Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Spectrophotometric Determination of Vitamin B1 in Dosage forms Using Drugs Compounds as Reagents by Normal and Reverse Flow Injection Methods

Author(s): Rana Amir and Hind Hadi*

Volume 18, Issue 2, 2022

Page: [218 - 227] Pages: 10

DOI: 10.2174/1573412917666210118120836

Price: $65

Abstract

Background: Thiamine hydrochloride (THY), also known as vitamin B1, is a watersoluble vitamin usually found in food and considered as a dietary supplement and treatment in case of vitamin deficiency, for example, in malabsorption and chronic diarrhea.

Objectives: Rapid, green, and sensitive methods for the assay of vitamin B1 (thiamine hydrochloride, THY) in pharmaceutical forms, using normal and reverse flow injection manifolds and sulfonamide drugs as green and safe reagents were reported. Sulfamethoxazole and sulfadimidine drugs were used rather than toxic and expensive reagents.

Methods: nFIA and rFIA manifolds were used for automated the reaction of THY with diazotized sulfamethoxazole (DSMZ) and diazotized sulfadimidine (DSDM) in an alkaline medium, respectively. The absorbance of the resultant red-orange azo dyes was monitored spectrophotometrically at λmax494 and 496nm for both methods, respectively.

Results: The linearity of the suggested methods was in the ranges of 2 till 80 μg/mL (LOD 0.69 μg/mL, %RSD 0.32, n=6) for nFIA method and 0.5-70μg/mL (LOD 0.29 μg/mL, %RSD 0.85, n=6) for rFIA. The sampling frequency was 84 and 51 injections per hour for nFIA and rFIA methods, respectively. Chemical and physical variables for both methods were studied carefully.

Conclusion: Both flow injection modes were effectively applied in the assay of THY in its pharmaceutical forms. The results were compared with those of the standard pharmacopeia method, and the statistical analysis indicated insignificant differences in accuracy and precision between the methods.

Keywords: Thiamine hydrochloride, sulfamethoxazole, sulfadimidine, diazotization coupling, normal, reverse FIA.

Graphical Abstract
[1]
Gregory, J.F. Food Chemistry, 3rd ed; Fennema, O.R., Ed.; Marcel Dekker: New York, 1996.
[2]
Gibson, G.E.; Park, L.C.; Zhang, H.; Sorbi, S.; Calingasan, N.Y. Oxidative stress and a key metabolic enzyme in Alzheimer brains, cultured cells, and an animal model of chronic oxidative deficits. Ann. N. Y. Acad. Sci., 1999, 893, 79-94.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb07819.x] [PMID: 10672231]
[3]
Pérez-Ruiz, T.; Martínez-Lozano, C.; Sanz, A.; Guillén, A. Successive determination of thiamine and ascorbic acid in pharmaceuticals by flow injection analysis. J. Pharm. Biomed. Anal., 2004, 34(3), 551-557.
[http://dx.doi.org/10.1016/S0731-7085(03)00606-X] [PMID: 15127811]
[4]
Pannunzio, P.; Hazell, A.S.; Pannunzio, M.; Rao, K.V.R.; Butterworth, R.F. Thiamine deficiency results in metabolic acidosis and energy failure in cerebellar granule cells: an in vitro model for the study of cell death mechanisms in Wernicke’s encephalopathy. J. Neurosci. Res., 2000, 62(2), 286-292.
[http://dx.doi.org/10.1002/1097-4547(20001015)62:2<286::AIDJNR13>3.0.CO;2-0] [PMID: 11020221]
[5]
Al Abachi, M.Q.; Hadi, H. Normal and reverse flow injection-spectrophotometric determination of thiamine hydrochloride in pharmaceutical preparations using diazotized metoclopramide. J. Pharm. Anal., 2012, 2(5), 350-355.
[http://dx.doi.org/10.1016/j.jpha.2012.04.005] [PMID: 29403765]
[6]
Kim, J.; Jonus, H.C.; Zastre, J.A.; Bartlett, M.G. Development of an IPRP-LC-MS/MS method to determine the fate of intracellular thiamine in cancer cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1124, 247-255.
[http://dx.doi.org/10.1016/j.jchromb.2019.05.037] [PMID: 31238261]
[7]
Tang, X.; Cronin, D.A.; Brunton, N.P. A simplified approach to the determination of thiamine and riboflavin in meats using reverse phase HPLC. J. Food Compos. Anal., 2006, 19(8), 831-837.
[http://dx.doi.org/10.1016/j.jfca.2005.12.013]
[8]
Michlig, N.; Van de Velde, F.; Freyre, M.R.; Bernardi, C.M.H. Determination of thiamine in wheat flours using a validated isocratic HPLC-fluorescence method previously optimized by Box–Behnken design. Food Anal. Methods, 2014, 7(4), 828-835.
[http://dx.doi.org/10.1007/s12161-013-9688-3]
[9]
Issa, Y.M.; Abou Attia, F.M.; Sherif, O.E.; Abo Dena, A.S. Potentiometric and surface topography studies of new carbon-paste sensors for determination of thiamine in Egyptian multivitamin ampoules. Arab. J. Chem., 2017, 10(6), 751-760.
[http://dx.doi.org/10.1016/j.arabjc.2016.11.012]
[10]
Cheng, X.; Ma, D.; Fei, G.; Ma, Z.; Xiao, F.; Yu, Q.; Pan, X.; Zhou, F.; Zhao, L.; Zhong, C. A single-step method for simultaneous quantification of thiamine and its phosphate esters in whole blood sample by ultra-performance liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1095, 103-111.
[http://dx.doi.org/10.1016/j.jchromb.2018.07.030] [PMID: 30056266]
[11]
Nemati, F.; Zare-Dorabei, R.; Hosseini, M.; Ganjali, M.R. Fluorescence turn-on sensing of thiamine based on Arginine – functionalized graphene quantum dots (Arg-GQDs): Central composite design for process optimization. Sens. Actuators B Chem., 2018, 255, 2078-2085.
[http://dx.doi.org/10.1016/j.snb.2017.09.009]
[12]
Trojanowicz, M. Advanced in flow analysis; Wiley-VCH,GmbH & Co.: Weinheim, 2008.
[http://dx.doi.org/10.1002/9783527623259]
[13]
Dunec, A.F.; Cheregi, M.; Calatayud, J.M.; Mateo, J.V.G.; Enein, H.Y.A. Flow injection methods of analysis for waters. I. Inorganic species. Crit. Rev. Anal. Chem., 2001, 31, 191-222.
[http://dx.doi.org/10.1080/20014091076749]
[14]
Ruzicka, J.; Hansen, E.H. Flow Injection Analysis, 3rd ed; John Wiley and Sons, Inc.: New York, 2005.
[15]
Belal, F.; Hadi, H.; Jamal, M. Reversed flow-injection method for estimation of chlorpromazine in pharmaceuticals and urine samples using charge-transfer complexation. Bull. Chem. Soc. Ethiop., 2019, 33(1), 11-20.
[http://dx.doi.org/10.4314/bcse.v33i1.2]
[16]
Abed, S.S. Spectrophotometric and reverse flow injection method determination of nitrazepam in pharmaceuticals using o-coumaric acid as a new chromogenic reagent. Baghdad Sci. J., 2020, 17(1), 265-271.
[http://dx.doi.org/10.21123/bsj.2020.17.1(Suppl.).0265]
[17]
Calatyude, J.M. Flow injection analysis of pharmaceuticals, 2nd ed; Taylor & Francis e-Library: London, 2003.
[18]
Al-Abachi, M.Q.; Abed, S.S.; Alamr, M.H.A. Charge transfer spectrophotometric determination of metronidazole in pharmaceutical formulations by normal and reverse flow injection analysis coupled with solid-phase reactor containing immobilized FePO4. Iraqi J. Sci., 2020, 61(7), 1541-1554.
[http://dx.doi.org/10.24996/ijs.2020.61.7.1]
[19]
Alsaeedi, I.M.; Abed, S.S. Determination of nifedipine in pharmaceutical forms using selective flow-injection spectrophotometric technique combined with immobilized manganese dioxide as a solid phase reactor. Res. J. Pharm. Tech, 2019, 12(12), 5904-5910.
[http://dx.doi.org/10.5958/0974-360X.2019.01024.2]
[20]
Němečková-Makrlíková, A.; Navrátil, T.; Barek, J.; Štenclová, P.; Kromka, A.; Vyskočil, V. Determination of tumour biomarkers homovanillic and vanillylmandelic acid using flow injection analysis with amperometric detection at a boron doped diamond electrode. Anal. Chim. Acta, 2019, 1087, 44-50.
[http://dx.doi.org/10.1016/j.aca.2019.08.062] [PMID: 31585565]
[21]
Hargis, L.G. Analytical Chemistry: Principles and Techniques; Pretice-Hall, Inc.: New Jersey, 1998.
[22]
Prebluda, H.J.; Mccollum, E.V.A. Chemical reagent for thiamine. J. Biol. Chem., 1939, 127, 495-503.
[23]
British pharmacopoeiastationery office; London. 2009.
[24]
Miller, J.N.; Miller, J.C. Statistics and chemometrics for analytical chemistry, 6th ed; England, 2010.
[25]
VinÄas P.. LoÂpez-Erroz, C.; CerdaÂn, F.J.; Campillo, N.; CoÂrdoba, M.H. Flow-injection fluorimetric determination of thiamine in pharmaceutical preparations. Mikrochim. Acta, 2000, 134, 83-87.
[http://dx.doi.org/10.1007/s006040070058]
[26]
Costa-Neto, C.; Pereira, A.; Aniceto, C.; Fatibello-Filho, O. Flow injection turbidimetric determination of thiamine in pharmaceutical formulations using silicotungstic acid as precipitant reagent. Talanta, 1999, 48(3), 659-667.
[http://dx.doi.org/10.1016/S0039-9140(98)00293-8] [PMID: 18967506]
[27]
Rocha, F.R.; Fatibello Filho, O.; Reis, B.F. A multicommuted flow system for sequential spectrophotometric determination of hydrosoluble vitamins in pharmaceutical preparations. Talanta, 2003, 59(1), 191-200.
[http://dx.doi.org/10.1016/S0039-9140(02)00477-0] [PMID: 18968899]
[28]
Martinez Calatayud, J.; Gomez Benito, C. gaspar Gimenez, D. FIA-fluorimetric determination of thiamine. J. Pharm. Biomed. Anal., 1990, 8(8-12), 667-670.
[http://dx.doi.org/10.1016/0731-7085(90)80099-B] [PMID: 2100604]
[29]
Barrales, P.O.; Córdova, M.L.F.; Díaz, A.M. A selective optosensor for UV spectrophotometric determination of thiamine in the presence of other vitamins B. Anal. Chim. Acta, 1998, 376, 227-233.
[http://dx.doi.org/10.1016/S0003-2670(98)00540-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy