Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Solvent Bar Microextraction Combined with HPLC-DAD for Simultaneous Determination of Diuretics in Human Urine and Plasma Samples

Author(s): Nabil N. AL-Hashimi*, Amjad H. El-Sheikh, Manal I. Alruwad and Mohanad M. Odeh

Volume 23, Issue 9, 2022

Published on: 22 December, 2021

Page: [1204 - 1213] Pages: 10

DOI: 10.2174/1389201022666210222111943

Price: $65

Abstract

Background: A simple and powerful microextraction procedure, the solvent bar microextraction (SBME), was used for the simultaneous determination of two diuretics, furosemide and spironolactone in human urine and plasma samples, using high-performance liquid chromatography coupled with diode array detection (HPLC-DAD).

Methods: The appropriate amount (2 μL) of 1-octanol as an organic solvent confined within 2.5 cm of a porous hollow fiber micro-tube, sealed at both ends was used for this procedure. The conditions for the SBME were optimized in water and the analytical performance was examined in spiked human urine and plasma samples.

Results: The optimized method exhibited good linearity (R2> 0.997) over the studied range of higher than 33 to 104μg L-1 for furosemide and spironolactone in urine and plasma samples, illustrating a satisfactory precision level with RSD values between 2.1% and 9.1%.

Discussion: The values of the limits of detection were found to be in the range of 6.39 to 9.67μg L-1, and extraction recovery ˃ 58.8% for both diuretics in urine and plasma samples. The applicability and effectiveness of the proposed method for the determination of furosemide and spironolactone in patient urine samples were tested.

Conclusion: In comparison with reference methods, the attained results demonstrated that SBME combined with HPLC-DAD was proved to be simple, inexpensive, and promising analytical technology for the simultaneous determination of furosemide and spironolactone in urine and plasma samples.

Keywords: Solvent bar microextraction, diuretics, HPLC-DAD, urine, plasma, furosemide.

Graphical Abstract
[1]
Oh, S.W.; Han, S.Y. Loop diuretics in clinical practice. Electrolyte Blood Press., 2015, 13(1), 17-21.
[http://dx.doi.org/10.5049/EBP.2015.13.1.17] [PMID: 26240596]
[2]
Huang, X.; Dorhout Mees, E.; Vos, P.; Hamza, S.; Braam, B. Everything we always wanted to know about furosemide but were afraid to ask. Am. J. Physiol. Renal Physiol., 2016, 310(10), F958-F971.
[http://dx.doi.org/10.1152/ajprenal.00476.2015] [PMID: 26911852]
[3]
Qavi, A.H.; Kamal, R.; Schrier, R.W. Clinical use of diuretics in heart failure, cirrhosis, and nephrotic syndrome. Int. J. Nephrol., 2015.2015975934
[http://dx.doi.org/10.1155/2015/975934] [PMID: 26294976]
[4]
Ellison, D.H. Clinical Pharmacology in Diuretic Use. Clin. J. Am. Soc. Nephrol., 2019, 14(8), 1248-1257.
[http://dx.doi.org/10.2215/CJN.09630818] [PMID: 30936153]
[5]
Vasavada, N.; Saha, C.; Agarwal, R. .A double-blind randomized crossover trial of two loop diuretics in chronic kidney disease. K. I. 2003, 64, 632-640.
[6]
Bansal, S.; Lindenfeld, J.; Schrier, R.W. Sodium retention in heart failure and cirrhosis: potential role of natriuretic doses of mineralocorticoid antagonist? Circ Heart Fail, 2009, 2(4), 370-376.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.108.821199] [PMID: 19808361]
[7]
Stason, W.B.; Cannon, P.J.; Heinemann, H.O.; Laragh, J.H. Furosemide. A clinical evaluation of its diuretic action. Circulation, 1966, 34(5), 910-920.
[http://dx.doi.org/10.1161/01.CIR.34.5.910] [PMID: 5332332]
[8]
Epstein, M.; Calhoun, D.A. Aldosterone blockers (mineralocorticoid receptor antagonism) and potassium-sparing diuretics. J. Clin. Hypertens. (Greenwich), 2011, 13(9), 644-648.
[http://dx.doi.org/10.1111/j.1751-7176.2011.00511.x] [PMID: 21896143]
[9]
Delyan, J. A. Mineralocorticoid receptor antagonist: the evolution of utility and pharmacology. K. I., 2000, 57, 1408-1411.
[10]
Schrier, R.W.; Masoumi, A.; Elhassan, E. Aldosterone: role in edematous disorders, hypertension, chronic renal failure and metabolic syndrome. Clin. J. Am. Soc. Nephro., 2010, 511-32-1140..
[11]
Amar, L.; Lorthioir, A.; Azizi, M.; Plouin, P-F. Progress in primary aldosteronism. Mineralocorticoid antagonist treatment for aldosterone-producing adenoma. Eur. J. Endocrinol., 2015, 172(3), R125-R129.
[http://dx.doi.org/10.1530/EJE-14-0585] [PMID: 25315875]
[12]
Santos, J.; Planas, R.; Pardo, A.; Durández, R.; Cabré, E.; Morillas, R.M.; Granada, M.L.; Jiménez, J.A.; Quintero, E.; Gassull, M.A. Spironolactone alone or in combination with furosemide in the treatment of moderate ascites in nonazotemic cirrhosis. A randomized comparative study of efficacy and safety. J. Hepatol., 2003, 39(2), 187-192.
[http://dx.doi.org/10.1016/S0168-8278(03)00188-0] [PMID: 12873814]
[13]
Cadwallader, A.B.; de la Torre, X.; Tieri, A.; Botrè, F. The abuse of diuretics as performance-enhancing drugs and masking agents in sport doping: pharmacology, toxicology and analysis. Br. J. Pharmacol., 2010, 161(1), 1-16.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00789.x] [PMID: 20718736]
[14]
Dormans, T.P.J.; Gerlag, P.G.G. Combination of high-dose furosemide and hydrochlorothiazide in the treatment of refractory congestive heart failure. Eur. Heart J., 1996, 17(12), 1867-1874.
[http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014805] [PMID: 8960430]
[15]
Goyfman, M.; Zamudio, P.; Jang, K.; Chee, J.; Miranda, C.; Butler, J.; Wadhwa, N.K. Combined aquaretic and diuretic therapy in acute heart failure. Int. J. Nephrol. Renovasc. Dis., 2017, 10, 129-134.
[http://dx.doi.org/10.2147/IJNRD.S135660] [PMID: 28652798]
[16]
Faris, R.F.; Flather, M.; Purcell, H.; Poole-Wilson, P.A.; Coats, A.J.S. Diuretics for heart failure. Cochrane Database Syst. Rev., 2012.(2)CD003838 [Review].
[PMID: 22336795]
[17]
Lenz, K.; Buder, R.; Kapun, L.; Voglmayr, M. Treatment and management of ascites and hepatorenal syndrome: an update. Therap. Adv. Gastroenterol., 2015, 8(2), 83-100.
[http://dx.doi.org/10.1177/1756283X14564673] [PMID: 25729433]
[18]
Paul, S. Balancing diuretic therapy in heart failure: loop diuretics, thiazides, and aldosterone antagonists. Congest. Heart Fail., 2002, 8(6), 307-312.
[http://dx.doi.org/10.1111/j.1527-5299.2002.00700.x] [PMID: 12461320]
[19]
Mullens, W.; Damman, K.; Harjola, V-P.; Mebazaa, A.; Brunner-La Rocca, H.P.; Martens, P.; Testani, J.M.; Tang, W.H.W.; Orso, F.; Rossignol, P.; Metra, M.; Filippatos, G.; Seferovic, P.M.; Ruschitzka, F.; Coats, A.J. The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail., 2019, 21(2), 137-155.
[http://dx.doi.org/10.1002/ejhf.1369] [PMID: 30600580]
[20]
Paiva, L.; Cachulo, M.C.; Providencia, R.; Barra, S.; Dinis, P.; Leitao-Marques, A. Overview of resistant hypertension: A glimpse of the cardiologist’s current standpoint. World J. Cardiol., 2012, 4(9), 275-283.
[http://dx.doi.org/10.4330/wjc.v4.i9.275] [PMID: 23024839]
[21]
Casu, G.; Merella, P. Diuretic therapy in heart failure-current approaches. Eur. Cardiol., 2015, 10(1), 42-47.
[http://dx.doi.org/10.15420/ecr.2015.10.01.42] [PMID: 30310422]
[22]
Chen, Z-H.; Jiang, Y-R.; Peng, J.Q.; Ding, J-W.; Li, S.; Yang, J.; Wu, H.; Yang, J. Clinical effects of combined treatment by optimal dose of furosemide and spironolactone on diastolic heart failure in elderly patients. Exp. Ther. Med., 2016, 11(3), 890-894.
[http://dx.doi.org/10.3892/etm.2015.2967] [PMID: 26998008]
[23]
Carda-Broch, S.; Esteve-Romero, J.; Ruiz-Angel, M.J.; García-Alvarez-Coque, M.C. Determination of furosemide in urine samples by direct injection in a micellar liquid chromatographic system. Analyst (Lond.), 2002, 127(1), 29-34.
[http://dx.doi.org/10.1039/b108358a] [PMID: 11827392]
[24]
Barroso, M.B.; Jiménez, R.M.; Alonso, R.M.; Ortiz, E. Determination of piretanide in pharmaceuticals and human urine by high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl., 1996, 675, 303-312.
[http://dx.doi.org/10.1016/0378-4347(95)00349-5] [PMID: 8852719]
[25]
Santini, A.O.; Pezza, H.R.; Sequinel, R.; Rufino, J.L.; Pezza, L. Potentiometric sensor for furosemide determination in pharmaceutical, urine, blood serum and bovine milk. J. Braz. Chem. Soc., 2009, 20(1), 64-73.
[http://dx.doi.org/10.1590/S0103-50532009000100012]
[26]
Lovett, L.J.; Nygard, G.; Dura, P.; Khalil, S.K.W. An improved HPLC method for the determination of furosemide in plasma and urine. J. Liq. Chromatogr., 1985, 8(9), 1611-1628.
[http://dx.doi.org/10.1080/01483918508074082]
[27]
Medeiros, R.A.; Baccarin, M.; Fatibello-Filho, O.; Rocha-Filho, R.C.; Deslouis, C.; Debiemme-Chouvy, C. Comparative study of basal-plane pyrolytic graphite, boron-doped diamond, and Amorphous carbon nitride electrodes for the voltammetric determination of furosemide in pharmaceutical and urine samples. Electrochim. Acta, 2016, 197, 197-185.
[http://dx.doi.org/10.1016/j.electacta.2015.10.065]
[28]
Herráez-Hernández, R.; Soriano-Vega, E.; Campíns-Falcó, P. High-performance liquid chromatographic determination of spironolactone and its major metabolite canrenone in urine using ultraviolet detection and column-switching. J. Chromatogr. B Biomed. Appl., 1994, 658(2), 303-310.
[http://dx.doi.org/10.1016/0378-4347(94)00241-X] [PMID: 7820258]
[29]
Walash, M.I.; El-Enany, N.; Eid, M.I.; Fathy, M.E. Simultaneous determination of metolazone and spironolactone in raw materials, combined tablets and human urine by high performance liquid chromatography. Anal. Methods, 2013, 5, 5644-5656.
[http://dx.doi.org/10.1039/c3ay41110a]
[30]
Li, L.; Huang, Y.; Zhao, W.; Zhang, G.; Zhang, H.; Chen, A. Simultaneous separation and rapid determination of spironolactone and its metabolite canrenone in different pharmaceutical formulations and urinary matrices by capillary zone electrophoresis. J. Sep. Sci., 2016, 39(14), 2869-2875.
[http://dx.doi.org/10.1002/jssc.201600255] [PMID: 27257119]
[31]
Hegazy, M.A.; Metwaly, F.H.; Abdelkawy, M.; Abdelwahab, N.S. Validated chromatographic methods for determination of hydrochlorothiazide and spironolactone in pharmaceutical formulation in presence of impurities and degradants. J. Chromatogr. Sci., 2011, 49(2), 129-135.
[http://dx.doi.org/10.1093/chrsci/49.2.129] [PMID: 21223638]
[32]
Moreira, V.; Moreau, R.L.M. Liquid chromatographic screening test for some diuretics of doping interest in human urine. J. Liq. Chrom. Relat. Tech., 2005, 24, 2753-2768.
[http://dx.doi.org/10.1080/10826070500225036]
[33]
Baranowska, I.; Markowski, P.; Baranowski, J. Development and validation of an HPLC method for the simultaneous analysis of 23 selected drugs belonging to different therapeutic groups in human urine samples. Anal. Sci., 2009, 25(11), 1307-1313.
[http://dx.doi.org/10.2116/analsci.25.1307] [PMID: 19907087]
[34]
Sandall, J.M.; Millership, J.S.; Collier, P.S.; McElnay, J.C. Development and validation of an HPLC method for the determination of spironolactone and its metabolites in paediatric plasma samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 839(1-2), 36-44.
[http://dx.doi.org/10.1016/j.jchromb.2006.02.017] [PMID: 16510319]
[35]
Naguib, I.A.; Abdelaleem, E.A.; Emam, A.A.; Ali, N.W.; Abdallah, F.F. Development and validation of HPTLC and green HPLC methods for determination of furosemide, spironolactone and canrenone, in pure forms, tablets and spiked human plasma. Biomed. Chromatogr., 2018, 32(10)e4304
[http://dx.doi.org/10.1002/bmc.4304] [PMID: 29855049]
[36]
Goebel, C.; Trout, G.J.; Kazlauskas, R. Rapid screening method for diuretics in doping control using automated solid phase extraction and liquid chromatography electrospray tandem mass spectrometry. Anal. Chim. Acta, 2004, 502, 65-74.
[http://dx.doi.org/10.1016/j.aca.2003.09.062]
[37]
Hsu, K.F.; Chien, K-Y.; Chang-Chien, G.P.; Lin, S.F.; Hsu, P.H.; Hsu, M-C. Liquid chromatography-tandem mass spectrometry screening method for the simultaneous detection of stimulants and diuretics in urine. J. Anal. Toxicol., 2011, 35(9), 665-674.
[http://dx.doi.org/10.1093/anatox/35.9.665] [PMID: 22080905]
[38]
Sora, D.I.; Udrescu, S.; Albu, F.; David, V.; Medvedovici, A. Analytical issues in HPLC/MS/MS simultaneous assay of furosemide, spironolactone and canrenone in human plasma samples. J. Pharm. Biomed. Anal., 2010, 52(5), 734-740.
[http://dx.doi.org/10.1016/j.jpba.2010.03.004] [PMID: 20307949]
[39]
Amendola, L.; Colamonici, C.; Mazzarino, M.; Botrè, F. Rapid determination of diuretics in human urine by gas chromatography-mass spectrometry following microwave assisted derivatization. Anal. Chim. Acta, 2003, 475, 125-136.
[http://dx.doi.org/10.1016/S0003-2670(02)01223-0]
[40]
Dong, H.; Xu, F.; Zhang, Z.; Tian, Y.; Chen, Y. Simultaneous determination of spironolactone and its active metabolite canrenone in human plasma by HPLC-APCI-MS. J. Mass Spectrom., 2006, 41(4), 477-486.
[http://dx.doi.org/10.1002/jms.1006] [PMID: 16541392]
[41]
Lee, J.; Lee, H.K.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: a review. Anal. Chim. Acta, 2008, 624(2), 253-268.
[http://dx.doi.org/10.1016/j.aca.2008.06.050] [PMID: 18706332]
[42]
AL-Hashimi, N. N.; Shahin, R. O.; AL-Hashimi, A. N.; Al Ajeal, A. M.; Tahtamouni, L. H.; Basheer, C. Cetyl-alcohol-reinforced hollow fiber solid/liquid-phase microextraction and HPLC-DAD analysis of ezetimibe and simvastatin in human plasma and urine. Biomed. Chromatogr., 2019, 33(e4410), 1-8.
[43]
Al-Hashimi, N.N.; El-Sheikh, A.H.; Qawariq, R.F.; Shtaiwi, M.H.; AlEjielat, R.N.N.; El-Sheikh, A.H.; Qawariq, R.F.; Shtaiwi, M.H.; AlEjielat, R. Multi-walled carbon nanotubes reinforced into hollow fiber by chitosan sol-gel for solid/liquid phase microextraction of NSAIDs from urine prior to HPLC-DAD analysis. Curr. Pharm. Biotechnol., 2019, 20(5), 390-400.
[http://dx.doi.org/10.2174/1389201020666190405181234] [PMID: 30961482]
[44]
Piri-Moghadam, H; Ahmadi, F.; Pawliszyn, J. A critical review of solid phase microextraction for analysis of water samples. TrACTrend.Anal. Chem., 2016, 85(Part A), 133-143.
[45]
Aulakh, J.S.; Malik, A.K.; Kaur, V.; Schmitt-Kopplin, P. A review on solid phase micro extraction- high performance liquid chromatography (SPME-HPLC) analysis of pesticides. Crit. Rev. Anal. Chem., 2005, 35, 72-85.
[http://dx.doi.org/10.1080/10408340590947952]
[46]
Jalili, V.; Barkhordari, A.; Chiasvand, A. A comprehensive look at solid-phase microextraction technique: a review of reviews. Microchem. J., 2020, 152, 1043192-1104319.
[http://dx.doi.org/10.1016/j.microc.2019.104319]
[47]
Moein, M.M.; Said, R.; Bassyouni, F.; Abdel-Rehim, M. Solid phase microextraction and related techniques for drugs in biological samples. J. Anal. Methods Chem., 2014.2014921350
[http://dx.doi.org/10.1155/2014/921350] [PMID: 24688797]
[48]
Spietelun, A.; Kloskowski, A.; Chrzanowski, W.; Namieśnik, J. Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. Chem. Rev., 2013, 113(3), 1667-1685.
[http://dx.doi.org/10.1021/cr300148j] [PMID: 23273266]
[49]
Lord, H.; Pawliszyn, J. Evolution of solid-phase microextraction technology. J. Chromatogr. A, 2000, 885(1-2), 153-193.
[http://dx.doi.org/10.1016/S0021-9673(00)00535-5] [PMID: 10941672]
[50]
Rutkowska, M.; Plotka-Wasylka, J.; Sajid, M.; Andruch, V. Liquid-phase microextraction: a review of reviews. Microchem. J., 2019, 149, 103989-104013.
[http://dx.doi.org/10.1016/j.microc.2019.103989]
[51]
Yan, Y.; Chen, X.; Hu, S.; Bai, X. Applications of liquid-phase microextraction techniques in natural product analysis: a review. J. Chromatogr. A, 2014, 1368(1-2), 1-17.
[http://dx.doi.org/10.1016/j.chroma.2014.09.068] [PMID: 25441339]
[52]
Hamidi, S.; Alipour-Ghorbani, N. Liquid phase microextraction of biomarkers: a review on current methods. J. Liq. Chrom. Relat. Tech., 2017, 40(16), 853-861.
[http://dx.doi.org/10.1080/10826076.2017.1374291]
[53]
Khan, W.A.; Arain, M.B.; Yamini, Y.; Shah, N.; Kazi, T.G.; Pedersen-Bjergaard, S.; Tajik, M. Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals. J. Pharm. Anal., 2020, 10(2), 109-122.
[http://dx.doi.org/10.1016/j.jpha.2019.12.003] [PMID: 32373384]
[54]
Soares da Silva Burato, J.; Vargas Medina, D.A.; de Toffoli, A.L.; Vasconcelos Soares Maciel, E.; Mauro Lanças, F. Recent advances and trends in miniaturized sample preparation techniques. J. Sep. Sci., 2020, 43(1), 202-225.
[http://dx.doi.org/10.1002/jssc.201900776] [PMID: 31692234]
[55]
Dugheri, S.; Mucci, N.; Bonari, A.; Marrubini, G.; Cappeli, G.; Ubiali, D.; Campagna, M.; Montalti, M.; Arcangeli, G. Liquid phase microextraction techniques combined with chromatography analysis: a review. Acta Chromatogr., 2020, 69-79.
[http://dx.doi.org/10.1556/1326.2019.00636]
[56]
Jiang, X.; Lee, H.K. Solvent bar microextraction. Anal. Chem., 2004, 76(18), 5591-5596.
[http://dx.doi.org/10.1021/ac040069f] [PMID: 15362925]
[57]
López-López, J.; Mendiguchía, C.; Pinto, J.J.; Moreno, C. Application of solvent-bar micro-extraction for the determination of organic and inorganic compounds. Trends Analyt. Chem., 2019, 110, 57-65.
[http://dx.doi.org/10.1016/j.trac.2018.10.034]
[58]
Alsharif, A.M.A.; Tan, G-H.; Choo, Y-M.; Lawal, A. Efficiency of hollow fiber liquid-phase microextraction chromatography methods in the separation of organic compounds: a review. J. Chromatogr. Sci., 2017, 55(3), 378-391.
[http://dx.doi.org/10.1093/chromsci/bmw188] [PMID: 27903555]
[59]
Bandforuzi, S.R.; Hadjmohammadi, M.R. Application of non-ionic surfactant as a developed method for the enhancement of two-phase solvent bar microextraction for the simultaneous determination of three phthalate esters from water samples. J. Chromatogr. A, 2018, 1561, 39-47.
[http://dx.doi.org/10.1016/j.chroma.2018.05.039] [PMID: 29801940]
[60]
Maddadi, S.; Qomi, M.; Rajabi, M. Extraction, preconcentration and determination of methylphenidate in urine sample using solvent bar microextraction in combination with HPLC-UV: optimization by experimental design. J. Liq. Chrom. Relat. Tech., 2017, 40(15), 806-812.
[http://dx.doi.org/10.1080/10826076.2017.1369994]
[61]
Zamani, A.; Fashi, A. Extraction and preconcentration of trace molondialdehyde from lipid-rich foods using ion pair based solvent bar liquid-phase microextraction. Food Anal. Methods, 2019, 12, 1625-1634.
[http://dx.doi.org/10.1007/s12161-019-01497-5]
[62]
Wang, J.; Weng, P.; Zhou, J.; Zhang, X.; Cu, S. Carrier mediated solvent bar microextraction coupled with HPLC-DAD for quantitative analysis of hydrophilic antihypertensive peptide VLPVPR in human plasma. Anal. Methods, 2018, 10, 69-75.
[http://dx.doi.org/10.1039/C7AY01927K]
[63]
Kiani, M.; Qomi, M.; Hashemian, F.; Rajabi, M. Multivariate optimization of solvent bar microextraction combined with HPLC-UV for determination of trace amounts of vincristine in biological fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1072, 397-404.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.054] [PMID: 29174461]
[64]
Ranjbar Bandforuzi, S.; Hadjmohammadi, M.R. Solvent bar microextraction using a reverse micelle containing extraction phase for the determination of warfarin from human plasma by high-performance liquid chromatography. J. Chromatogr. A, 2017, 1496, 1-8.
[http://dx.doi.org/10.1016/j.chroma.2017.03.037] [PMID: 28359554]
[65]
Ghasemi, E. Optimization of solvent bar microextraction combined with gas chromatography mass spectrometry for preconcentration and determination of tramadol in biological samples. J. Chromatogr. A, 2012, 1251, 48-53.
[http://dx.doi.org/10.1016/j.chroma.2012.06.060] [PMID: 22771254]
[66]
Hao, Y.; Chen, X.; Hu, S.; Bai, X. Solvent bar microextraction with HPLC for determination and protein-bending characteristics of oleanolic acid and ursolic acid. Chromatographia, 2014, 77, 359-363.
[http://dx.doi.org/10.1007/s10337-013-2599-z]
[67]
Ebrahimzadeh, H.; Mirbabaei, F.; Asgharinezhad, A.A.; Shekari, N.; Mollazadeh, N. Optimization of solvent bar microextraction combined with gas chromatography for preconcentration and determination of methadone in human urine and plasma samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 947-948, 75-82.
[http://dx.doi.org/10.1016/j.jchromb.2013.12.011] [PMID: 24412690]
[68]
Ghasemi, E.; Kheradmand, S.; Ghorban Dadrass, O. Solvent bar microextraction combined with high-performance liquid chromatography for preconcentration and determination of pramipexole in biological samples. Biomed. Chromatogr., 2014, 28(4), 486-491.
[http://dx.doi.org/10.1002/bmc.3058] [PMID: 24122839]
[69]
Hadjmohammadi, M.; Ghambari, H. Three-phase hollow fiber liquid phase microextraction of warfarin from human plasma and its determination by high-performance liquid chromatography. J. Pharm. Biomed. Anal., 2012, 61, 44-49.
[http://dx.doi.org/10.1016/j.jpba.2011.11.019] [PMID: 22172600]
[70]
Fashi, A.; Salarian, A.A.; Zamani, A. Solvent-stir bar microextraction system using pure tris-(2-ethylhexyl) phosphate as supported liquid membrane: A new and efficient design for the extraction of malondialdehyde from biological fluids. Talanta, 2018, 182, 299-305.
[http://dx.doi.org/10.1016/j.talanta.2018.02.002] [PMID: 29501156]
[71]
AL-Hadithi, N.; Saad, B.; Grote, M. A solid bar microextraction method for the liquid chromatographic determination to trace diclofenac, ibuprofen and carbamazepine in river water. Mikrochim. Acta, 2011, 172, 31-37.
[http://dx.doi.org/10.1007/s00604-010-0463-5]
[72]
Zhang, M.; Li, Q.; Ji, W.; Jiang, S.; Ma, C.; Wang, C.Ye.J.; Culi, Y.; Liu, W.; Bi, K.; Chen, X. Three-phase solvent bar microextraction combined with HPLC for extraction and determination of plasma protein binding of bisoprolol. Chromatographia, 2011, 73, 897-903.
[http://dx.doi.org/10.1007/s10337-011-1982-x]
[73]
Pu, X.; Chen, B.; Hu, B. Solvent bar microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic arsenic in water sample. Spectrochim. Acta B At. Spectrosc., 2009, 64, 679-684.
[http://dx.doi.org/10.1016/j.sab.2009.06.001]
[74]
Cruz, J.E.; Maness, D.D.; Yakatan, G.Y. Kinetic and mechanism of hydrolysis of furosemide. Int. J. Pharm., 1979, 2, 275-281.
[http://dx.doi.org/10.1016/0378-5173(79)90034-6]
[75]
Ressnde, R.C.; Viana, O.M.; Freitas, J.T.; Ruela, A.L.; Araújo, M.B. Analysis of spironolactone polymorphs in active pharmaceutical ingredients and their effect on tablet dissolution profiles. Braz. J. Pharm. Sci., 2016, 52, 613-621.
[http://dx.doi.org/10.1590/s1984-82502016000400005]
[76]
Nia, N.N.; Hadjmohammadi, M. Application of three-phase solvent bar microextraction based on a deep eulectic solvent coupled with high-performance liquid chromatography for the determination of flavonoids from vegetable and fruit juice samples. Anal. Methods, 2019, 11, 5134-5141.
[http://dx.doi.org/10.1039/C9AY01704F]
[77]
Moffat, A.C.; Osselton, M.D.; Widdop, B. Clarke’s analysis of drugs and poisons, 4th ed; Pharmaceutical press: London, 2011.
[78]
Karim, A.; Zagarella, J.; Hribar, J.; Dooley, M. Spironolactone. I. Disposition and metabolism. Clin. Pharmacol. Ther., 1976, 19(2), 158-169.
[http://dx.doi.org/10.1002/cpt1976192158] [PMID: 1261153]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy