Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Supramolecular Assemblies for Photodynamic Therapy

Author(s): Andrea Pappalardo*, Chiara M.A. Gangemi*, Caterina Testa and Giuseppe Trusso Sfrazzetto

Volume 25, Issue 9, 2021

Published on: 22 January, 2021

Page: [963 - 993] Pages: 31

DOI: 10.2174/1385272825666210122094010

Price: $65

Abstract

In recent years, supramolecular systems for nano-medicine, and in particular for photodynamic therapy, have gained great attention for their uses as smart and engineered therapeutic agents. We proposed a collection of very recent articles on supramolecular complexes for photodynamic therapy based on different photosensitizers assembled with cyclodextrins, cucurbiturils, calixarenes, pillararenes, or involved in nanobox and tweezer structures, nanoparticles, aggregates and micelles, that are dynamic assemblies inspired to biological systems. Despite the advantages of traditional Photodynamic therapy (PDT), which is a non-invasive, reliable and highly selective clinical treatment for several pathological conditions, different drawbacks are still smothering the applicability of this clinical treatment. In this contest, a new supramolecular approach is emerging, in fact, the reversible formation of these supramolecular assemblies, combined with the possibility to modify their dimensions and shapes in the presence of a guest make them similar to biological macromolecules, such as proteins and enzymes. Furthermore, due to the relatively weak and dynamic nature of supramolecular assemblies, they can undergo assembly and disassembly very fast as well as responses to external stimuli, such as biological (e.g. enzyme activation), chemical (e.g. redox potential or pH), and physical (e.g. temperature, light or magnetic fields). Therefore, the responsiveness of these supramolecular assemblies represents a highly promising approach to obtain potentially personalized PDT.

Keywords: Cyclodextrins, cucurbiturils, calixarenes, pillararenes, photosensitizers, photodynamic therapy.

« Previous
Graphical Abstract
[1]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[2]
Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[3]
Li, X.; Lee, S.; Yoon, J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev., 2018, 47(4), 1174-1188.
[http://dx.doi.org/10.1039/C7CS00594F] [PMID: 29334090]
[4]
Yang, K.; Zhang, Z.; Du, J.; Li, W.; Pei, Z. Host-guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chem. Commun. (Camb.), 2020, 56(44), 5865-5876.
[http://dx.doi.org/10.1039/D0CC02001J] [PMID: 32432243]
[5]
Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev., 2015, 115(15), 7794-7839.
[http://dx.doi.org/10.1021/cr500392w] [PMID: 25415447]
[6]
Webber, M.J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev., 2017, 46(21), 6600-6620.
[http://dx.doi.org/10.1039/C7CS00391A] [PMID: 28828455]
[7]
Zhou, J.; Yu, G.; Huang, F. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev., 2017, 46(22), 7021-7053.
[http://dx.doi.org/10.1039/C6CS00898D] [PMID: 28980674]
[8]
Fraix, A.; Kirejev, V.; Malanga, M.; Fenyvesi, É.; Béni, S.; Ericson, M.B.; Sortino, S. A three-color fluorescent supramolecular nanoassembly of phototherapeutics activable by two-photon excitation with near-infrared light. Chemistry, 2019, 25(29), 7091-7095.
[http://dx.doi.org/10.1002/chem.201900917] [PMID: 30913331]
[9]
Zhang, W.; Li, Y.; Sun, J-H.; Tan, C-P.; Ji, L.N.; Mao, Z-W. Supramolecular self-assembled nanoparticles for chemo-photodynamic dual therapy against cisplatin resistant cancer cells. Chem. Commun. (Camb.), 2015, 51(10), 1807-1810.
[http://dx.doi.org/10.1039/C4CC08583C] [PMID: 25493294]
[10]
Chen, W-H.; Luo, G-F.; Qiu, W-X.; Lei, Q.; Liu, L-H.; Wang, S-B.; Zhang, X-Z. Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy. Biomaterials, 2017, 117, 54-65.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.057] [PMID: 27936417]
[11]
Yao, X.; Li, M.; Li, B.; Xue, C.; Cai, K.; Zhao, Y.; Luo, Z. Tumour -targeted upconverting nanoplatform constructed by host-guest interaction for near-infrared-light-actuated synergistic photodynamic-/chemotherapy. Chem. Eng. J., 2020, 390, 124516.
[http://dx.doi.org/10.1016/j.cej.2020.124516]
[12]
Phu, S.Z.F.; Xue, C.; Lim, W.Q.; Yang, G.; Chen, H.; Zhang, Y.; Wijaya, C.F.; Luo, Z.; Zhao, Y. Light-responsive prodrug-based supramolecular nanosystems for site-specific combination therapy of cancer. Chem. Mater., 2019, 31, 3349-3358.
[http://dx.doi.org/10.1021/acs.chemmater.9b00439]
[13]
Chen, H.; Zeng, X.; Tham, H.P.; Phua, S.Z.F.; Cheng, W.; Zeng, W.; Shi, H.; Mei, L.; Zhao, Y. NIR-light-activated combination therapy with a precise ratio of photosensitizer and prodrug using a host-guest strategy. Angew. Chem. Int. Ed. Engl., 2019, 58(23), 7641-7646.
[http://dx.doi.org/10.1002/anie.201900886] [PMID: 30980463]
[14]
Zhao, L.; Liu, Y.; Chang, R.; Xing, R.; Yan, X. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy. Adv. Funct. Mater., 2019, 29, 1806877-1806889.
[http://dx.doi.org/10.1002/adfm.201806877]
[15]
Wang, J.; Qiu, J. A review of organic nanomaterials in photothermal cancer therapy. Cancer Res. Front., 2016, 2, 67-84.
[http://dx.doi.org/10.17980/2016.67]
[16]
Hu, Z.; Wang, C.; Zhao, F.; Xu, X.; Wang, S.; Yu, L.; Zhang, D.; Huang, Y. Fabrication of a graphene/C60 nanohybrid via γ-cyclodextrin host-guest chemistry for photodynamic and photothermal therapy. Nanoscale, 2017, 9(25), 8825-8833.
[http://dx.doi.org/10.1039/C7NR02922E] [PMID: 28632263]
[17]
Yang, S.; You, Q.; Yang, L.; Li, P.; Lu, Q.; Wang, S.; Tan, F.; Ji, Y.; Li, N.; Rodlike, M.S.N. Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy. ACS Appl. Mater. Interfaces, 2019, 11(7), 6777-6788.
[http://dx.doi.org/10.1021/acsami.8b19565] [PMID: 30668088]
[18]
Wang, J.; Liu, L.; Chen, J.; Deng, M.; Feng, X.; Chen, L. Supramolecular nanoplatforms via cyclodextrin host-guest recognition for synergistic gene-photodynamic therapy. Eur. Polym. J., 2019, 118, 222-230.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.04.051]
[19]
Fu, H-G.; Chen, Y.; Yu, Q.; Liu, Y. A tumour -targeting Ru/polysaccharide/protein supramolecular assembly with high photodynamic therapy ability. Chem. Commun. (Camb.), 2019, 55(21), 3148-3151.
[http://dx.doi.org/10.1039/C8CC09964B] [PMID: 30801078]
[20]
Khurana, R.; Kakatkar, A.S.; Chatterjee, S.; Barooah, N.; Kunwar, A.; Bhasikuttan, A.C.; Mohanty, J. Supramolecular nanorods of (N-methylpyridyl) porphyrin with captisol: effective photosensitizer for anti-bacterial and anti-tumour activities. Front Chem., 2019, 7, 452.
[http://dx.doi.org/10.3389/fchem.2019.00452] [PMID: 31294017]
[21]
Tuccitto, N.; Sfrazzetto, G.T.; Gangemi, C.M.A.; Ballistreri, F.P.; Toscano, R.M.; Tomaselli, G.A.; Pappalardo, A.; Marletta, G. The memory-driven order-disorder transition of a 3D-supramolecular architecture based on calix[5]arene and porphyrin derivatives. Chem. Commun. (Camb.), 2016, 52(78), 11681-11684.
[http://dx.doi.org/10.1039/C6CC06675E] [PMID: 27711327]
[22]
Gangemi, C.M.A.; Pappalardo, A.; Trusso Sfrazzetto, G. Assembling of supramolecular capsules with resorcin[4]arene and calix[n]arene building blocks. Curr. Org. Chem., 2015, 19, 2281-2308.
[http://dx.doi.org/10.2174/1385272819666150608221916]
[23]
Kumar, N.; Qui, P.X. Comprehensive Supramolecular Chemistry II; Elsevier, 2017, Vol. 8, pp. 197-226.
[24]
Gangemi, C.M.A.; Pappalardo, A.; Sfrazzetto, G.T. Applications of supramolecular capsules derived from resorcin [4] arenes, calix [n] arenes and metallo-ligands: from biology to catalysis. RSC Advances, 2015, 5, 51919-55193.
[http://dx.doi.org/10.1039/C5RA09364C]
[25]
Baldini, L.; Casnati, A.; Sansone, F. Multivalent and multifunctional calixarenes in bionanotechnology. Eur. J. Org. Chem., 2020, 32, 5056-5069.
[26]
Gangemi, C.M.A.; Puglisi, R.; Pappalardo, A.; Trusso Sfrazzetto, G. Supramolecular complexes for nanomedicine. Bioorg. Med. Chem. Lett., 2018, 28(20), 3290-3301.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.015] [PMID: 30227945]
[27]
Tu, C.; Zhu, L.; Li, P.; Chen, Y.; Su, Y.; Yan, D.; Zhu, X.; Zhou, G. Supramolecular polymeric micelles by the host-guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy. Chem. Commun. (Camb.), 2011, 47(21), 6063-6065.
[http://dx.doi.org/10.1039/c0cc05662f] [PMID: 21519601]
[28]
Di Bari, I.; Fraix, A.; Picciotto, R.; Blanco, A.R.; Petralia, S.; Conoci, S.; Granata, G.; Consoli, G.M.L.; Sortino, S. Supramolecular activation of the photodynamic properties of porphyrinoid photosensitizers by calix[4]arene nanoassemblies. RSC Advances, 2016, 6, 105573-105577.
[http://dx.doi.org/10.1039/C6RA23492E]
[29]
Di Bari, I.; Granata, G.; Consoli, G.M.L.; Sortino, S. Simultaneous supramolecular activation of NO photodonor/photosensitizer ensembles by a calix[4]arene nanoreactor. New J. Chem., 2018, 42, 18096-18101.
[http://dx.doi.org/10.1039/C8NJ03704C]
[30]
Gao, J.; Li, J.; Geng, W-C.; Chen, F-Y.; Duan, X.; Zheng, Z.; Ding, D.; Guo, D-S. Biomarker displacement activation: a general host-guest strategy for targeted phototheranostics in vivo. J. Am. Chem. Soc., 2018, 140(14), 4945-4953.
[http://dx.doi.org/10.1021/jacs.8b02331] [PMID: 29562139]
[31]
Shalaeva, Y.V.; Morozova, J.E.; Gubaidullin, A.T.; Saifina, A.F.; Shumatbaeva, A.M.; Nizameevc, I.R.; Kadirov, M.K.; Ovsyannikov, A.S.; Antipin, I.S. Photocatalytic properties of supramolecular nanoassociates based on gold and platinum nanoparticles, capped by amphiphilic calix[4]resorcinarenes, towards organic dyes. Colloid Surface A, 2020, 596, 124700.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124700]
[32]
Das, D.; Assaf, K.I.; Nau, W.M. Applications of cucurbiturils in medicinal chemistry and chemical biology. Front Chem., 2019, 7, 619.
[http://dx.doi.org/10.3389/fchem.2019.00619] [PMID: 31572710]
[33]
Robinson-Duggon, J.; Pérez-Mora, F.; Dibona-Villanueva, L.; Fuentealba, D. Potential applications of cucurbit[n]urils inclusion complexes in photodynamic therapy. Isr. J. Chem., 2018, 58, 199-214.
[http://dx.doi.org/10.1002/ijch.201700093]
[34]
Wang, X-Q.; Lei, Q.; Zhu, J-Y.; Wang, W-J.; Cheng, Q.; Gao, F.; Sun, Y-X.; Zhang, X-Z. Cucurbit[8]uril regulated activatable supramolecular photosensitizer for targeted cancer imaging and photodynamic therapy. ACS Appl. Mater. Interfaces, 2016, 8(35), 22892-22899.
[http://dx.doi.org/10.1021/acsami.6b07507] [PMID: 27513690]
[35]
Zhang, C-C.; Zhang, Y-M.; Zhang, Z-Y.; Wu, X.; Yu, Q.; Liu, Y. Photoreaction-driven two-dimensional periodic polyrotaxane-type supramolecular nanoarchitecture. Chem. Commun. (Camb.), 2019, 55(56), 8138-8141.
[http://dx.doi.org/10.1039/C9CC03705E] [PMID: 31240296]
[36]
Mao, W.; Liao, Y.; Ma, D. A supramolecular assembly mediated by host-guest interactions for improved chemo-photodynamic combination therapy. Chem. Commun. (Camb.), 2020, 56(30), 4192-4195.
[http://dx.doi.org/10.1039/D0CC01096K] [PMID: 32167514]
[37]
Wu, X.; Chen, Y.; Yu, Q.; Li, F-Q.; Liu, Y. A cucurbituril/polysaccharide/carbazole ternary supramolecular assembly for targeted cell imaging. Chem. Commun. (Camb.), 2019, 55(30), 4343-4346.
[http://dx.doi.org/10.1039/C9CC01601E] [PMID: 30911744]
[38]
Özkan, M.; Kumar, Y.; Keser, Y.; Hadi, S.E.; Tuncel, D. Cucurbit[7]uril-anchored porphyrin-based multifunctional molecular platform for photodynamic antimicrobial and cancer therapy. ACS Appl. Bio Mater, 2019, 2, 4693-4697.
[http://dx.doi.org/10.1021/acsabm.9b00763]
[39]
Sun, C.; Zhang, H.; Yue, L.; Li, S.; Cheng, Q.; Wang, R. Facile preparation of cucurbit[6]uril-based polymer nanocapsules for targeted photodynamic therapy. ACS Appl. Mater. Interfaces, 2019, 11(26), 22925-22931.
[http://dx.doi.org/10.1021/acsami.9b04403] [PMID: 31252492]
[40]
Yu, G.; Han, C.; Zhang, Z.; Chen, J.; Yan, X.; Zheng, B.; Liu, S.; Huang, F. Pillar[6]arene-based photoresponsive host-guest complexation. J. Am. Chem. Soc., 2012, 134(20), 8711-8717.
[http://dx.doi.org/10.1021/ja302998q] [PMID: 22540829]
[41]
Wu, X.; Gao, L.; Hu, X-Y.; Wang, L. Supramolecular drug delivery systems based on water-soluble pillar[n]arenes. Chem. Rec., 2016, 16(3), 1216-1227.
[http://dx.doi.org/10.1002/tcr.201500265] [PMID: 27061964]
[42]
Xiao, T.; Qi, L.; Zhong, W.; Lin, C.; Wang, R.; Wang, L. Stimuli-responsive nanocarriers constructed from pillar[n]arene-based supra-amphiphiles. Mater. Chem. Front., 2019, 3, 1973-1993.
[http://dx.doi.org/10.1039/C9QM00428A]
[43]
Meng, L-B.; Zhang, W.; Li, D.; Li, Y.; Hu, X-Y.; Wang, L.; Li, G. pH-Responsive supramolecular vesicles assembled by water-soluble pillar[5]arene and a BODIPY photosensitizer for chemo-photodynamic dual therapy. Chem. Commun. (Camb.), 2015, 51(76), 14381-14384.
[http://dx.doi.org/10.1039/C5CC05785J] [PMID: 26270623]
[44]
Chen, Y.; Rui, L.; Liu, L.; Zhang, W. Redox-responsive supramolecular amphiphiles based on a pillar[5]arene for enhanced photodynamic therapy. Polym. Chem., 2016, 7, 3268-3276.
[http://dx.doi.org/10.1039/C6PY00505E]
[45]
Rui, L.; Xue, Y.; Wang, Y.; Gao, Y.; Zhang, W. A mitochondria-targeting supramolecular photosensitizer based on pillar[5]arene for photodynamic therapy. Chem. Commun. (Camb.), 2017, 53(21), 3126-3129.
[http://dx.doi.org/10.1039/C7CC00950J] [PMID: 28245021]
[46]
Yang, K.; Wen, J.; Chao, S.; Liu, J.; Yang, K.; Pei, Y.; Pei, Z. A supramolecular photosensitizer system based on the host-guest complexation between water-soluble pillar[6]arene and methylene blue for durable photodynamic therapy. Chem. Commun. (Camb.), 2018, 54(46), 5911-5914.
[http://dx.doi.org/10.1039/C8CC02739K] [PMID: 29789821]
[47]
Wu, J.; Tian, J.; Rui, L.; Zhang, W. Enhancing the efficacy of photodynamic therapy (PDT) via water-soluble pillar[5]arene-based supramolecular complexes. Chem. Commun. (Camb.), 2018, 54(55), 7629-7632.
[http://dx.doi.org/10.1039/C8CC04275F] [PMID: 29927446]
[48]
Zhu, H.; Wang, H.; Shi, B.; Shangguan, L.; Tong, W.; Yu, G.; Mao, Z.; Huang, F. Supramolecular peptide constructed by molecular Lego allowing programmable self-assembly for photodynamic therapy. Nat. Commun., 2019, 10(1), 2412.
[http://dx.doi.org/10.1038/s41467-019-10385-9] [PMID: 31160596]
[49]
Shao, L.; Pan, Y.; Hua, B.; Xu, S.; Yu, G.; Wang, M.; Liu, B.; Huang, F. Constructing adaptive photosensitizers via supramolecular modification based on pillararene host-guest interactions. Angew. Chem. Int. Ed. Engl., 2020, 59(29), 11779-11783.
[http://dx.doi.org/10.1002/anie.202000338] [PMID: 32324962]
[50]
Wu, J.; Xia, L.; Liu, Z.; Xu, Z.; Cao, H.; Zhang, W. Fabrication of a dualstimuli-responsive supramolecular micelle from a pillar[5]arene-based supramolecular diblock copolymer for photodynamic therapy. Macromol. Rapid Commun., 2019, 40(18), e1900240.
[http://dx.doi.org/10.1002/marc.201900240] [PMID: 31298785]
[51]
Karimi, M.; Zangabad, P.S.; Mehdizadeh, F.; Malekzad, H.; Ghasemi, A.; Bahrami, S.; Zare, H.; Moghoofei, M.; Hekmatmanesh, A.; Hamblin, M.R. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale, 2017, 9(4), 1356-1392.
[http://dx.doi.org/10.1039/C6NR07315H] [PMID: 28067384]
[52]
Roy, I.; Bobbala, S.; Young, R.M.; Beldjoudi, Y.; Nguyen, M.T.; Cetin, M.M.; Cooper, J.A.; Allen, S.; Anamimoghadam, O.; Scott, E.A.; Wasielewski, M.R.; Stoddart, J.F. A supramolecular approach for modulated photoprotection, lysosomal delivery, and photodynamic activity of a photosensitizer. J. Am. Chem. Soc., 2019, 141(31), 12296-12304.
[http://dx.doi.org/10.1021/jacs.9b03990] [PMID: 31256588]
[53]
Yu, G.; Zhu, B.; Shao, L.; Zhou, J.; Saha, M.L.; Shi, B.; Zhang, Z.; Hong, T.; Li, S.; Chen, X.; Stang, P.J. Host-guest complexation-mediated codelivery of anticancer drug and photosensitizer for cancer photochemotherapy. Proc. Natl. Acad. Sci. USA, 2019, 116(14), 6618-6623.
[http://dx.doi.org/10.1073/pnas.1902029116] [PMID: 30894484]
[54]
Hisamatsu, Y.; Umezawa, N.; Yagi, H.; Kato, K.; Higuchi, T. Design and synthesis of a 4-aminoquinoline-based molecular tweezer that recognizes protoporphyrin IX and iron(III) protoporphyrin IX and its application as a supramolecular photosensitizer. Chem. Sci. (Camb.), 2018, 9(38), 7455-7467.
[http://dx.doi.org/10.1039/C8SC02133C] [PMID: 30319746]
[55]
Sun, X.; Zebibula, A.; Dong, X.; Zhang, G.; Zhang, D.; Qian, J.; He, S. Aggregation-induced emission nanoparticles encapsulated with PEGylated nano graphene oxide and their applications in two-photon fluorescence bioimaging and photodynamic therapy in vitro and in vivo. ACS Appl. Mater. Interfaces, 2018, 10(30), 25037-25046.
[http://dx.doi.org/10.1021/acsami.8b05546] [PMID: 29979575]
[56]
Chang, R.; Nikoloudakis, E.; Zou, Q.; Mitraki, A.; Coutsolelos, A.G.; Yan, X. Supramolecular nanodrugs constructed by self-assembly of peptide nucleic acid−photosensitizer conjugates for photodynamic therapy. ACS Appl. Bio Mater., 2020, 3, 2-9. [https://doi.org/10.1021/acsabm.9b00558
[57]
Zhang, H.; Liu, K.; Li, S.; Xin, X.; Yuan, S.; Ma, G.; Yan, X. Self-assembled minimalist multifunctional theranostic nanoplatform for magnetic resonance imaging-guided tumour photodynamic therapy. ACS Nano, 2018, 12(8), 8266-8276.
[http://dx.doi.org/10.1021/acsnano.8b03529] [PMID: 30091901]
[58]
Zhou, J.; Mohamed Wali, A.R.; Ma, S.; He, Y.; Yue, D.; Tang, J.Z.; Gu, Z. Tailoring the supramolecular structure of guanidinylated pullulan toward enhanced genetic photodynamic therapy. Biomacromolecules, 2018, 19(6), 2214-2226.
[http://dx.doi.org/10.1021/acs.biomac.8b00273] [PMID: 29689167]
[59]
Nicosia, A.; Vento, F.; Satriano, C.; Villari, V.; Micali, N.; Cucci, L.M.; Sanfilippo, V.; Mineo, P.G. light-triggered polymeric nanobombs for targeted cell death. ACS Appl. Nano Mater., 2020, 3, 1950-1960.
[http://dx.doi.org/10.1021/acsanm.9b02552]
[60]
Liu, L.; Bao, Y.; Wang, J.; Xiao, C.; Chen, L. Construction of carrier-free porphyrin-based drug self-framed delivery system to reverse multidrug resistance through photodynamic-chemotherapy. Dyes Pigm., 2020, 177, 107922.
[http://dx.doi.org/10.1016/j.dyepig.2019.107922]
[61]
Jiang, X.; Zhou, Z.; Yang, H.; Shan, C.; Yu, H.; Wojtas, L.; Zhang, M.; Mao, Z.; Wang, M.; Stang, P.J. Self-assembly of porphyrin-containing metalla-assemblies and cancer photodynamic therapy. Inorg. Chem., 2020, 59(11), 7380-7388.
[http://dx.doi.org/10.1021/acs.inorgchem.9b02775] [PMID: 31961145]
[62]
Liu, L.; Fu, L.; Jing, T.; Ruan, Z.; Yan, L. pH-Triggered polypeptides nanoparticles for efficient BODIPY imaging-guided near infrared photodynamic therapy. ACS Appl. Mater. Interfaces, 2016, 8(14), 8980-8990.
[http://dx.doi.org/10.1021/acsami.6b01320] [PMID: 27020730]
[63]
Zhang, Q.; Cai, Y.; Li, Q-Y.; Hao, L-N.; Ma, Z.; Wang, X-J.; Yin, J. Targeted delivery of a mannose-conjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy. Chemistry, 2017, 23(57), 14307-14315.
[http://dx.doi.org/10.1002/chem.201702935] [PMID: 28753238]
[64]
Ruan, Z.; Zhao, Y.; Yuan, P.; Liu, L.; Wang, Y.; Yan, L. PEG conjugated BODIPY-Br2 as macro-photosensitizer for efficient imaging-guided photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(5), 753-762.
[http://dx.doi.org/10.1039/C7TB02924A] [PMID: 32254262]
[65]
Yin, L.; Bao, Y.; Liu, Y.; Wang, J.; Chen, L. Acid-sensitive reactive oxygen species triggered dual-drug delivery systems for chemo-photodynamic therapy to overcome multidrug resistance. Polym. Int., 2020, 69(7), 619-626.
[http://dx.doi.org/10.1002/pi.5997]
[66]
Setaro, F.; Wennink, J.W.H.; Mäkinen, P.I.; Holappa, L.; Trohopoulos, P.N.; Ylä-Herttuala, S.; van Nostrum, C.F.; de la Escosura, A.; Torres, T. Amphiphilic phthalocyanines in polymeric micelles: a supramolecular approach toward efficient third-generation photosensitizers. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(2), 282-289.
[http://dx.doi.org/10.1039/C9TB02014D] [PMID: 31803886]
[67]
Han, Y.; Chen, Z.; Zhao, H.; Zha, Z.; Ke, W.; Wang, Y.; Ge, Z. Oxygen-independent combined photothermal/photodynamic therapy delivered by tumour acidity-responsive polymeric micelles. J. Control. Release, 2018, 284, 15-25.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.012] [PMID: 29894709]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy