Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

A Review of Preparation Methods for Heterogeneous Catalysts

Author(s): Israf Ud Din*, Qazi Nasir, Mustapha D. Garba, Abdulrahman I. Alharthi, Mshari A. Alotaibi and Muhammad Usman*

Volume 19, Issue 1, 2022

Published on: 08 March, 2021

Page: [92 - 110] Pages: 19

DOI: 10.2174/1570193X18666210308151136

Price: $65

Abstract

Catalysts contribute significantly to the industrial revolution in terms of reaction rates and reduction in production costs. Extensive research has been documented on various industrial catalysis in the last few decades. The performance of catalysts is influenced by many parameters, including synthesis methods. The current work overviews the most common methods applied for the synthesis of supported catalysts. This review presents the detailed background, principles, and mechanism of each preparation method. The advantages and limitations of each method have also been elaborated in detail. In addition, the applications of each method in terms of catalyst synthesis have been documented in the present review paper.

Keywords: Catalysts preparations, impregnation, ion exchange, sol-gel, hydrothermal, solvothermal, deposition precipitations.

Graphical Abstract
[1]
Zhu, J.; Li, Y.; Muhammad, U.; Wang, D.; Wang, Y. Effect of alkene co-feed on the MTO reactions over SAPO-34. Chem. Eng. J., 2017, 316, 187-195.
[http://dx.doi.org/10.1016/j.cej.2017.01.090]
[2]
Arslan, M.T.; Qureshi, B.A.; Gilani, S.Z.A.; Cai, D.; Ma, Y.; Usman, M.; Chen, X.; Wang, Y.; Wei, F. Single-step conversion of H2-deficient syngas into high yield of tetramethylbenzene. ACS Catal., 2019, 9, 2203-2212.
[http://dx.doi.org/10.1021/acscatal.8b04548]
[3]
Usman, M.; Zhu, J.; Chuiyang, K.; Arslan, M.T.; Khan, A.; Galadima, A.; Muraza, O.; Khan, I.; Helal, A.; Al-Maythalony, B.A.; Yamani, Z.H. Propene adsorption-chemisorption behaviors on H-SAPO-34 zeolite catalysts at different temperatures. Catalysts, 2019, 9, 919.
[http://dx.doi.org/10.3390/catal9110919]
[4]
Ashraf, M.; Khan, I.; Usman, M.; Khan, A.; Shah, S.S.; Khan, A.Z.; Saeed, K.; Yaseen, M.; Ehsan, M.F.; Nawaz Tahir, M. Hematite and magnetite nanostructures for green and sustainable energy harnessing and environmental pollution control: A review. Chem. Res. Toxicol., 2019, 33(6), 1292-1311.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00308] [PMID: 31884781]
[5]
Zhang, C.; Wang, Q.; Jia, Z.; Muhammad, U.; Qian, W.; Wei, F. Design of parallel cyclones based on stability analysis. AlChE J., 2016, 62, 4251-4258.
[http://dx.doi.org/10.1002/aic.15366]]
[6]
Ma, Y.; Cai, D.; Li, Y.; Wang, N.; Muhammad, U.; Carlsson, A.; Tang, D.; Qian, W.; Wang, Y.; Su, D.; Wei, F. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study. RSC Advances, 2016, 6, 74797-74801.
[http://dx.doi.org/10.1039/C6RA19073A]
[7]
Cai, D.; Wang, Q.; Jia, Z.; Ma, Y.; Cui, Y.; Muhammad, U.; Wang, Y.; Qian, W.; Wei, F. Equilibrium analysis of methylbenzene intermediates for a methanol-to-olefins process. Catal. Sci. Technol., 2016, 6, 1297-1301.
[http://dx.doi.org/10.1039/C6CY00059B]
[8]
Usman, M.; Li, D.; Li, C.; Zhang, S. Highly selective and stable hydrogenation of heavy aromatic-naphthalene over transition metal phosphides. Sci. China Chem., 2015, 58, 738-746.
[http://dx.doi.org/10.1007/s11426-014-5199-3]
[9]
Wang, H.; Cao, Y.; Li, D.; Muhammad, U.; Li, C.; Li, Z.; Zhang, S. Catalytic hydrorefining of tar to liquid fuel over multi-metals (W-Mo-Ni) catalysts. J. Renew. Sustain. Energy, 2013, 5(5)053114
[http://dx.doi.org/10.1063/1.4822050]
[10]
Zhang, H.H.; Cao, Y.M.; Usman, M.; Li, L.J.; Li, C.S. Study on the hydrotreating catalysts containing phosphorus of coal tar to clean fuels. Adv. Mat. Res., 2012, 531, 263-267.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.531.263]]
[11]
Yaseen, M.; Shakirullah, M.; Ahmad, I.; Rahman, A.U.; Rahman, F.U.; Usman, M.; Razzaq, R. Simultaneous operation of dibenzothiophene hydrodesulfurization and methanol reforming reactions over Pd promoted alumina based catalysts. J. Fuel Chem. Technol., 2012, 40, 714-720.
[http://dx.doi.org/10.1016/S1872-5813(12)60027-9]
[12]
Kan, T.; Sun, X.; Wang, H.; Li, C.; Muhammad, U. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds. Energy Fuels, 2012, 26, 3604-3611.
[http://dx.doi.org/10.1021/ef3004398]
[13]
Din, I.U.; Alotaibi, M.A.; Alharthi, A.I. Green synthesis of methanol over zeolite based Cu nano-catalysts, effect of Mg promoter. Sustain. Chem. Pharm., 2020, 16100264
[http://dx.doi.org/10.1016/j.scp.2020.100264]
[14]
Alharthi, A.I.; Din, I.U.; Alotaibi, M.A. Effect of the Cu/Ni ratio on the activity of zeolite based Cu–Ni bimetallic catalysts for CO2 hydrogenation to methanol. Russ. J. Phys. Chem. A, 2020, 94, 2563-2568.
[http://dx.doi.org/10.1134/S0036024420120043]
[15]
Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Sohail, M.; Zaman, N.; Usman, M. Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electocatalyst for oxygen evaluation reaction (OER). Renew. Energy, 2020.
[http://dx.doi.org/10.1016/j.renene.2020.04.131]
[16]
Helal, A.; Usman, M.; Arafat, M.E.; Abdelnaby, M.M. Allyl functionalized UiO-66 metal-organic framework as a catalyst for the synthesis of cyclic carbonates by CO2 cycloaddition. J. Ind. Eng. Chem., 2020, 89, 104-110.
[http://dx.doi.org/10.1016/j.jiec.2020.05.016]
[17]
Helal, A. Fine chemical synthesis using metal–organic frameworks as catalysts. In: Applications of Metal-Organic Frameworks and Their Derived Materials,Inamuddin; Boddula, R.; Ahamed, M.I.; Asiri A.M., eds., Wiley: Hoobken,, 2020, pp. 177-191.
[18]
Din, I. U.; Usman, M.; Khan, S.; Helal, A.; Alotaibi, M. A.; Alharthi, A. I.; Centi, G. Prospects for a green methanol thermocatalytic process from CO2 by using MOFs based materials: A mini-review. J. CO2 Util. 2021, 43 101361
[19]
Garba, M.D.; Usman, M.; Khan, S.; Shehzad, F.; Galadima, A.; Ehsan, M.F.; Ghanem, A.S.; Humayun, M. CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons. J. Environ. Chem. Eng., 2020, 9(2)104756
[20]
Usman, M.; Helal, A.; Abdelnaby, M.M.; Alloush, A.M.; Zeama, M.; Yamani, Z.H. Trends and prospects in UiO-66 metal-organic framework for CO2 capture, separation, and conversion. Chem. Rec., 2021, 21(7), 1771-1791.
[http://dx.doi.org/10.1002/tcr.202100030] [PMID: 33955166]
[21]
Khan, F-A.; Yaqoob, S.; Nasim, N.; Wang, Y.; Usman, M.; Isab, A.A.; Altaf, M.; Sun, B.; El Azab, I.H.; El-Seedi, H.R. Ruthenium nanoparticles intercalated in montmorillonite (nano-ru@mmt) is highly efficient catalyst for the selective hydrogenation of 2-furaldehyde in benign aqueous medium. Catalysts, 2021, 11, 66.
[http://dx.doi.org/10.3390/catal11010066]
[22]
Khan, I.; Usman, M.; Imran, M.; Saeed, K. Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation. J. Mater. Sci. Mater. Electron., 2020, 31, 8971-8985.
[http://dx.doi.org/10.1007/s10854-020-03431-6]
[23]
Ehsan, M.F.; Fazal, A.; Hamid, S.; Arfan, M.; Khan, I.; Usman, M.; Shafiee, A.; Ashiq, M.N. CoFe2O4 decorated g-C3N4 nanosheets: New insights into superoxide anion mediated photomineralization of methylene blue. J. Environ. Chem. Eng., 2020, 8104556
[http://dx.doi.org/10.1016/j.jece.2020.104556]
[24]
Ehsan, M.F.; Shafiq, M.; Hamid, S.; Shafiee, A.; Usman, M.; Khan, I.; Ashiq, M.N.; Arfan, M. Reactive oxygen species: New insights into photocatalytic pollutant degradation over g-C3N4/ZnSe nanocomposite. Appl. Surf. Sci., 2020, 532147418
[http://dx.doi.org/10.1016/j.apsusc.2020.147418]]
[25]
Garba, M.D.; Jackson, S.D. Transhydrogenation of pentane and 1-hexyne over CrOx/Al2O3 and potassium-doped CrOx/Al2O3 catalysts. Appl. Petrochem. Res., 2019, 9, 113-125.
[http://dx.doi.org/10.1007/s13203-019-0231-3]
[26]
Garba, M.D.; Jackson, S.D. Catalytic upgrading of refinery cracked products by trans-hydrogenation: a review. Appl. Petrochem. Res., 2017, 7, 1-8.
[http://dx.doi.org/10.1007/s13203-016-0173-y]
[27]
Adio, S.O.; Ganiyu, S.A.; Usman, M.; Abdulazeez, I.; Alhooshani, K. Facile and efficient nitrogen modified porous carbon derived from sugarcane bagasse for CO2 capture: Experimental and DFT investigation of nitrogen atoms on carbon frameworks. Chem. Eng. J., 2020, 382122964
[http://dx.doi.org/10.1016/j.cej.2019.122964]
[28]
Usman, M.; Li, D.; Razzaq, R.; Latif, U.; Muraza, O.; Yamani, Z.H.; Al-Maythalony, B.A.; Li, C.; Zhang, S. Polyaromatic hydrocarbon (naphthalene) conversion into value added chemical (tetralin): Activity and stability of MoP/AC catalyst. J. Environ. Chem. Eng., 2018, 6, 4525-4530.
[http://dx.doi.org/10.1016/j.jece.2018.06.053]
[29]
Din, I.U.; Shaharun, M.S.; Naeem, A.; Alotaibi, M.A.; Alharthi, A.I.; Nasir, Q. Effect of reaction conditions on the activity of novel carbon nanofiber-based Cu/ZrO2 catalysts for CO2 hydrogenation to methanol. C. R. Chim., 2020, 23, 57-61.
[30]
Din, I.U.; Shaharun, M.S.; Naeem, A.; Alotaibi, M.A.; Alharthi, A.I.; Nasir, Q. CO2 conversion to methanol over novel carbon nanofiber-based Cu/ZrO2 Catalysts—A kinetics study. Catalysts, 2020, 10, 567.
[http://dx.doi.org/10.3390/catal10050567]
[31]
Usman, M.; Humayun, M.; Shah, S.S.; Ullah, H.; Tahir, A.A.; Khan, A. Bismuth-Graphene nanohybrids: synthesis, reaction mechanisms, and photocatalytic applications-A review. Energies, 2021, 14, 2281.
[http://dx.doi.org/10.3390/en14082281]]
[32]
Buliyaminu, I.A.; Aziz, M.A.; Shah, S.S.; Mohamedkhair, A.K.; Yamani, Z.H. Preparation of nano-Co3O4-coated Albizia procera-derived carbon by direct thermal decomposition method for electrochemical water oxidation. Arab. J. Chem., 2020, 13, 4785-4796.
[http://dx.doi.org/10.1016/j.arabjc.2019.12.013]
[33]
Shah, S.S.; Aziz, M.A.; Mohamedkhair, A.K.; Qasem, M.A.A.; Hakeem, A.S.; Nazal, M.K.; Yamani, Z.H. Preparation and characterization of manganese oxide nanoparticles-coated Albizia procera derived carbon for electrochemical water oxidation. J. Mater. Sci. Mater. Electron., 2019, 30, 16087-16098.
[http://dx.doi.org/10.1007/s10854-019-01979-6]
[34]
Shah, S.S.; Alfasane, M.A.; Bakare, I.A.; Aziz, M.A.; Yamani, Z.H. Polyaniline and heteroatoms–enriched carbon derived from Pithophora polymorpha composite for high performance supercapacitor. J. Energy Storage, 2020, 30101562
[http://dx.doi.org/10.1016/j.est.2020.101562]
[35]
Shah, S.S.; Qasem, M.A.A.; Berni, R.; Del Casino, C.; Cai, G.; Contal, S.; Ahmad, I.; Siddiqui, K.S.; Gatti, E.; Predieri, S.; Hausman, J-F.; Cambier, S.; Guerriero, G.; Aziz, M.A. Physico-chemical properties and toxicological effects on plant and algal models of carbon nanosheets from a nettle fibre clone. Sci. Rep., 2021, 11(1), 6945.
[http://dx.doi.org/10.1038/s41598-021-86426-5] [PMID: 33767326]
[36]
Nalwa, H.S. Handbook of surfaces and interfaces of materials, five-volume set; Elsevier: Amsterdam, 2001.
[37]
Argyle, M.D.; Bartholomew, C.H. heterogeneous catalyst deactivation and regeneration: A review. Catalysts, 2015, 5, 145-269.
[http://dx.doi.org/10.3390/catal5010145]
[38]
Dhand, C.; Dwivedi, N.; Loh, X.J.; Jie Ying, A.N.; Verma, N.K.; Beuerman, R.W.; Lakshminarayanan, R.; Ramakrishna, S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Advances, 2015, 5, 105003-105037.
[http://dx.doi.org/10.1039/C5RA19388E]
[39]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[40]
Khan, N.A.; Humayun, M.; Usman, M.; Ghazi, Z.A.; Naeem, A.; Khan, A.; Khan, A.L.; Tahir, A.A.; Ullah, H. Structural characteristics and environmental applications of covalent organic frameworks. Energies, 2021, 14, 2267.
[http://dx.doi.org/10.3390/en14082267]
[41]
Flores, C.; Batalha, N.; Marcilio, N.R.; Ordomsky, V.V.; Khodakov, A.Y. Influence of impregnation and ion exchange sequence on metal localization, acidity and catalytic performance of cobalt BEA zeolite catalysts in fischer-tropsch synthesis. ChemCatChem, 2019, 11, 568-574.
[http://dx.doi.org/10.1002/cctc.201800728]
[42]
Perego, C.; Villa, P. Catalyst preparation methods. Catal. Today, 1997, 34, 281-305.
[http://dx.doi.org/10.1016/S0920-5861(96)00055-7]
[43]
Behrens, M. Synthesis of solid catalysts. Krijn, P.; Jong, de, Eds., Angew. Chem., 2010, 49, pp. 2095-2095.
[44]
Ammar, S.; Jaffar, S. Adsorptive desulfurization of gas oil over Cu2O/AC, ZnO/AC and NiO/AC adsorbents. Eng. Technol. J., 2017, 35, 856-863.
[45]
Van Honschoten, J.W.; Brunets, N.; Tas, N.R. Capillarity at the nanoscale. Chem. Soc. Rev., 2010, 39(3), 1096-1114.
[http://dx.doi.org/10.1039/b909101g] [PMID: 20179827]
[46]
Cai, F.; Yang, L.; Shan, S.; Mott, D.; Chen, B.H.; Luo, J.; Zhong, C-J. Preparation of PdCu alloy nanocatalysts for nitrate hydrogenation and carbon monoxide oxidation. Catalysts, 2016, 6, 96.
[http://dx.doi.org/10.3390/catal6070096]
[47]
Washburn, E.W. The dynamics of capillary flow. Phys. Rev., 1921, 17, 273-283.
[http://dx.doi.org/10.1103/PhysRev.17.273]
[48]
Haneveld, J.; Tas, N.R.; Brunets, N.; Jansen, H.V.; Elwenspoek, M. Capillary filling of sub-10nm nanochannels. J. Appl. Phys., 2008, 104014309
[http://dx.doi.org/10.1063/1.2952053]
[49]
Liu, X.; Khinast, J.G.; Glasser, B.J. A parametric investigation of impregnation and drying of supported catalysts. Chem. Eng. Sci., 2008, 63, 4517-4530.
[http://dx.doi.org/10.1016/j.ces.2008.06.013]]
[50]
Munnik, P.; de Jongh, P.E.; de Jong, K.P. Recent developments in the synthesis of supported catalysts. Chem. Rev., 2015, 115(14), 6687-6718.
[http://dx.doi.org/10.1021/cr500486u] [PMID: 26088402]
[51]
Imperor-Clerc, M.; Bazin, D.; Appay, M-D.; Beaunier, P.; Davidson, A. Crystallization of β-MnO2 nanowires in the pores of SBA-15 Silicas: In situ investigation using synchrotron radiation. Chem. Mater., 2004, 16, 1813-1821.
[http://dx.doi.org/10.1021/cm035353m]
[52]
Moreno, M.S.; Weyland, M.; Midgley, P.A.; Bengoa, J.F.; Cagnoli, M.V.; Gallegos, N.G.; Alvarez, A.M.; Marchetti, S.G. Highly anisotropic distribution of iron nanoparticles within MCM-41 mesoporous silica. Micron, 2006, 37(1), 52-56.
[http://dx.doi.org/10.1016/j.micron.2005.06.003] [PMID: 16084103]
[53]
Sietsma, J.R.A.; Meeldijk, J.D.; Versluijs-Helder, M.; Broersma, A.; Dillen, A.J.V.; de Jongh, P.E.; de Jong, K.P. Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts: impregnation, drying, and thermal treatments. Chem. Mater., 2008, 20, 2921-2931.
[http://dx.doi.org/10.1021/cm702610h]
[54]
Eggenhuisen, T.M.; Friedrich, H.; Nudelman, F.; Zečević, J.; Sommerdijk, N.A.J.M.; de Jongh, P.E.; de Jong, K.P. Controlling the distribution of supported nanoparticles by aqueous synthesis. Chem. Mater., 2013, 25, 890-896.
[http://dx.doi.org/10.1021/cm3037845]
[55]
Kosmulski, M. The pH-dependent surface charging and points of zero charge: V. Update. J. Colloid Interface Sci., 2011, 353(1), 1-15.
[http://dx.doi.org/10.1016/j.jcis.2010.08.023] [PMID: 20869721]
[56]
Galhenage, R.P.; Xie, K.; Diao, W.; Tengco, J.M.M.; Seuser, G.S.; Monnier, J.R.; Chen, D.A. Platinum-ruthenium bimetallic clusters on graphite: a comparison of vapor deposition and electroless deposition methods. Phys. Chem. Chem. Phys., 2015, 17(42), 28354-28363.
[http://dx.doi.org/10.1039/C5CP00075K] [PMID: 26018140]
[57]
Mehrabadi, B.A.T.; Eskandari, S.; Khan, U.; White, R.D.; Regalbuto, J.R. Chapter one - A review of preparation methods for supported metal catalysts. Advances in catalysis; Song, C., Ed.; Academic Press, 2017, Vol. 61, pp. 1-35.
[58]
Razzaq, R.; Li, C.; Usman, M.; Suzuki, K.; Zhang, S. A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG). Chem. Eng. J., 2015, 262, 1090-1098.
[http://dx.doi.org/10.1016/j.cej.2014.10.073]
[59]
Eggenhuisen, T.M.; Van Steenbergen, M.J.; Talsma, H.; De Jongh, P.E.; De Jong, K.P. Impregnation of mesoporous silica for catalyst preparation studied with differential scanning calorimetry. J. Phys. Chem. C, 2009, 113, 16785-16791.
[http://dx.doi.org/10.1021/jp905410d]]
[60]
Van der Meer, J.; Bardez, I.; Bart, F.; Albouy, P-A.; Wallez, G.; Davidson, A. Dispersion of Co3O4 nanoparticles within SBA-15 using alkane solvents. Micropo. Mesopo. Mater., 2009, 118, 183-188.
[http://dx.doi.org/10.1016/j.micromeso.2008.08.053]
[61]
Van der Meer, J.; Bardez-Giboire, I.; Mercier, C.; Revel, B.; Davidson, A.; Denoyel, R. Mechanism of metal oxide nanoparticle loading in SBA-15 by the double solvent technique. J. Phys. Chem. C, 2010, 114, 3507-3515.
[http://dx.doi.org/10.1021/jp907002y]
[62]
Marceau, E.; Che, M.; Čejka, J.; Zukal, A. Nickel(II) nitrate vs. acetate: influence of the precursor on the structure and reducibility of Ni/MCM-41 and Ni/Al-MCM-41 catalysts. ChemCatChem, 2010, 2, 413-422.
[http://dx.doi.org/10.1002/cctc.200900289]
[63]
Kosmulski, M. The Significance of the points of zero charge of zirconium (hydr)oxide reported in the literature. J. Dispers. Sci. Technol., 2002, 23, 529-538.
[http://dx.doi.org/10.1081/DIS-120014021]
[64]
Axe, L.; Anderson, P.R. Sr diffusion and reaction within Fe Oxides: evaluation of the rate-limiting mechanism for sorption. J. Colloid Interface Sci., 1995, 175, 157-165.
[http://dx.doi.org/10.1006/jcis.1995.1441]
[65]
Karthik, P.; Vinoth, R.; Zhang, P.; Choi, W.; Balaraman, E.; Neppolian, B. π–π interaction between metal–organic framework and reduced graphene oxide for visible-light photocatalytic h2 production. ACS Appl. Energy Mater., 2018, 1, 1913-1923.
[http://dx.doi.org/10.1021/acsaem.7b00245]]
[66]
Usman, M.; Li, D.; Razzaq, R.; Yaseen, M.; Li, C.; Zhang, S. Novel MoP/HY catalyst for the selective conversion of naphthalene to tetralin. J. Ind. Eng. Chem., 2015, 23, 21-26.
[http://dx.doi.org/10.1016/j.jiec.2014.08.033]
[67]
Li, D.; Bui, P.; Zhao, H.; Oyama, S.; Dou, T.; Shen, Z. Rake mechanism for the deoxygenation of ethanol over a supported Ni2P/SiO2 catalyst. J. Catal., 2012, 290, 1-12.
[http://dx.doi.org/10.1016/j.jcat.2012.02.001]
[68]
Zhang, H.H.; Cao, Y.M.; Usman, M.; Li, L.J.; Li, C.S. Study on the hydrotreating catalysts containing phosphorus of coal tar to clean fuels. Adv. Mat. Res.Trans Tech Publ, 2012, 2012, 263-267.
[69]
Li, D.; Zhang, H.; Usman, M.; Li, Z.; Han, L.; Li, C.; Zhang, S. Study on the hydrotreatment of C9 aromatics over supported multi-metal catalysts on γ-Al2O3. J. Renew. Sustain. Energy, 2014, 6033132
[http://dx.doi.org/10.1063/1.4884635]
[70]
Tathod, A.P.; Hayek, N.; Shpasser, D.; Simakov, D.S.A.; Gazit, O.M. Mediating interaction strength between nickel and zirconia using a mixed oxide nanosheets interlayer for methane dry reforming. Appl. Catal. B, 2019, 249, 106-115.
[http://dx.doi.org/10.1016/j.apcatb.2019.02.040]
[71]
Alshehri, F.; Feral, C.; Kirkwood, K.; Jackson, S.D. Low temperature hydrogenation and hydrodeoxygenation of oxygen-substituted aromatics over Rh/silica: part 1: phenol, anisole and 4-methoxyphenol. React. Kinet. Mech. Catal., 2019, 128, 23-40.
[http://dx.doi.org/10.1007/s11144-019-01630-9]]
[72]
Gong, H.; Zhu, J.; Lv, K.; Xiao, P.; Zhao, Y. Templating synthesis of metal oxides by an incipient wetness impregnation route and their activities for CO oxidation. New J. Chem., 2015, 39, 9380-9388.
[http://dx.doi.org/10.1039/C5NJ01890K]
[73]
Kühl, G.H. Modification of zeolites.Catalysis and Zeolites; Springer: New York, 1999, pp. 81-197.
[http://dx.doi.org/10.1007/978-3-662-03764-5_3]
[74]
Usman, M.; Ali, M.; Al-Maythalony, B.A.; Ghanem, A.S.; Saadi, O.W.; Ali, M.; Jafar Mazumder, M.A.; Abdel-Azeim, S.; Habib, M.A.; Yamani, Z.H.; Ensinger, W. Highly efficient permeation and separation of gases with metal-organic frameworks confined in polymeric nanochannels. ACS Appl. Mater. Interfaces, 2020, 12(44), 49992-50001.
[http://dx.doi.org/10.1021/acsami.0c13715] [PMID: 33104340]
[75]
Summers, J.C.; Ausen, S.A. Catalyst impregnation: Reactions of noble metal complexes with alumina. J. Catal., 1978, 52, 445-452.
[http://dx.doi.org/10.1016/0021-9517(78)90349-4]
[76]
Conţescu, C.; Vass, M.I. Impregnation of alumina with palladium tetrahalide anionic complexes. React. Kinet. Catal. Lett., 1991, 43, 393-398.
[http://dx.doi.org/10.1007/BF02064703]
[77]
Spielbauer, D.; Zeilinger, H.; Knoezinger, H. Adsorption of palladium-ammino-aquo complexes on gamma-alumina and silica. Langmuir, 1993, 9, 460-466.
[http://dx.doi.org/10.1021/la00026a017]
[78]
Schwarz, J.A.; Contescu, C.; Contescu, A. Methods for preparation of catalytic materials. Chem. Rev., 1995, 95, 477-510.
[http://dx.doi.org/10.1021/cr00035a002]]
[79]
Feeley, J.S.; Sachtler, W.M.H. Palladium-enhanced reducibility of nickel in NaY. Zeolites, 1990, 10, 738-745.
[http://dx.doi.org/10.1016/0144-2449(90)90055-V]
[80]
Feeley, J.S.; Stakheev, A.Y.; Cavalcanti, F.A.P.; Sachtler, W.M.H. CO hydrogenation over PdNix alloys encaged in NaY zeolite. J. Catal., 1992, 136, 182-196.
[http://dx.doi.org/10.1016/0021-9517(92)90117-Z]]
[81]
Jiang, H.J.; Tzou, M.S.; Sachtler, W.H.M. Hydrogen release from Ni/faujasite catalysts. Catal. Lett., 1988, 1, 99-107.
[http://dx.doi.org/10.1007/BF00772772]
[82]
Hao, P.; Xie, M.; Chen, S.; Li, M.; Bi, F.; Zhang, Y.; Lin, M.; Guo, X.; Ding, W.; Guo, X. Surrounded catalysts prepared by ion-exchange inverse loading. Sci. Adv., 2020, 6(20)eaay7031
[http://dx.doi.org/10.1126/sciadv.aay7031] [PMID: 32426494]
[83]
Xue, C.; Zhang, Q.; Wang, E.; Huang, R.; Wang, J.; Hao, Y.; Hao, X. Encapsulated HKUST-1 nanocrystal with enhanced vapor stability and its CO2 adsorption at low partial pressure in unitary and binary systems. J. CO2 Util. 2020, 36, 1-8.
[84]
Martins, L.; Boldo, R.T.; Cardoso, D. Ion exchange and catalytic properties of methylammonium FAU zeolite. Microporous Mesoporous Mater., 2007, 98, 166-173.
[http://dx.doi.org/10.1016/j.micromeso.2006.08.023]
[85]
Rightor, E.G.; Tzou, M-S.; Pinnavaia, T.J. Iron oxide pillared clay with large gallery height: Synthesis and properties as a Fischer-Tropsch catalyst. J. Catal., 1991, 130, 29-40.
[http://dx.doi.org/10.1016/0021-9517(91)90089-M]
[86]
Rubalcaba, A.; Suárez-Ojeda, M.E.; Stüber, F.; Fortuny, A.; Bengoa, C.; Metcalfe, I.; Font, J.; Carrera, J.; Fabregat, A. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment. Water Sci. Technol., 2007, 55(12), 221-227.
[http://dx.doi.org/10.2166/wst.2007.412] [PMID: 17674852]
[87]
Kloprogge, J.T.; Duong, L.V.; Frost, R.L. A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels. Environ. Geol., 2005, 47, 967-981.
[http://dx.doi.org/10.1007/s00254-005-1226-1]
[88]
Oliveira, L.C.A.; Lago, R.M.; Fabris, J.D.; Sapag, K. Catalytic oxidation of aromatic VOCs with Cr or Pd-impregnated Al-pillared bentonite: Byproduct formation and deactivation studies. Appl. Clay Sci., 2008, 39, 218-222.
[http://dx.doi.org/10.1016/j.clay.2007.06.003]
[89]
Olaya, A.; Moreno, S.; Molina, R. Synthesis of pillared clays with Al13-Fe and Al13-Fe-Ce polymers in solid state assisted by microwave and ultrasound: Characterization and catalytic activity. Appl. Catal. A Gen., 2009, 370, 7-15.
[http://dx.doi.org/10.1016/j.apcata.2009.08.018]
[90]
Sivaiah, M.V.; Petit, S.; Brendlé, J.; Patrier, P. Rapid synthesis of aluminium polycations by microwave assisted hydrolysis of aluminium via decomposition of urea and preparation of Al-pillared montmorillonite. Appl. Clay Sci., 2010, 48, 138-145.
[http://dx.doi.org/10.1016/j.clay.2009.11.016]]
[91]
Gil, A.; Gandia, L.M.; Vicente, M.A. Recent advances in the synthesis and catalytic applications of pillared clays. Catal. Rev., 2000, 42, 145-212.
[http://dx.doi.org/10.1081/CR-100100261]
[92]
Baloyi, J.; Ntho, T.; Moma, J. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: a review. RSC Advances, 2018, 8, 5197-5211.
[http://dx.doi.org/10.1039/C7RA12924F]
[93]
Guerreiro, E.D.; Gorriz, O.F.; Rivarola, J.B.; Arrúa, L.A. Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation. Appl. Catal. A Gen., 1997, 165, 259-271.
[http://dx.doi.org/10.1016/S0926-860X(97)00207-X]]
[94]
Chang, F-W.; Yang, H-C.; Roselin, L.S.; Kuo, W-Y. Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange. Appl. Catal. A Gen., 2006, 304, 30-39.
[http://dx.doi.org/10.1016/j.apcata.2006.02.017]
[95]
Rauscher, M.; Kesore, K.; Mönnig, R.; Schwieger, W.; Tißler, A.; Turek, T. Preparation of a highly active Fe-ZSM-5 catalyst through solid-state ion exchange for the catalytic decomposition of N2O. Appl. Catal. A Gen., 1999, 184, 249-256.
[http://dx.doi.org/10.1016/S0926-860X(99)00088-5]
[96]
Ostgard, D.J.; Kustov, L.; Poeppelmeier, K.R.; Sachtler, W.M.H. Comparison of Pt/KL catalysts prepared by ion exchange or incipient wetness impregnation. J. Catal., 1992, 133, 342-357.
[http://dx.doi.org/10.1016/0021-9517(92)90245-D]
[97]
Miyazawa, T.; Koso, S.; Kunimori, K.; Tomishige, K. Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin. Appl. Catal. A Gen., 2007, 318, 244-251.
[http://dx.doi.org/10.1016/j.apcata.2006.11.006]
[98]
Iwamoto, M.; Tanaka, Y. Preparation of metal ion-planted mesoporous silica by template ion-exchange method and its catalytic activity for asymmetric oxidation of sulfide. Catal. Surv. Jpn., 2001, 5, 25-36.
[http://dx.doi.org/10.1023/A:1012257731538]
[99]
Cauqui, M.A.; Rodríguez-Izquierdo, J.M. Application of the sol-gel methods to catalyst preparation. J. Non-Cryst. Solids, 1992, 147-148, 724-738.
[http://dx.doi.org/10.1016/S0022-3093(05)80707-0]
[100]
Teichner, S.J.; Nicolaon, G.A.; Vicarini, M.A.; Gardes, G.E.E. Inorganic oxide aerogels. Adv. Colloid Interface Sci., 1976, 5, 245-273.
[http://dx.doi.org/10.1016/0001-8686(76)80004-8]
[101]
Richard, D.; Gonzalez, T.L.; Ricardo, G. Sol-Gel preparation of supported metal catalysts. Catal. Today, 1997, 293-317.
[102]
Brinker, C.J.S.G. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processin; Academic Press Inc.: New York, 1990.
[103]
Levy, D.Z. The Sol-Gel Handbook: Synthesis, characterization and applications; Wiley-VCH: Weinheim, Germany, 2015.
[http://dx.doi.org/10.1002/9783527670819]
[104]
Hench, L.L.; West, J.K. The sol-gel process. Chem. Rev., 1990, 90, 33-72.
[http://dx.doi.org/10.1021/cr00099a003]]
[105]
Tleimat-Manzalji, R.; Manzalji, T.; Pajonk, G.M. Aerogels and xerogels for catalytic applications. J. Non-Cryst. Solids, 1992, 147-148, 744-747.
[http://dx.doi.org/10.1016/S0022-3093(05)80709-4]
[106]
Ishiguro, K.; Ishikawa, T.; Kakuta, N.; Ueno, A.; Mitarai, Y.; Kamo, T. Characterization of alumina prepared by sol-gel methods and its application to MoO3-CoO-Al2O3 catalyst. J. Catal., 1990, 123, 523-533.
[http://dx.doi.org/10.1016/0021-9517(90)90148-D]
[107]
Osseo-Asare, K.; Arriagada, F.J. Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf., 1990, 50, 321-339.
[http://dx.doi.org/10.1016/0166-6622(90)80273-7]
[108]
Tanaka, H.; Yasukawa, A.; Kandori, K.; Ishikawa, T. Surface structure and properties of fluoridated calcium hydroxyapatite. Colloids Surf. A Physicochem. Eng. Asp., 2002, 204, 251-259.
[http://dx.doi.org/10.1016/S0927-7757(02)00005-5]
[109]
Bradley, D.C.; Mehrotra, R.C.; Rothwell, I.P.; Singh, A. Alkoxo and Aryloxo Derivatives of Metals; Academic Press: London, 2001.
[110]
Turova, N.Y.; Turevskaya, E.P. The Chemistry of Metal Alkoxides; Kluwer Academic Publishers: Boston, 2002.
[111]
Prof. Dr. Robert, J.P. Corriu, D.D.L. Recent developments of molecular chemistry for sol-gel processes. Angew. Chem., 1996, 1420-1436.
[112]
Niederberger, M. Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res., 2007, 40(9), 793-800.
[http://dx.doi.org/10.1021/ar600035e] [PMID: 17461544]
[113]
Song, Q.; Zhang, Z.J. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc., 2004, 126(19), 6164-6168.
[http://dx.doi.org/10.1021/ja049931r] [PMID: 15137781]
[114]
Zeng, H.; Rice, P.M.; Wang, S.X.; Sun, S. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc., 2004, 126(37), 11458-11459.
[http://dx.doi.org/10.1021/ja045911d] [PMID: 15366890]
[115]
Joo, J.; Kwon, S.G.; Yu, J.H.; Hyeon, T. Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non‐hydrolytic ester elimination sol-gel reactions. Adv. Mater., 2005, 1873-1877
[http://dx.doi.org/10.1002/adma.200402109]
[116]
Li, X-L.; Peng, Q.; Yi, J-X.; Wang, X.; Li, Y. Near monodisperse TiO2 nanoparticles and nanorods. Chemistry, 2006, 2383-2391.
[117]
Seo, J-W.; Jun, Y-W.; Ko, S.J.; Cheon, J. In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals. J. Phys. Chem. B, 2005, 5389-5391.
[118]
Ba, J.; Polleux, J.; Antonietti, M.; Niederberger, M. Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv. Mater., 2005, 17, 2509-2512.
[http://dx.doi.org/10.1002/adma.200501018]
[119]
Hans, P.E. Minerals in hot water. Am. Mineral., 1986, 71, 655-673.
[120]
Sōmiya, S. Proceedings of the First International Symposium on Hydrothermal Reactions, March 22-26, 1982Japan
[121]
Barrer, R.M.; White, E.A.D. 283. The hydrothermal chemistry of silicates. Part I. Synthetic lithium aluminosilicates. J. Chem. Soc. (Res.), 1951, 1267-1278.
[122]
Schafthaul, K.F.E. Gelehrte Anzeigen Bayer Akad., 1845, 20, 557-593.
[123]
Roy, R.; Tuttle, O.F. Investigations under hydrothermal conditions. Phys. Chem. Earth, 1956, 1, 138-180.
[http://dx.doi.org/10.1016/0079-1946(56)90008-8]
[124]
Li, Y.J.; Whittingham, M.S. Hydrothermal synthesis of new metastable phases: preparation and intercalation of a new layered titanium phosphate. Solid State Ion., 1993, 63-65, 391-395.
[http://dx.doi.org/10.1016/0167-2738(93)90133-N]
[125]
Fang, L.; Qi, R.; Liu, L.; Juan, G.; Huang, S. Synthesis of poly(L-lactide) via solvothermal method. Int. J. Polym. Sci., 2009, 2009929732
[http://dx.doi.org/10.1155/2009/929732]]
[126]
Chen, X.M.; Tong, M.L. Solvothermal in situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res. 2007, 42(2), 162-170.
[http://dx.doi.org/10.1021/ar068084p] [PMID: 17309196]
[127]
Rao, C.N.R.; Cheetham, A.K.; Thirumurugan, A. Hybrid inorga-nic-organic materials: a new family in condensed matter physics. J. Phys. Condens. Matter, 2008, 20, 159801-159801.
[http://dx.doi.org/10.1088/0953-8984/20/15/159801]
[128]
Katz, E.; Willner, I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. Engl., 2004, 43(45), 6042-6108.
[http://dx.doi.org/10.1002/anie.200400651] [PMID: 15538757]
[129]
Byrappa, K.; Adschiri, T. Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater., 2007, 53, 117-166.
[http://dx.doi.org/10.1016/j.pcrysgrow.2007.04.001]
[130]
Psaro, R. M, M.G. Sgobba, Inorganic and Bio-inorganic Chemistry. Encyclopedia of Life Support Systems, I ed. , 2006.
[131]
Byrappa, K. Handbook of Hydrothermal Technology; William Andrew Publishing: Noyes, , 2001.
[132]
Yamasaki, N.; Kai, T.; Nishioka, M.; Yanagisawa, K.; Ioku, K. Porous hydroxyapatite ceramics prepared by hydrothermal hot-pressing. J. Mater. Sci. Lett., 1990, 9, 1150-1151.
[http://dx.doi.org/10.1007/BF00721872]
[133]
Darder, M.; Aranda, P.; Ruiz-Hitzky, E. Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Adv. Mater., 2007, 19, 1309-1319.
[http://dx.doi.org/10.1002/adma.200602328]
[134]
Shandilya, M.; Rai, R.; Singh, J. Review: hydrothermal technology for smart materials. Adv. Appl. Ceramics, 2016, 115, 354-376.
[http://dx.doi.org/10.1080/17436753.2016.1157131]
[135]
Li, J. W, Q.; Wu, J. Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods; Springer Cham: Aarhus, 2015.
[136]
Abu Nayem, S.M.; Shaheen Shah, S.; Sultana, N.; Abdul Aziz, M.; Saleh Ahammad, A.J. Electrochemical sensing platforms of dihydroxybenzene: Part 2 - Nanomaterials excluding carbon nanotubes and graphene. Chem. Rec., 2021, 21(5), 1073-1097.
[http://dx.doi.org/10.1002/tcr.202100044] [PMID: 33855801]
[137]
Abu Nayem, S.M.; Shaheen Shah, S.; Sultana, N.; Aziz, M.A.; Saleh Ahammad, A.J. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 1 - Carbon nanotubes, graphene, and their derivatives. Chem. Rec., 2021, 21(5), 1039-1072.
[http://dx.doi.org/10.1002/tcr.202100043] [PMID: 33755293]
[138]
Shah, S.S.; Aziz, M.A.; Oyama, M.; Al-Betar, A.F. Controlled-potential-based electrochemical sulfide sensors: A review. Chem. Rec., 2021, 21(1), 204-238.
[http://dx.doi.org/10.1002/tcr.202000115] [PMID: 33200874]
[139]
Zajączkowski, K. Solvothermal Synthesis; Royal Society of Chemistry: London, 2011.
[140]
Eda, K. Hydrothermal Synthesis; Kobe University, 2006.
[141]
Zou, G.; Zhang, Y.; Xiong, K.; Qian, Y. Solvothermal/hydro-thermal route to semiconductor nanowires. Nanotechnology, 2006, 17, S313-S320.
[http://dx.doi.org/10.1088/0957-4484/17/11/S14]
[142]
Rabenau, A. Role of hydrothermal synthesis in preparativechemistry. Angew. Chem., 1985, 24, 1026-1040.
[http://dx.doi.org/10.1002/anie.198510261]
[143]
Roy, S.S.R. Hydrothermal synthesis of fine oxidepowders. Bull. Mater. Sci., 2000, 23, 453-460.
[http://dx.doi.org/10.1007/BF02903883]
[144]
Brian, L.; Cushing, V.L.K. O’Connor, Charles J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev., 2004, 3893-3946.
[145]
Shi, W.; Song, S.; Zhang, H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev., 2013, 42(13), 5714-5743.
[http://dx.doi.org/10.1039/c3cs60012b] [PMID: 23563082]
[146]
Yan, L.; Jun Chen, R. Y.; Xing, Xianran. Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: Investigation of the morphology evolution. Cryst. Growth Des., 2008, 8, 1474-1477.
[http://dx.doi.org/10.1021/cg800117v]
[147]
Yang, Z.; Donglin Ma, D. H.; Liang, Hui.; Liu, Ling.; Yanzhao, Yang. Fabrication of monodisperse CeO2 hollow spheres assembled by nano-octahedra. Cryst. Growth Des., 2010, 10, 291-295.
[http://dx.doi.org/10.1021/cg900898r]
[148]
Van, T-K.; Cha, H.G.; Nguyen, C.K.; Kim, S-W.; Jung, M-H.; Kang, Y.S. Nanocystals of hematite with unconventional shape-truncated hexagonal bipyramid and its optical and magnetic properties. Cryst. Growth Des., 2012, 12, 862-868.
[http://dx.doi.org/10.1021/cg201252v]
[149]
Ud Din, I.; Shaharun, M.S.; Subbarao, D.; Naeem, A. Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Influence of calcination temperature. J. Power Sources, 2015, 274, 619-628.
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.087]
[150]
Hermans, L.A.M.; Geus, J.W. Interaction of Nickel ions with silica supports during deposition-precipitation.Studies in Surface Science and Catalysis; Elsevier: Amsterdam, 1979, Vol. 3, pp. 113-130.
[http://dx.doi.org/10.1016/S0167-2991(09)60208-1]
[151]
Toebes, M.L.; Prinsloo, F.F.; Bitter, J.H.; van Dillen, A.J.; de Jong, K.P. Synthesis and characterization of carbon nanofiber supported ruthenium catalysts.Studies in Surface Science and Catalysis; Elsevier: Amsterdam, 2000, Vol. 143, pp. 201-208.
[http://dx.doi.org/10.1016/S0167-2991(00)80658-8]
[152]
Delmon, B.; Grange, P.; Jacobs, P.A.; Poncelet, G. Preparation of Catalysts V: Scientific Bases for the Preparation of Heterogeneous Catalysts; Elsevier: Amsterdam, 1991, Vol. 63, pp. 19-36.
[153]
Burattin, P.; Che, M.; Louis, C. Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. J. Phys. Chem. B, 1997, 101, 7060-7074.
[http://dx.doi.org/10.1021/jp970194d]
[154]
Ertl, G.; Knözinger, H.; Weitkamp, J. Handbook on Heterogeneous Catalysis; Wiley: Weinheim, 1997.
[155]
Koo, K.Y.; Jung, U.H.; Yoon, W.L. A highly dispersed Pt/γ-Al2O3 catalyst prepared via deposition-precipitation method for preferential CO oxidation. Int. J. Hydrogen Energy, 2014, 39, 5696-5703.
[http://dx.doi.org/10.1016/j.ijhydene.2014.01.128]
[156]
Guerrero-Ruiz, A.; Badenes, P.; Rodríguez-Ramos, I. Study of some factors affecting the Ru and Pt dispersions over high surface area graphite-supported catalysts. Appl. Catal. A Gen., 1998, 173, 313-321.
[http://dx.doi.org/10.1016/S0926-860X(98)00187-2]
[157]
Song, S.; Sheng, Z.; Liu, Y.; Wang, H.; Wu, Z. Influences of pH value in deposition-precipitation synthesis process on Pt-doped TiO2 catalysts for photocatalytic oxidation of NO. J. Environ. Sci. (China), 2012, 24(8), 1519-1524.
[http://dx.doi.org/10.1016/S1001-0742(11)60980-7] [PMID: 23513696]
[158]
van der Lee, M.K.; van Dillen, A.J.; Bitter, J.H.; de Jong, K.P. Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts. J. Am. Chem. Soc., 2005, 127(39), 13573-13582.
[http://dx.doi.org/10.1021/ja053038q] [PMID: 16190722]
[159]
Bitter, J.H.; van der Lee, M.K.; Slotboom, A.G.T.; van Dillen, A.J.; de Jong, K.P. Synthesis of highly loaded highly dispersed nickel on carbon nanofibers by homogeneous deposition-precipitation. Catal. Lett., 2003, 89, 139-142.
[http://dx.doi.org/10.1023/A:1024744131630]
[160]
Bezemer, G.L.; Radstake, P.B.; Koot, V.; van Dillen, A.J.; Geus, J.W.; de Jong, K.P. Preparation of Fischer-Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation. J. Catal., 2006, 237, 291-302.
[http://dx.doi.org/10.1016/j.jcat.2005.11.015]
[161]
Toebes, M.L.; van der Lee, M.K.; Tang, L.M.; Huis in ’t Veld, M.H.; Bitter, J.H.; van Dillen, A.J.; de Jong, K.P. Preparation of carbon nanofiber supported platinum and ruthenium catalysts: comparison of ion adsorption and homogeneous deposition precipitation. J. Phys. Chem. B, 2004, 108, 11611-11619.
[http://dx.doi.org/10.1021/jp0313472]
[162]
Liu, J.; Shi, J.; He, D.; Zhang, Q.; Wu, X.; Liang, Y.; Zhu, Q. Surface active structure of ultra-fine Cu/ZrO2 catalysts used for the CO2+H2 to methanol reaction. Appl. Catal. A Gen., 2001, 218, 113-119.
[http://dx.doi.org/10.1016/S0926-860X(01)00625-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy