Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Metabolic Characteristics of SM-1, a Novel PAC-1 Derivative, in Human Liver Microsomes

Author(s): Ya Gong, Peiqi Wang, Jianming Li, Jingbin Huang* and Jinsong Ding*

Volume 18, Issue 2, 2022

Published on: 02 March, 2021

Page: [182 - 192] Pages: 11

DOI: 10.2174/1573412917666210302145158

Abstract

Background and Objectives: SM-1 is a new synthetic small molecular compound with anti-tumor activity. The metabolism of SM-1 is a key parameter that needs to be evaluated to provide further insight into drug safety and efficacy in the early phases of drug development.

Methods: In this study, the biotransformation process of SM-1, including the metabolic pathways and major metabolites, was investigated based on a liquid chromatography-mass spectrometry method. Upon incubation of SM-1 with human liver microsomes, five metabolites were identified, namely dihydrodiol formation (R1), hydroxylation (R2, R3, and R5), and debenzylation (R4) of SM-1, with R1 and R4 being the major metabolites. The enzyme kinetic parameters of SM-1 were determined by a liquid chromatography-tandem mass spectrometry method. The enzyme kinetics of SM-1 obeyed the Michaelis-Menten equation. The Vmax, Km, and CLint of SM-1 in HLMs were 14.5 nmol/mg protein/h, 6.32 μM, and 2.29 mL/mg protein/h, respectively.

Results: The chemical inhibition studies showed that CYP450 isoenzymes were responsible for SM-1 metabolism in HLMs, and CYP3A4 was the major CYP450 isoenzyme involved in the metabolism of SM-1; these findings were confirmed by using the human recombinant CYP3A4.

Conclusion: Through the identification of the biotransformation pathways and enzyme kinetics of SM-1, the metabolic enzymes for SM-1 in HLMs are characterized.

Keywords: Human liver microsomes, SM-1, metabolism pathway, metabolic enzymes, chemical inhibition, PAC-1.

Graphical Abstract
[1]
Liu, X.J.; Tan, M.Q.; Wang, D.D. Homopiperazine acethydrazide derivatives, preparation method and uses thereof. CN Patent WO2010/102,513 A1, 2010.
[2]
Putt, K.S.; Chen, G.W.; Pearson, J.M.; Sandhorst, J.S.; Hoagland, M.S.; Kwon, J.T.; Hwang, S.K.; Jin, H.; Churchwell, M.I.; Cho, M.H.; Doerge, D.R.; Helferich, W.G.; Hergenrother, P.J. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol., 2006, 2(10), 543-550.
[http://dx.doi.org/10.1038/nchembio814] [PMID: 16936720]
[3]
Peterson, Q.P.; Goode, D.R.; West, D.C.; Ramsey, K.N.; Lee, J.J.Y.; Hergenrother, P.J. PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. J. Mol. Biol., 2009, 388(1), 144-158.
[http://dx.doi.org/10.1016/j.jmb.2009.03.003] [PMID: 19281821]
[4]
Peterson, Q.P.; Hsu, D.C.; Goode, D.R.; Novotny, C.J.; Totten, R.K.; Hergenrother, P.J. Procaspase-3 activation as an anti-cancer strategy: structure-activity relationship of procaspase-activating compound 1 (PAC-1) and its cellular co-localization with caspase-3. J. Med. Chem., 2009, 52(18), 5721-5731.
[http://dx.doi.org/10.1021/jm900722z] [PMID: 19708658]
[5]
Ziegler, C.B., Jr; Bitha, P.; Kuck, N.A.; Fenton, T.J.; Petersen, P.J.; Lin, Y.I. Synthesis and structure-activity relationships of new 7-[3-(fluoromethyl)piperazinyl]- and -(fluorohomopiperazinyl)quinolone antibacterials. J. Med. Chem., 1990, 33(1), 142-146.
[http://dx.doi.org/10.1021/jm00163a024] [PMID: 2104934]
[6]
Chen, Y.; Sun, M.; Ding, J.; Zhu, Q. SM-1, a novel PAC-1 derivative, activates procaspase-3 and causes cancer cell apoptosis. Cancer Chemother. Pharmacol., 2016, 78(3), 643-654.
[http://dx.doi.org/10.1007/s00280-016-3115-6] [PMID: 27488460]
[7]
Byrd, L.; Luther, C. Cytochrome P450: drug metabolism--why it’s so important to understand. Geriatr. Nurs., 2010, 31(5), 385-387.
[PMID: 20960692]
[8]
Emoto, C.; Murayama, N.; Rostami-Hodjegan, A.; Yamazaki, H. Methodologies for investigating drug metabolism at the early drug discovery stage: prediction of hepatic drug clearance and P450 contribution. Curr. Drug Metab., 2010, 11(8), 678-685.
[http://dx.doi.org/10.2174/138920010794233503] [PMID: 20973757]
[9]
Li, A.P. In vitro approaches to evaluate ADMET drug properties. Curr. Top. Med. Chem., 2004, 4(7), 701-706.
[http://dx.doi.org/10.2174/1568026043451050] [PMID: 15032683]
[10]
Moreno, L.; Pearson, A.D. How can attrition rates be reduced in cancer drug discovery? Expert Opin. Drug Discov., 2013, 8(4), 363-368.
[http://dx.doi.org/10.1517/17460441.2013.768984] [PMID: 23373702]
[11]
Zheng, Z.N. Preliminary study on preclinical pharmacokinetic of a novel anti-tumor agent SM-1 based on activating procaspase-3, MS Thesis, The Central South University: Changsha, 2012.
[12]
Yi, Q.; Han, X.; Fan, Z.; Ma, Y.; Zhu, G.; Qiang, W.; Wang, L.; Cheng, Z. Pharmacokinetics, tissue distribution and plasma protein binding study of SM-1, a novel PAC-1 derivative. J. Pharm. Biomed. Anal., 2019, 163, 17-23.
[http://dx.doi.org/10.1016/j.jpba.2018.09.043] [PMID: 30273837]
[13]
Asha, S.; Vidyavathi, M. Role of human liver microsomes in in vitro metabolism of drugs-a review. Appl. Biochem. Biotechnol., 2010, 160(6), 1699-1722.
[http://dx.doi.org/10.1007/s12010-009-8689-6] [PMID: 19582595]
[14]
Buchan, N.S.; Rajpal, D.K.; Webster, Y.; Alatorre, C.; Gudivada, R.C.; Zheng, C.; Sanseau, P.; Koehler, J. The role of translational bioinformatics in drug discovery. Drug Discov. Today, 2011, 16(9-10), 426-434.
[http://dx.doi.org/10.1016/j.drudis.2011.03.002] [PMID: 21402166]
[15]
Zhang, H.; Davis, C.D.; Sinz, M.W.; Rodrigues, A.D. Cytochrome P450 reaction-phenotyping: an industrial perspective. Expert Opin. Drug Metab. Toxicol., 2007, 3(5), 667-687.
[http://dx.doi.org/10.1517/17425255.3.5.667] [PMID: 17916054]
[16]
Clarke, N.J.; Rindgen, D.; Korfmacher, W.A.; Cox, K.A. Systematic LC/MS metabolite identification in drug discovery. Anal. Chem., 2001, 73(15), 430A-439A.
[http://dx.doi.org/10.1021/ac012480y] [PMID: 11510863]
[17]
Oliveira, E.J.; Watson, D.G. Liquid chromatography-mass spectrometry in the study of the metabolism of drugs and other xenobiotics. Biomed. Chromatogr., 2000, 14(6), 351-372.
[http://dx.doi.org/10.1002/1099-0801(200010)14:6<351:AID-BMC28>3.0.CO;2-2] [PMID: 11002274]
[18]
Bjornsson, T.D.; Callaghan, J.T.; Einolf, H.J.; Fischer, V.; Gan, L.; Grimm, S.; Kao, J.; King, S.P.; Miwa, G.; Ni, L.; Kumar, G.; McLeod, J.; Obach, R.S.; Roberts, S.; Roe, A.; Shah, A.; Snikeris, F.; Sullivan, J.T.; Tweedie, D.; Vega, J.M.; Walsh, J.; Wrighton, S.A. The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab. Dispos., 2003, 31(7), 815-832.
[http://dx.doi.org/10.1124/dmd.31.7.815] [PMID: 12814957]
[19]
Ning, J.; Yu, Z.L.; Hu, L.H.; Wang, C.; Huo, X.K.; Deng, S.; Hou, J.; Wu, J.J.; Ge, G.B.; Ma, X.C.; Yang, L. Characterization of phase I metabolism of resibufogenin and evaluation of the metabolic effects on its antitumor activity and toxicity. Drug Metab. Dispos., 2015, 43(3), 299-308.
[http://dx.doi.org/10.1124/dmd.114.060996] [PMID: 25504504]
[20]
Nirogi, R.; Palacharla, R.C.; Uthukam, V.; Manoharan, A.; Srikakolapu, S.R.; Kalaikadhiban, I.; Boggavarapu, R.K.; Ponnamaneni, R.K.; Ajjala, D.R.; Bhyrapuneni, G. Chemical inhibitors of CYP450 enzymes in liver microsomes: combining selectivity and unbound fractions to guide selection of appropriate concentration in phenotyping assays. Xenobiotica, 2015, 45(2), 95-106.
[http://dx.doi.org/10.3109/00498254.2014.945196] [PMID: 25070627]
[21]
Walsky, R.L.; Obach, R.S.; Hyland, R.; Kang, P.; Zhou, S.; West, M.; Geoghegan, K.F.; Helal, C.J.; Walker, G.S.; Goosen, T.C.; Zientek, M.A. Selective mechanism-based inactivation of CYP3A4 by CYP3cide (PF-04981517) and its utility as an in vitro tool for delineating the relative roles of CYP3A4 versus CYP3A5 in the metabolism of drugs. Drug Metab. Dispos., 2012, 40(9), 1686-1697.
[http://dx.doi.org/10.1124/dmd.112.045302] [PMID: 22645092]
[22]
US Food and Drug Administration. Guidance for industry: drug interaction studies-study design, data analysis, implications for dosing, and labeling recommendations. US Department of Health and Human Services, Food and Drug Administration, and CDER., 2012.
[23]
Huang, S.M.; Strong, J.M.; Zhang, L.; Reynolds, K.S.; Nallani, S.; Temple, R.; Abraham, S.; Habet, S.A.; Baweja, R.K.; Burckart, G.J.; Chung, S.; Colangelo, P.; Frucht, D.; Green, M.D.; Hepp, P.; Karnaukhova, E.; Ko, H.S.; Lee, J.I.; Marroum, P.J.; Norden, J.M.; Qiu, W.; Rahman, A.; Sobel, S.; Stifano, T.; Thummel, K.; Wei, X.X.; Yasuda, S.; Zheng, J.H.; Zhao, H.; Lesko, L.J. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J. Clin. Pharmacol., 2008, 48(6), 662-670.
[http://dx.doi.org/10.1177/0091270007312153] [PMID: 18378963]
[24]
Huang, S.M.; Temple, R.; Throckmorton, D.C.; Lesko, L.J. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin. Pharmacol. Ther., 2007, 81(2), 298-304.
[http://dx.doi.org/10.1038/sj.clpt.6100054] [PMID: 17259955]
[25]
Ren, L.; Bi, K.; Gong, P.; Cheng, W.; Song, Z.; Fang, L.; Chen, X. Characterization of the in vivo and in vitro metabolic profile of PAC-1 using liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 876(1), 47-53.
[http://dx.doi.org/10.1016/j.jchromb.2008.10.006] [PMID: 18996064]
[26]
Kamel, A.; Colizza, K.; Obach, R.S. In vitro metabolism of the 5-hydroxytryptamine1B receptor antagonist elzasonan. Xenobiotica, 2013, 43(4), 368-378.
[http://dx.doi.org/10.3109/00498254.2012.723150] [PMID: 23030680]
[27]
Rodrigues, A.D. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem. Pharmacol., 1999, 57(5), 465-480.
[PMID: 9952310]
[28]
Youdim, K.; Dodia, R. Comparison between recombinant P450s and human liver microsomes in the determination of cytochrome P450 Michaelis-Menten constants. Xenobiotica, 2010, 40(4), 235-244.
[http://dx.doi.org/10.3109/00498250903568504] [PMID: 20105059]
[29]
Daly, A.K. Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet., 2006, 45(1), 13-31.
[http://dx.doi.org/10.2165/00003088-200645010-00002] [PMID: 16430309]
[30]
Kawakami, H.; Ohtsuki, S.; Kamiie, J.; Suzuki, T.; Abe, T.; Terasaki, T. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection. J. Pharm. Sci., 2011, 100(1), 341-352.
[http://dx.doi.org/10.1002/jps.22255] [PMID: 20564338]
[31]
Paine, M.F.; Khalighi, M.; Fisher, J.M.; Shen, D.D.; Kunze, K.L.; Marsh, C.L.; Perkins, J.D.; Thummel, K.E. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J. Pharmacol. Exp. Ther., 1997, 283(3), 1552-1562.
[PMID: 9400033]
[32]
von Richter, O.; Burk, O.; Fromm, M.F.; Thon, K.P.; Eichelbaum, M.; Kivistö, K.T. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin. Pharmacol. Ther., 2004, 75(3), 172-183.
[http://dx.doi.org/10.1016/j.clpt.2003.10.008] [PMID: 15001968]

© 2022 Bentham Science Publishers | Privacy Policy