Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Detailed Chemistry Studies of 225Actinium Labeled Radiopharmaceuticals

Author(s): Kurtulus Eryilmaz and Benan Kilbas*

Volume 15, Issue 1, 2022

Published on: 09 August, 2021

Page: [76 - 83] Pages: 8

DOI: 10.2174/1874471014666210528123936

Price: $65

Abstract

Background: The synthesis of 225Actinium derivatives was afforded by using PSMA- 617, DOTATATE peptides, and EDTMP ligand. Detailed experiments, quality control (QC), and stability studies were also well described. The radiolabelling reactions were performed in mild conditions with desirable radiochemical yields and high radiochemical purities.

Methods: PSMA-617, DOTATATE were radiolabelled with 225Actinium in 0.1 M HCl in the presence of ascorbate buffer solution and passed through the C-18 light cartridge for purification and the product was eluted by ethanol-water solution. EDTMP was also radiolabelled with 225Actinium without using any stabilizer and purification step. All products were well analyzed by R-TLC and R-HPLC. The stability of those compounds was also studied within the validity period of time.

Results: 225Ac-DOTATATE and 225Ac-PSMA-617 were obtained at the same condition. The radiochemical yield of 225Ac-DOTATATE was less than225Ac-PSMA 617. The stability experiments indicating decay daughters of 225Actinium appeared after T0 +1 h due to the recoil effect radiolysis. On the other hand, 225Ac-EDTMP was more stable than DOTA-peptide radiolabelled compounds. 225Ac-EDTMP was produced with more than 95% radiochemical yield and 99% radiochemical purity.

Conclusion: A detailed chemistry study was presented for the synthesis of 225Actinium derivatives in mild conditions with absolute radiochemical purities and high yields. The experimental results showed that 225Ac-EDTMP could be a suitable radiopharmaceutical alternative for bone metastases arising from primer tumors as a cocktail therapy.

Keywords: 225Actinium radiopharmaceuticals, targeted alpha therapy, QC, stability, EDTMP, hydroxyapatite.

Graphical Abstract
[1]
Brechbiel, M.W. Targeted alpha-therapy: past, present, future? Dalton Trans., 2007, 43(43), 4918-4928.
[http://dx.doi.org/10.1039/b704726f] [PMID: 17992276]
[2]
Tafreshi, N.K.; Doligalski, M.L.; Tichacek, C.J.; Pandya, D.N.; Budzevich, M.M.; El-Haddad, G.; Khushalani, N.I.; Moros, E.G.; McLaughlin, M.L.; Wadas, T.J.; Morse, D.L. Development of targeted alpha particle therapy for solid tumors. Molecules, 2019, 24(23), 4314.
[http://dx.doi.org/10.3390/molecules24234314] [PMID: 31779154]
[3]
Elgqvist, J.; Frost, S.; Pouget, J.P.; Albertsson, P. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. Front. Oncol., 2014, 3, 324.
[http://dx.doi.org/10.3389/fonc.2013.00324] [PMID: 24459634]
[4]
Sgouros, G.; Roeske, J.C.; McDevitt, M.R.; Palm, S.; Allen, B.J.; Fisher, D.R.; Brill, A.B.; Song, H.; Howell, R.W.; Akabani, G.; Bolch, W.E.; Brill, A.B.; Fisher, D.R.; Howell, R.W.; Meredith, R.F.; Sgouros, G.; Wessels, B.W.; Zanzonico, P.B. SNM MIRD Committee. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J. Nucl. Med., 2010, 51(2), 311-328.
[http://dx.doi.org/10.2967/jnumed.108.058651] [PMID: 20080889]
[5]
Parker, C.; Lewington, V.; Shore, N.; Kratochwil, C.; Levy, M.; Lindén, O.; Noordzij, W.; Park, J.; Saad, F. Targeted Alpha Therapy Working Group. Targeted alpha therapy, an emergingclass of cancer agents a review. JAMA Oncol., 2018, 4(12), 1765-1772.
[http://dx.doi.org/10.1001/jamaoncol.2018.4044] [PMID: 30326033]
[6]
Kratochwil, C.; Haberkorn, U.; Giesel, F.L. Radionuclide therapy of metastatic prostate cancer. Semin. Nucl. Med., 2019, 49(4), 313-325.
[http://dx.doi.org/10.1053/j.semnuclmed.2019.02.003] [PMID: 31227054]
[7]
Nilsson, S.; Larsen, R.H.; Fosså, S.D.; Balteskard, L.; Borch, K.W.; Westlin, J.E.; Salberg, G.; Bruland, O.S. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin. Cancer Res., 2005, 11(12), 4451-4459.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2244] [PMID: 15958630]
[8]
Nilsson, S.; Cislo, P.; Sartor, O.; Vogelzang, N.J.; Coleman, R.E.; O’Sullivan, J.M.; Reuning-Scherer, J.; Shan, M.; Zhan, L.; Parker, C. Patient-reported quality-of-life analysis of radium-223 dichloride from the phase III ALSYMPCA study. Ann. Oncol., 2016, 27(5), 868-874.
[http://dx.doi.org/10.1093/annonc/mdw065] [PMID: 26912557]
[9]
Hallqvist, A.; Bergmark, K.; Bäck, T.; Andersson, H.; Dahm-Kähler, P.; Johansson, M.; Lindegren, S.; Jensen, H.; Jacobsson, L.; Hultborn, R.; Palm, S.; Albertsson, P. Intraperitoneal α-Emitting Radioimmunotherapy with 211At in Relapsed Ovarian Cancer: Long-Term Follow-up with Individual Absorbed Dose Estimations. J. Nucl. Med., 2019, 60(8), 1073-1079.
[http://dx.doi.org/10.2967/jnumed.118.220384] [PMID: 30683761]
[10]
Delpassand, E.; Tworowska, I.; Shanoon, F.; Nunez, R.; Flores, L.; Muzammil, A.; Stallons, T.; Saidi, A.; Torgue, J. First clinical experience using targeted alpha- emitter therapy with Pb-212- DOTAMTATE (AlphaMedix TM) in patients with SSTR(+) neuroendocrine tumors. J. Nucl. Med., 2019, 60, 559.
[11]
Kratochwil, C.; Giesel, F.L.; Bruchertseifer, F.; Mier, W.; Apostolidis, C.; Boll, R.; Murphy, K.; Haberkorn, U.; Morgenstern, A. ²¹³Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(11), 2106-2119.
[http://dx.doi.org/10.1007/s00259-014-2857-9] [PMID: 25070685]
[12]
Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med., 2016, 57(12), 1941-1944.
[http://dx.doi.org/10.2967/jnumed.116.178673] [PMID: 27390158]
[13]
Davis, I. A.; Glowienka, K. A.; Boll, R. A.; Deal, K. A.; Brechbiel, M. W.; Stabin, M.; Bochsler, P. N.; Mirzadeh, S.; Kennel, S. J. Comparison of 225actinium chelates: Tissue distribution and radiotoxicity. Nucl. Med. Bio., 1999, 26, 581-589.
[14]
Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An Overview of Targeted Alpha Therapy with 225Actinium and 213Bismuth. Curr. Radiopharm., 2018, 11(3), 200-208.
[http://dx.doi.org/10.2174/1874471011666180502104524] [PMID: 29732998]
[15]
Ocak, M.; Toklu, T.; Demirci, E.; Selçuk, N.; Kabasakal, L. Post-therapy imaging of 225Ac-DOTATATE treatment in a patient with recurrent neuroendocrine tumor. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(11), 2711-2712.
[http://dx.doi.org/10.1007/s00259-020-04725-x] [PMID: 32123970]
[16]
Ballal, S.; Yadav, M.P.; Bal, C.; Sahoo, R.K.; Tripathi, M. Broadening horizons with 225Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to 177Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(4), 934-946.
[http://dx.doi.org/10.1007/s00259-019-04567-2] [PMID: 31707430]
[17]
Beyer, G.J.; Offord, R.; Künzi, G.; Aleksandrova, Y.; Ravn, U.; Jahn, S.; Barker, J.; Tengblad, O.; Lindroos, M. The ISOLDE Collaboration. The influence of EDTMP-concentration on the biodistribution of radio-lanthanides and 225-Ac in tumor-bearing mice. Nucl. Med. Biol., 1997, 24(5), 367-372.
[http://dx.doi.org/10.1016/S0969-8051(97)80001-7] [PMID: 9290069]
[18]
Kelly, M.J.; Coarasa, A.A.; Sweeney, E.; Babich, W.J. A Consensus Time for Performing Quality Control of 225Ac-Labeled Radiopharmaceuticals; Research Square, 2020.
[19]
Kruijff, R.M.; Raavé, R.; Kip, A.; Molkenboer-Kuenen, J.; Morgenstern, A.; Bruchertseifer, F.; Heskamp, S.; Denkova, A.G. The in vivo fate of 225Ac daughter nuclides using polymersomes as a model carrier. Sci. Rep., 2019, 9(1), 11671-11684.
[http://dx.doi.org/10.1038/s41598-019-48298-8] [PMID: 31406320]
[20]
Breeman, W.A.; van der Wansem, K.; Bernard, B.F.; van Gameren, A.; Erion, J.L.; Visser, T.J.; Krenning, E.P.; de Jong, M. The addition of DTPA to [177Lu-DOTA0,Tyr3]octreotate prior to administration reduces rat skeleton uptake of radioactivity. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(2), 312-315.
[http://dx.doi.org/10.1007/s00259-002-1054-4] [PMID: 12552352]
[21]
Pfannkuchen, N.; Meckel, M.; Bergmann, R.; Bachmann, M.; Bal, C.; Sathekge, M.; Mohnike, W.; Baum, R.P.; Rösch, F. Novel Radiolabeled Bisphosphonates for PET Diagnosis and Endoradiotherapy of Bone Metastases. Pharmaceuticals (Basel), 2017, 10(2), 45-57.
[http://dx.doi.org/10.3390/ph10020045] [PMID: 28524118]
[22]
Fischer, M.; Kampen, W.U. Radionuclide Therapy of Bone Metastases. Breast Care (Basel), 2012, 7(2), 100-107.
[http://dx.doi.org/10.1159/000337634] [PMID: 22740795]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy