Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Simple and Environment-Friendly Method for Graphene Synthesis by Using Ultrasound

Author(s): Irena Markovska*, Dimitar Georgiev, Fila Yovkova and Miroslav Abrashev

Volume 18, Issue 1, 2022

Published on: 22 February, 2021

Page: [106 - 118] Pages: 13

DOI: 10.2174/1573413716666210222100629

open access plus

Abstract

Background: This paper proposes a technology for the production of monolayer graphene by an easy, acscessible, and non-toxic method.

Methods: For the preparation of graphene, a combination of chemical and physical (ultrasonic) treatment of the original graphite precursor (purity >99%) was applied. The precursor of graphite is placed in a beaker with a solution of KOH or H2SO4. The mixtures were homogenized well and sonicated for 4h. The applied ultrasound has a power of 120 W, frequency 40 kHz. Due to the effects of ultrasound, complex processes take place in the solutions, which leads to the formation of superfine graphene. Better results were obtained at samples treated with 2n H2SO4. The physicochemical properties of the resulting graphene were characterized mainly by Raman spectroscopy, FT-IR, TEM, SEM, and electrical conductivity measurements.

Results: Our research was focused mainly on the field of nanotechnology, in particular on the synthesis of graphene, which could be used as a coating on electrodes for supercapacitors. In this connection, three series of samples were developed in which the pristine graphite was treated with 2n H2SO4, 4n H2SO4, and 6n H2SO4, respectively, and their electrical properties were measured.

Conclusion: The obtained graphene shows electrical resistivity 2-3 times lower than that of the precursor of pure graphite.

Keywords: Graphene, ultrasound, chemical treatment, electrical resistivity, environment-friendly method, nanotechnology

Graphical Abstract
[1]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[2]
Geim, A.K. Graphene prehistory. Phys. Scr., 2012, 146, 1-3.
[http://dx.doi.org/10.1088/0031-8949/2012/T146/014003]
[3]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[4]
[6]
Mohan, V.B.; Lau, K.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos., Part B Eng., 2018, 142, 200-220.
[http://dx.doi.org/10.1016/j.compositesb.2018.01.013]
[7]
Neto, A.C.; Guinea, F.; Peres, N.M. Drawing conclusions from graphene. Phys. World, 2006, 19(11), 33-37.
[http://dx.doi.org/10.1088/2058-7058/19/11/34]
[8]
Zhan, H.; Ding, F.; Li, H.; Qu, F.; Meng, H.; Gu, H. Controlled synthesis of monolayer graphene with a high quality by pyrolysis of silicon carbide. Mater. Lett., 2019, 244, 171-174.
[http://dx.doi.org/10.1016/j.matlet.2019.02.038]
[9]
Özkaya, S.; Baroja, E.B. Polypyrrole on graphene: A density functional theory study. Surf. Sci., 2018, 674, 1-5.
[http://dx.doi.org/10.1016/j.susc.2018.03.013]
[10]
Xiang, Z.; Bhavatharini, S.R.; Liu, H.; Ramakrishna, S. Graphene’s potential in materials science and engineering. RSC Advances, 2014, 55, 28987-29011.
[http://dx.doi.org/10.1039/C4RA02817A]
[11]
Dasari, B.L.; Nouri, J.M.; Brabazon, D.; Naher, S. Graphene and derivatives- Synthesis techniques, properties and their energy applications. Energy, 2017, 140, 766-778.
[http://dx.doi.org/10.1016/j.energy.2017.08.048]
[12]
Yu, A.; Roes, I.; Davies, A.; Chen, Z. Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl. Phys. (Berl.), 2010, 96253105
[http://dx.doi.org/10.1063/1.3455879]
[13]
Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett., 2010, 10(12), 4863-4868.
[http://dx.doi.org/10.1021/nl102661q] [PMID: 21058713]
[14]
Lee, S.H.; Kim, J.H.; Yoon, J.R. Laser scribed graphene cathode for next generation of high performance hybrid supercapacitors. Sci. Rep., 2018, 8(1), 8179.
[http://dx.doi.org/10.1038/s41598-018-26503-4] [PMID: 29802281]
[15]
Liu, J. Charging graphene for energy. Nat. Nanotechnol., 2014, 9(10), 739-741.
[http://dx.doi.org/10.1038/nnano.2014.233] [PMID: 25286262]
[16]
Rusev, D.; Markovska, I.; Milusheva, P.; Hristov, Y.; Mitkova, M.; Georgiev, D. High voltage deposition of graphene coating onto metal substrate to prepare supercapacitor electrodes. J Balk Tribol Assoc, 2020, 26(3), 86-94.
[17]
Li, J.; Zhang, Y.; Gao, T.; Gao, T. A confined “microreactor” synthesis strategy to three dimensional nitrogendoped graphene for high-performance sodium ion battery anodes. J. Power Sources, 2018, 378, 105-111.
[http://dx.doi.org/10.1016/j.jpowsour.2017.12.028]
[18]
Reddy, A.L.M.; Amitha, F.E.; Jafri, I.; Ramaprabhu, S. Asymmetric flexible supercapacitor stack. Nanoscale Res. Lett., 2008, 3, 145.
[http://dx.doi.org/10.1007/s11671-008-9127-3]
[19]
Wang, H.; Hsu, A.L.; Palacios, T. Graphene electronics for RF applications. IEEE Microw. Mag., 2012, 13(4), 114-125.
[20]
Zhan, B.; Li, C; Yang, J.; Jenkins, G.; Huang, W.; Dong, X. Graphene field‐effect transistor and its application for electronic sensing. Nan- micro small, 2014, 10(20), 4042-4065.
[http://dx.doi.org/10.1109/MMM.2012.2189035]
[21]
Kim, H.H.; Chung, Y.; Lee, E.; Lee, S.K.; Cho, K. Water‐free transfer method for CVD‐grown graphene and its application to flexible air‐stable graphene transistors. Adv. Mater., 2014, 26(20), 3213-3217.
[22]
Acharya, N.; Mabood, F. On the hydrothermal features of radiative Fe3O4–graphene hybrid nanofluid flow over a slippery bended surface with heat source/sink. J. Therm. Anal. Calorim., 2020, 143, 1273-1289.
[http://dx.doi.org/10.1007/s10973-020-09850-1]
[23]
Acharya, N. Kundu, K.D.P.K. Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study. Appl. Nanosci., 2018, 8, 369-378.
[http://dx.doi.org/10.1007/s13204-018-0794-9]
[24]
Cheng, C.; Lin, G.R. Carbon nanomaterials based saturable absorbers for ultrafast passive mode-locking of fiber lasers. Curr. Nanosci., 2020, 16, 441-457.
[http://dx.doi.org/10.2174/1573413715666191114150100]
[25]
Acharya, N.; Bag, R.; Kundu, P.K. On the mixed convective carbon nanotube flow over a convectively heated curved surface. Heat Transfer, 2020, 49(4), 1713-1735.
[http://dx.doi.org/10.1002/htj.21687]
[26]
Acharya, N.; Das, K.; Kundu, P.K. Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel. J. Therm. Anal. Calorim., 2019, 138, 461-477.
[http://dx.doi.org/10.1007/s10973-019-08126-7]
[27]
Kamazani, M. M-.; Ajabshir, S.Z-.; Ghodrati, M. One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. Mater. Electron., 2020, 31, 17332-17338.
[http://dx.doi.org/10.1007/s10854-020-04289-4]
[28]
Ghodrati, M.; Kamazani, M. M-.; Ajabshir, S.Z-. Zn3V3O8 nanostructures: Facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceram. Int., 2020, 46, 28894-28902.
[http://dx.doi.org/10.1016/j.ceramint.2020.08.057]
[29]
Asil, S.A.H. -.; Ajabshir, S.Z-.; Amiri, O.; Niasari, M.S-. Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4eCo3O4 nanostructures as high activity visible-light-driven photocatalyst. Int. J. Hydrogen Energy, 2020, 45(43), 22761-22774.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.122]
[30]
Ajabshira, S.Z.; Kamazani, M.M. Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int., 2020, 46, 26548-26556.
[http://dx.doi.org/10.1016/j.ceramint.2020.07.121]
[31]
Morassaei, M.S.; Ajabshir, S.Z.; Niasari, M.S. Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. Mater Sci: Mater Electron, 2016, 27, 11698-11706.
[http://dx.doi.org/10.1007/s10854-016-5306-7]
[32]
Markovska, I.; Georgiev, D.; Yovkova, F. Obtaining of BaTiO3 powder as dielectric material for capacitor’s elements. 2020. J Chem Technol Metall., 2021, 1, 161-166.
[33]
Morassaei, M.S.; Ajabshir, S.Z. -.; Niasari, M.S-. New facile synthesis, structural and photocatalytic studies of NdOCl-Nd2Sn2O7-SnO2 nanocomposites. J. Mol. Liq., 2016, 220, 902-909.
[http://dx.doi.org/10.1016/j.molliq.2016.05.041]
[34]
Ajabshir, S.Z.; Ajabshir, Z.Z.; Niasari, M.S.; Bagheri, S.; Hamid, S.B.A. Facile preparation of Nd2Zr2O7–ZrO2 nanocomposites as an effective photocatalyst via a new route. J. Energy Chem., 2017, 26(2), 315-323.
[http://dx.doi.org/10.1016/j.jechem.2016.11.005]
[35]
Zinatloo-Ajabshir, S.; Mortazavi-Derazkola, S.; Salavati-Niasari, M. Nd2O3-SiO2 nanocomposites: A simple sonochemical preparation, characterization and photocatalytic activity. Ultrason. Sonochem., 2018, 42, 171-182.
[http://dx.doi.org/10.1016/j.ultsonch.2017.11.026] [PMID: 29429658]
[36]
Ajabshir, S.Z.; Niasari, M.S. Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos., Part B Eng., 2019, 174106930
[http://dx.doi.org/10.1016/j.compositesb.2019.106930]
[37]
Ajabshir, S.Z.; Salehi, Z.; Amiri, O.; Niasari, M.S. Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with fig extract. Int. J. Hydrogen Energy, 2019, 44(36), 20110-20120.
[http://dx.doi.org/10.1016/j.ijhydene.2019.05.137]
[38]
Ajabshir, S.Z.; Salehi, Z.; Niasari, M.S. Green synthesis of Dy2Ce2O7 ceramic nanostructures using juice of Punica granatum and their efficient application as photocatalytic degradation of organic contaminants under visible light. Ceram. Int., 2018, 44, 3873-3883.
[http://dx.doi.org/10.1016/j.ceramint.2017.11.177]
[39]
Zinatloo-Ajabshir, S.; Ghasemian, N.; Mousavi-Kamazani, M.; Salavati-Niasari, M. Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem., 2021, 71105376
[http://dx.doi.org/10.1016/j.ultsonch.2020.105376] [PMID: 33142222]
[40]
Ajabshir, S.Z.; Morassaei, M.S.; Niasari, M.S. Eco-friendly synthesis of Nd2Sn2O7 –based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos., Part B Eng., 2019, 167, 643-653.
[http://dx.doi.org/10.1016/j.compositesb.2019.03.045]
[41]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339.
[http://dx.doi.org/10.1021/ja01539a017]
[42]
Sreedhar, D.; Devireddy, S.; Veeredhi, V.R. Synthesis and study of reduced graphene oxide layers under microwave irradiation. Mater. Today, 2018, 5(2), 3403-3410.
[http://dx.doi.org/10.1016/j.matpr.2017.11.585]
[43]
Eswaraiah, V.; Aravind, S.S.J.; Ramaprabhu, S. Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J. Mater. Chem., 2011, 19, 6800-6803.
[http://dx.doi.org/10.1039/c1jm10808e]
[44]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[45]
Zhang, J.; Tian, T.; Chen, Y.; Niu, Y.; Tang, J.; Qin, L. -.C. Synthesis of graphene from dry ice in flames and its application in supercapacitors. Chem. Phys. Lett., 2014, 591, 78-81.
[http://dx.doi.org/10.1016/j.cplett.2013.11.014]
[46]
Park, S.; An, J.; Potts, J.R.; Velamakanni, A.; Murali, S.; Ruoff, R.S. Hydrazine-reduction of graphite- and graphene oxide. Carbon, 2011, 49(9), 3019-3023.
[http://dx.doi.org/10.1016/j.carbon.2011.02.071]
[47]
Moon, I.K.; Lee, J.; Ruoff, R.S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun., 2010, 1, 73.
[http://dx.doi.org/10.1038/ncomms1067] [PMID: 20865806]
[48]
Narasimharao, K.; Venkata Ramana, G.; Sreedhar, D.; Vasudevarao, V. Synthesis of graphene oxide by modified hummers method and hydrothermal synthesis of graphene-NiO nano composite for supercapacitor application. J. Mar. Sci. Eng., 2006, 5, 284.
[http://dx.doi.org/10.4172/2169-0022.1000284]
[49]
Saalbach, K.A.; Twiefel, J.; Wallaschek, J. Self-sensing cavitation detection in ultrasound-induced acoustic cavitation. Ultrasonics, 2019, 94, 401-410.
[http://dx.doi.org/10.1016/j.ultras.2018.06.016] [PMID: 30001851]
[50]
Saalbach, K.A.; Freytag, P.; Kerber, K.; Twiefel, J. Ultrasonic assisted simultaneous composite casting-A feasibility study. IEEE International Ultrasonics Symposium (IUS), Dresden, Germany2012, pp. 775-777.
[http://dx.doi.org/10.1109/ULTSYM.2012.0193]
[51]
Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol., 2013, 8(4), 235-246.
[http://dx.doi.org/10.1038/nnano.2013.46] [PMID: 23552117]
[52]
Mallard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep., 2009, 473, 51-87.
[http://dx.doi.org/10.1016/j.physrep.2009.02.003]
[53]
Wu, J.B.; Lin, M.L.; Cong, X.; Liu, H.N.; Tan, P.H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev., 2018, 47(5), 1822-1873.
[http://dx.doi.org/10.1039/C6CS00915H] [PMID: 29368764]
[54]
Chen, K.; Wang, Q.; Niu, Z.; Chen, J. Graphene-based materials for flexible energy storage devices J. Energy Chem., 2018, 27(1), 12-24.
[http://dx.doi.org/10.1016/j.jechem.2017.08.015]
[55]
Wu, W. -.M.; Zhang, C-.S.; Yang, S-.B. Controllable synthesis of sandwich-like graphene-supported structures for energy storage and conversion. N. Carbon Mater., 2017, 32(1), 1-14.
[http://dx.doi.org/10.1016/S1872-5805(17)60101-X]
[56]
Wei, W.; Wang, G.; Yang, S.; Feng, X.; Müllen, K. Efficient coupling of nanoparticles to electrochemically exfoliated graphene. J. Am. Chem. Soc., 2015, 137(16), 5576-5581.
[http://dx.doi.org/10.1021/jacs.5b02284] [PMID: 25849066]
[57]
Ossonon, B.D.; Belanger, D. Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets. RSC Advances, 2017, 7, 27224-27234.
[http://dx.doi.org/10.1039/C6RA28311J]
[58]
Jiang, D.D.; Yao, Q.; McKinney, M.A.; Wilkie, C. TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym. Degrad. Stabil., 1999, 63(3), 423-434.
[http://dx.doi.org/10.1016/S0141-3910(98)00123-2]
[59]
Lu, J.; Li, Y.; Li, S.; Jiang, S.P. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Sci. Rep., 2016, 6, 21530-21542.
[http://dx.doi.org/10.1038/srep21530] [PMID: 26876468]
[60]
Johnston, D.H.; Shriver, D.F. Vibrational study of the trifluoromethanesulfonate anion: unambiguous assignment of the asymmetric stretching modes. Inorg. Chem., 1993, 32(6), 1045-1047.
[http://dx.doi.org/10.1021/ic00058a050]
[61]
Explain that stuff. Graphene Available from: https://www.explainthatstuff.com/graphene.html
[62]
[63]
Lee, Y.; Ahn, J-H. Graphene based transparent conductive films. Nano, 2013, 8(3)1330001
[http://dx.doi.org/10.1142/S1793292013300016]

© 2024 Bentham Science Publishers | Privacy Policy