[47]
Waris, G.; Ahsan, H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinog., 2006, 5, 14.
[http://dx.doi.org/10.1186/1477-3163-5-14] [PMID: 16689993]
[48]
Qin, H.; Sheng, J.; Zhang, D.; Zhang, X.; Liu, L.; Li, B.; Li, G.; Zhang, Z. New strategies for therapeutic cancer vaccines. Anticancer. Agents Med. Chem., 2019, 19(2), 213-221.
[http://dx.doi.org/10.2174/1871520618666181109151835] [PMID: 30411693]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy