Review Article (Mini-Review)

Viral-Encoded microRNAs in Host-Pathogen Interactions in Silkworm

Author(s): Chandra Pal Singh*

Volume 10 , Issue 1 , 2021

Published on: 21 January, 2021

Page: [3 - 13] Pages: 11

DOI: 10.2174/2211536610666210121154314

Price: $65

Abstract

The mulberry silkworm Bombyx mori, apart from its well-known economic importance, has also emerged as an insect model to study host-pathogen interactions. The major concern for silkworm cultivation and the sericulture industry is the attack by various types of pathogens mainly including viruses, fungi, bacteria and protozoa. Successful infection requires specific arsenals to counter the host immune response. MicroRNAs (miRNAs) are one of the potential arsenals which are encoded by viruses and effectively used during host-pathogen interactions. MiRNAs are short noncoding 19-25 nucleotides long endogenous RNAs that post-transcriptionally regulate the expression of protein-coding genes in a sequence-specific manner. Most of the higher eukaryotes encode miRNAs and utilize them in the regulation of important cellular pathways. In silkworm, promising functions of miRNAs have been characterized in development, metamorphosis, immunity, and host-pathogen interactions. The viral miRNA-mediated fine-tuning of the viral, as well as cellular genes, is beneficial for making a cellular environment favorable for the virus proliferation. Baculovirus and cypovirus, which infect silkworm have been shown to encode miRNAs and their functions are implicated in controlling the expression of both viral and host genes. In the present review, the author discusses the diverse functions of viral-encoded miRNAs in evasion of the host immune responses and reshaping of the silkworm cellular environment for replication. Besides, a basic overview of miRNA biogenesis and mechanism of action is also provided. Our increasing understanding of the role of viral miRNAs in silkworm-virus interactions would not only assist us to get insights into the intricate pathways but also provide tools to deal with dreaded pathogens.

Keywords: MicroRNA, virus, silkworm, Bombyx mori, insect and host-pathogen interactions, siRNAs.

Graphical Abstract
[1]
Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys 2013; 42: 217-39.
[http://dx.doi.org/10.1146/annurev-biophys-083012-130404] [PMID: 23654304]
[2]
Bartel DP. Metazoan MicroRNAs. Cell 2018; 173(1): 20-51.
[http://dx.doi.org/10.1016/j.cell.2018.03.006] [PMID: 29570994]
[3]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[4]
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res 2019; 47: D155-62.
[5]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[6]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[7]
Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19(1): 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[8]
Asgari S. Role of microRNAs in insect host-microorganism interactions. Front Physiol 2011; 2: 48.
[http://dx.doi.org/10.3389/fphys.2011.00048] [PMID: 21886625]
[9]
Asgari S. Regulatory role of cellular and viral microRNAs in insect-virus interactions. Curr Opin Insect Sci 2015; 8: 104-10.
[http://dx.doi.org/10.1016/j.cois.2014.12.008] [PMID: 32846658]
[10]
Scaria V, Hariharan M, Pillai B, Maiti S, Brahmachari SK. Host-virus genome interactions: Macro roles for microRNAs. Cell Microbiol 2007; 9(12): 2784-94.
[http://dx.doi.org/10.1111/j.1462-5822.2007.01050.x] [PMID: 17944962]
[11]
Eledge MR, Yeruva L. Host and pathogen interface: MicroRNAs are modulators of disease outcome. Microbes Infect 2018; 20(7-8): 410-5.
[http://dx.doi.org/10.1016/j.micinf.2017.08.002] [PMID: 28889971]
[12]
Boss IW, Renne R. Viral miRNAs and immune evasion. Biochim Biophys Acta 2011; 1809(11-12): 708-14.
[http://dx.doi.org/10.1016/j.bbagrm.2011.06.012] [PMID: 21757042]
[13]
Sharma N, Singh SK. Implications of non-coding RNAs in viral infections. Rev Med Virol 2016; 26(5): 356-68.
[http://dx.doi.org/10.1002/rmv.1893] [PMID: 27401792]
[14]
Bernier A, Sagan SM. The diverse roles of microRNAs at the host-virus interface. Viruses 2018; 10(8): 440.
[http://dx.doi.org/10.3390/v10080440] [PMID: 30126238]
[15]
Skalsky RL, Cullen BR. Viruses, microRNAs, and host interactions. Annu Rev Microbiol 2010; 64: 123-41.
[http://dx.doi.org/10.1146/annurev.micro.112408.134243] [PMID: 20477536]
[16]
Cullen BR. Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 2011; 25(18): 1881-94.
[http://dx.doi.org/10.1101/gad.17352611] [PMID: 21896651]
[17]
Ghosh Z, Mallick B, Chakrabarti J. Cellular versus viral microRNAs in host-virus interaction. Nucleic Acids Res 2009; 37(4): 1035-48.
[http://dx.doi.org/10.1093/nar/gkn1004] [PMID: 19095692]
[18]
Pfeffer S, Zavolan M, Grässer FA, et al. Identification of virus-encoded microRNAs. Science 2004; 304(5671): 734-6.
[http://dx.doi.org/10.1126/science.1096781] [PMID: 15118162]
[19]
Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011; 411(2): 325-43.
[http://dx.doi.org/10.1016/j.virol.2011.01.002] [PMID: 21277611]
[20]
Hussain M, Asgari S. MicroRNAs as mediators of insect host- pathogen interactions and immunity. J Insect Physiol 2014; 70: 151-8.
[http://dx.doi.org/10.1016/j.jinsphys.2014.08.003] [PMID: 25152509]
[21]
Monsanto-Hearne V, Johnson KN. miRNA modulation of insect virus replication. Curr Issues Mol Biol 2020; 34: 61-82.
[http://dx.doi.org/10.21775/cimb.034.061] [PMID: 31167956]
[22]
Hussain M, Taft RJ, Asgari S. An insect virus-encoded microRNA regulates viral replication. J Virol 2008; 82(18): 9164-70.
[http://dx.doi.org/10.1128/JVI.01109-08] [PMID: 18614632]
[23]
Singh J, Singh CP, Bhavani A, Nagaraju J. Discovering microRNAs from Bombyx mori nucleopolyhedrosis virus. Virology 2010; 407(1): 120-8.
[http://dx.doi.org/10.1016/j.virol.2010.07.033] [PMID: 20800868]
[24]
Wu YL, Wu CP, Liu CY, Hsu PW, Wu EC, Chao YC. A non-coding RNA of insect HzNV-1 virus establishes latent viral infection through microRNA. Sci Rep 2011; 1: 60.
[http://dx.doi.org/10.1038/srep00060] [PMID: 22355579]
[25]
Pan ZH, Wu P, Gao K, et al. Identification and characterization of two putative microRNAs encoded by Bombyx mori cypovirus. Virus Res 2017; 233: 86-94.
[http://dx.doi.org/10.1016/j.virusres.2017.03.009] [PMID: 28286035]
[26]
Guo JY, Wang YS, Chen T, et al. Functional analysis of a miRNA-like small RNA derived from Bombyx mori cytoplasmic polyhedrosis virus. Insect Sci 2020; 27(3): 449-62.
[http://dx.doi.org/10.1111/1744-7917.12671] [PMID: 30869181]
[27]
Zhu M, Wang J, Deng R, Xiong P, Liang H, Wang X. A microRNA encoded by Autographa californica nucleopolyhedrovirus regulates expression of viral gene ODV-E25. J Virol 2013; 87(23): 13029-34.
[http://dx.doi.org/10.1128/JVI.02112-13] [PMID: 24027316]
[28]
Jiao Y, Wang J, Deng R, Yu X, Wang X. AcMNPV-miR-3 is a miRNA encoded by Autographa californica nucleopolyhedrovirus and regulates the viral infection by targeting ac101. Virus Res 2019; 267: 49-58.
[http://dx.doi.org/10.1016/j.virusres.2019.05.004] [PMID: 31077766]
[29]
Nayyar N, Kaur I, Malhotra P, Bhatnagar RK. Quantitative proteomics of Sf21 cells during Baculovirus infection reveals progressive host proteome changes and its regulation by viral miRNA. Sci Rep 2017; 7(1): 10902.
[http://dx.doi.org/10.1038/s41598-017-10787-z] [PMID: 28883418]
[30]
Hussain M, Asgari S. MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proc Natl Acad Sci USA 2014; 111(7): 2746-51.
[http://dx.doi.org/10.1073/pnas.1320123111] [PMID: 24550303]
[31]
Abdelfattah AM, Park C, Choi MY. Update on non-canonical microRNAs. Biomol Concepts 2014; 5(4): 275-87.
[http://dx.doi.org/10.1515/bmc-2014-0012] [PMID: 25372759]
[32]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[33]
Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11(3): 228-34.
[http://dx.doi.org/10.1038/ncb0309-228] [PMID: 19255566]
[34]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051-60.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[35]
Nguyen TA, Jo MH, Choi YG, et al. Functional anatomy of the human microprocessor. Cell 2015; 161(6): 1374-87.
[http://dx.doi.org/10.1016/j.cell.2015.05.010] [PMID: 26027739]
[36]
Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432(7014): 235-40.
[http://dx.doi.org/10.1038/nature03120] [PMID: 15531877]
[37]
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature 2004; 432(7014): 231-5.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[38]
Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18(24): 3016-27.
[http://dx.doi.org/10.1101/gad.1262504] [PMID: 15574589]
[39]
Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004; 14(23): 2162-7.
[http://dx.doi.org/10.1016/j.cub.2004.11.001] [PMID: 15589161]
[40]
Han J, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006; 125(5): 887-901.
[http://dx.doi.org/10.1016/j.cell.2006.03.043] [PMID: 16751099]
[41]
Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004; 10(2): 185-91.
[http://dx.doi.org/10.1261/rna.5167604] [PMID: 14730017]
[42]
Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303(5654): 95-8.
[http://dx.doi.org/10.1126/science.1090599] [PMID: 14631048]
[43]
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17(24): 3011-6.
[http://dx.doi.org/10.1101/gad.1158803] [PMID: 14681208]
[44]
Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409(6818): 363-6.
[http://dx.doi.org/10.1038/35053110] [PMID: 11201747]
[45]
Park JE, Heo I, Tian Y, et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 2011; 475(7355): 201-5.
[http://dx.doi.org/10.1038/nature10198] [PMID: 21753850]
[46]
Förstemann K, Tomari Y, Du T, et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 2005; 3(7): e236.
[http://dx.doi.org/10.1371/journal.pbio.0030236] [PMID: 15918770]
[47]
Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005; 123(4): 631-40.
[http://dx.doi.org/10.1016/j.cell.2005.10.022] [PMID: 16271387]
[48]
Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 2013; 14(8): 475-88.
[http://dx.doi.org/10.1038/nrm3611] [PMID: 23800994]
[49]
Melo SA, Sugimoto H, O’Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014; 26(5): 707-21.
[http://dx.doi.org/10.1016/j.ccell.2014.09.005] [PMID: 25446899]
[50]
Frank F, Sonenberg N, Nagar B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 2010; 465(7299): 818-22.
[http://dx.doi.org/10.1038/nature09039] [PMID: 20505670]
[51]
Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115(2): 209-16.
[http://dx.doi.org/10.1016/S0092-8674(03)00801-8] [PMID: 14567918]
[52]
Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC. Nat Struct Mol Biol 2012; 19(6): 586-93.
[http://dx.doi.org/10.1038/nsmb.2296] [PMID: 22664986]
[53]
Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[54]
Ipsaro JJ, Joshua-Tor L. From guide to target: Molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 2015; 22(1): 20-8.
[http://dx.doi.org/10.1038/nsmb.2931] [PMID: 25565029]
[55]
Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12(2): 99-110.
[http://dx.doi.org/10.1038/nrg2936] [PMID: 21245828]
[56]
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136(4): 642-55.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[57]
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79: 351-79.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[58]
Brancati G, Großhans H. An interplay of miRNA abundance and target site architecture determines miRNA activity and specificity. Nucleic Acids Res 2018; 46(7): 3259-69.
[http://dx.doi.org/10.1093/nar/gky201] [PMID: 29897601]
[59]
Xu W, San Lucas A, Wang Z, Liu Y. Identifying microRNA targets in different gene regions. BMC Bioinformatics 2014; 15(Suppl 7): S4.
[http://dx.doi.org/10.1186/1471-2105-15-S7-S4]
[60]
Behura SK. Insect microRNAs: Structure, function and evolution. Insect Biochem Mol Biol 2007; 37(1): 3-9.
[http://dx.doi.org/10.1016/j.ibmb.2006.10.006] [PMID: 17175441]
[61]
Lucas K, Raikhel AS. Insect microRNAs: Biogenesis, expression profiling and biological functions. Insect Biochem Mol Biol 2013; 43(1): 24-38.
[http://dx.doi.org/10.1016/j.ibmb.2012.10.009] [PMID: 23165178]
[62]
Asgari S. MicroRNA functions in insects. Insect Biochem Mol Biol 2013; 43(4): 388-97.
[http://dx.doi.org/10.1016/j.ibmb.2012.10.005] [PMID: 23103375]
[63]
Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell 2019; 179(5): 1033-55.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[64]
Ojha CR, Rodriguez M, Dever SM, Mukhopadhyay R, El-Hage N. Mammalian microRNA: An important modulator of host-pathogen interactions in human viral infections. J Biomed Sci 2016; 23(1): 74.
[http://dx.doi.org/10.1186/s12929-016-0292-x] [PMID: 27784307]
[65]
Kincaid RP, Sullivan CS. Virus-encoded microRNAs: An overview and a look to the future. PLoS Pathog 2012; 8(12): e1003018.
[http://dx.doi.org/10.1371/journal.ppat.1003018] [PMID: 23308061]
[66]
Wang X, Tang SM, Shen XJ. Overview of research on Bombyx mori microRNA. J Insect Sci 2014; 14: 133.
[http://dx.doi.org/10.1093/jis/14.1.133] [PMID: 25368077]
[67]
Wu P, Jiang X, Guo X, Li L, Chen T. Genome-wide analysis of differentially expressed microRNA in Bombyx mori infected with nucleopolyhedrosis virus. PLoS One 2016; 11(11): e0165865.
[http://dx.doi.org/10.1371/journal.pone.0165865] [PMID: 27806111]
[68]
Mehrabadi M, Hussain M, Asgari S. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection. J Gen Virol 2013; 94(Pt 6): 1385-97.
[http://dx.doi.org/10.1099/vir.0.051060-0] [PMID: 23407421]
[69]
Jayachandran B, Hussain M, Asgari S. Regulation of Helicoverpa armigera ecdysone receptor by miR-14 and its potential link to baculovirus infection. J Invertebr Pathol 2013; 114(2): 151-7.
[http://dx.doi.org/10.1016/j.jip.2013.07.004] [PMID: 23899861]
[70]
Xia Q, Li S, Feng Q. Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori. Annu Rev Entomol 2014; 59: 513-36.
[http://dx.doi.org/10.1146/annurev-ento-011613-161940] [PMID: 24160415]
[71]
Zafar B, Wani SA, Malik MA, Ganai MA. A review: Disease resistance in mulberry silkworm Bombyx mori L. AJST 2013; 4(11): 157-66.
[72]
Lain LY. Silkworm diseases. Technical paper. FAO Agricultural Services Bulletin 1991; 73-4.
[73]
Benchamin KV, Venktaraman P, Tima Naik P, Santha Kumar VN. Pest and disease occurrence in mulberry and silkworm: A survey. Indian Silk 1997; 36(2): 27-32.
[74]
Gottwein E, Cullen BR. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 2008; 3(6): 375-87.
[http://dx.doi.org/10.1016/j.chom.2008.05.002] [PMID: 18541214]
[75]
Tang Q, Qiu L, Li G. Baculovirus-encoded micrornas: A brief overview and future prospects. Curr Microbiol 2019; 76(6): 738-43.
[http://dx.doi.org/10.1007/s00284-018-1443-y] [PMID: 29487989]
[76]
Cao X, Huang Y, Xia D, et al. BmNPV-miR-415 up-regulates the expression of TOR2 via Bmo-miR-5738. Saudi J Biol Sci 2017; 24(7): 1614-9.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.020] [PMID: 30294230]
[77]
Rohrmann GF. Baculovirus Molecular Biology. 4th ed. Bethesda, MD: National Center for Biotechnology Information (US) 2019. https://www.ncbi.nlm.nih.gov/books/NBK543458/
[78]
van Oers MM, Vlak JM. Baculovirus genomics. Curr Drug Targets 2007; 8(10): 1051-68.
[http://dx.doi.org/10.2174/138945007782151333] [PMID: 17979665]
[79]
Keddie BA, Aponte GW, Volkman LE. The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science 1989; 243(4899): 1728-30.
[http://dx.doi.org/10.1126/science.2648574] [PMID: 2648574]
[80]
Li SC, Shiau CK, Lin WC. Vir-Mir db: Prediction of viral microRNA candidate hairpins. Nucleic Acids Res 2008; 36: D184-9.
[PMID: 17702763]
[81]
Shirina TV, Bobrovskaia MT, Kozlov ÉA. The search of miRNA genes in Bombyx Mori nuclear polyhedrosis virus genomes regions complementary to the latest genes. 2011; 83: 59-66.
[82]
Hill CL, Booth TF, Stuart DI, Mertens PP. Lipofectin increases the specific activity of cypovirus particles for cultured insect cells. J Virol Methods 1999; 78(1-2): 177-89.
[http://dx.doi.org/10.1016/S0166-0934(98)00181-5] [PMID: 10204708]
[83]
Hagiwara K, Rao S, Scott SW, Carner GR. Nucleotide sequences of segments 1, 3 and 4 of the genome of Bombyx mori cypovirus 1 encoding putative capsid proteins VP1, VP3 and VP4, respectively. J Gen Virol 2002; 83(Pt 6): 1477-82.
[http://dx.doi.org/10.1099/0022-1317-83-6-1477] [PMID: 12029163]
[84]
Cao G, Meng X, Xue R, et al. Characterization of the complete genome segments from BmCPV-SZ, a novel Bombyx mori cytoplasmic polyhedrosis virus isolate. Can J Microbiol 2012; 58(7): 872-83.
[http://dx.doi.org/10.1139/w2012-064] [PMID: 22712678]
[85]
Liu Z, Liu S, Cui J, Tan Y, He J, Zhang J. Transmission electron microscopy studies of cellular responses to entry of virions: One kind of natural nanobiomaterial. Int J Cell Biol 2012; 2012: 596589.
[http://dx.doi.org/10.1155/2012/596589] [PMID: 22567012]
[86]
Chen J, Sun J, Atanasov I, Ryazantsev S, Zhou ZH. Electron tomography reveals polyhedrin binding and existence of both empty and full cytoplasmic polyhedrosis virus particles inside infectious polyhedra. J Virol 2011; 85(12): 6077-81.
[http://dx.doi.org/10.1128/JVI.00103-11] [PMID: 21471233]
[87]
Cullen BR. MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol 2013; 14(3): 205-10.
[http://dx.doi.org/10.1038/ni.2537] [PMID: 23416678]
[88]
Singh CP, Singh J, Nagaraju J. Bmnpv-miR-3 facilitates bmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori. Insect Biochem Mol Biol 2014; 49: 59-69.
[http://dx.doi.org/10.1016/j.ibmb.2014.03.008] [PMID: 24698834]
[89]
Singh CP, Singh J, Nagaraju J. A baculovirus-encoded MicroRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor Ran. J Virol 2012; 86(15): 7867-79.
[http://dx.doi.org/10.1128/JVI.00064-12] [PMID: 22593162]
[90]
Cullen BR. Viral and cellular messenger RNA targets of viral microRNAs. Nature 2009; 457(7228): 421-5.
[http://dx.doi.org/10.1038/nature07757] [PMID: 19158788]
[91]
Huang Q, Deveraux QL, Maeda S, Stennicke HR, Hammock BD, Reed JC. Cloning and characterization of an Inhibitor of Apoptosis Protein (IAP) from Bombyx mori. Biochim Biophys Acta 2001; 1499(3): 191-8.
[http://dx.doi.org/10.1016/S0167-4889(00)00105-1] [PMID: 11341966]
[92]
Wu PC, Lin YH, Wu TC, et al. MicroRNAs derived from the insect virus HzNV-1 promote lytic infection by suppressing histone methylation. Sci Rep 2018; 8(1): 17817.
[http://dx.doi.org/10.1038/s41598-018-35782-w]
[93]
Karamipour N, Fathipour Y, Talebi AA, Asgari S, Mehrabadi M. The microRNA pathway is involved in Spodoptera frugiperda (Sf9) cells antiviral immune defense against Autographa californica multiple nucleopolyhedrovirus infection. Insect Biochem Mol Biol 2019; 112: 103202.
[http://dx.doi.org/10.1016/j.ibmb.2019.103202] [PMID: 31422153]
[94]
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234(5): 5451-65.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[95]
Subbaiah EV, Royer C, Kanginakudru S, et al. Engineering silkworms for resistance to baculovirus through multigene RNA interference. Genetics 2013; 193(1): 63-75.
[http://dx.doi.org/10.1534/genetics.112.144402] [PMID: 23105011]
[96]
Zhang J, He Q, Zhang CD, et al. Inhibition of BmNPV replication in silkworm cells using inducible and regulated artificial microRNA precursors targeting the essential viral gene lef-11. Antiviral Res 2014; 104: 143-52.
[http://dx.doi.org/10.1016/j.antiviral.2014.01.017] [PMID: 24486953]
[97]
Chen S, Hou C, Bi H, et al. Transgenic clustered regularly interspaced short palindromic repeat/CAS9-mediated viral gene targeting for antiviral therapy of Bombyx mori Nucleopolyhedrovirus. J Virol 2017; 91(8): e02465-16.
[http://dx.doi.org/10.1128/JVI.02465-16] [PMID: 28122981]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy