Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

An Efficient Synthesis of Pyrano[c]chromenediones and [1,3]Dioxolo[g] chromeneones Catalyzed by Nickel(II) Chromite Nanoparticles Through a Three-Component Domino Reaction

Author(s): Bahareh Saeedi, Shahrzad Abdolmohammadi*, Zohreh Mirjafary and Reza Kia-Kojoori

Volume 25, Issue 2, 2022

Published on: 17 January, 2021

Page: [259 - 266] Pages: 8

DOI: 10.2174/1386207324666210118094712

Price: $65

Abstract

Background: Due to the importance of fused chromene motifs in bioactive compounds, the current research aimed to explore novel methods for the construction of heterocyclic scaffolds. Regarding the attractive features of developing novel methodological approaches in the presence of heterogeneous nanocatalysts, we will try to synthesize 4-aryl-3,4-dihydro-2H,5H-pyrano[3,2- c]chromene-2,5-diones and 8-aryl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromene-6-ones.

Objective: The aim of the present research was to prove the catalytic efficiency of the synthesized nickel(II) chromite nanoparticles (NiCr2O4 NPs) as bifunctional Lewis acid-Lewis base catalyst in the synthesis of pyrano[c]chromenediones and [1,3]dioxolo[g]chromeneones.

Methods:Pyrano[c]chromenediones and [1,3]dioxolo[g]chromeneones were conveniently prepared from a three-component condensation reaction between aromatic aldehydes, Meldrum's acid, and active methylene compounds including 4-hydroxycoumarin or 3,4-methylenedioxyphenol using NiCr2O4 NPs as an efficient, readily available, and recyclable catalyst, under ethanol-drop grinding at room temperature. The synthesized compounds were characterized by IR, 1H, and 13C NMR spectroscopy and also by elemental analyses.

Results: A number of 4-aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones and 8-aryl- 7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromene-6-ones were effectively synthesized as target compounds in high yields.

conclusion: This study provides a simple, inexpensive, and NiCr2O4 NPs catalyzed route to synthesis pyrano[c]chromenediones and [1,3]dioxolo[g]chromeneones in high yields. The reaction offers several benefits, including simple experimental procedures, higher yields, shorter reaction times, and the use of easily obtained and recyclable catalyst compared with previously reported methods and has a great scope for development.

Keywords: [1, 3]Dioxolo[g]chromeneones, ethanol-drop grinding, nickel (II) chromite nanoparticles (NiCr2O4 NPs), pyrano[c]chromenediones, metal salts, chromene.

Graphical Abstract
[1]
Khan, A.T.; Choudhury, L.H.; Ghosh, S. Cupric sulfate pentahydrate (CuSO4. 5H2O): A mild and efficient catalyst for tetrahydropyranylation/depyranylation of alcohols and phenols. Tetrahedron Lett., 2004, 45(42), 7891-7894.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.141]
[2]
Gohain, M.; Prajapati, D.; Sandhu, J.S. A novel Cu-catalysed three-component one-pot synthesis of dihydropyrimidin-2(1H)-ones using microwaves under solvent-free conditions. Synlett, 2004, (2), 235-238.
[http://dx.doi.org/10.1055/s-2003-43374]
[3]
Madhavi Latha, B.; Sadasivam, V.; Sivasankar, B. A highly selective synthesis of pyrazine from ethylenediamine on copper oxide/copper chromite catalysts. Catal. Commun., 2007, 8(7), 1070-1073.
[http://dx.doi.org/10.1016/j.catcom.2006.06.007]
[4]
Kalita, H.R.; Borah, A.J.; Phukan, P. Mukaiyama aldol reaction of trimethylsilyl enolate with aldehyde catalyzed by CuI. Indian J. Chem. B, 2013, 52(2), 289-292.
[http://dx.doi.org/10.1002/chin.201322029]
[5]
Safaei-Ghomi, J.; Khojastehbakht-Koopaei, B.; Zahedi, S. Copper chromite nanoparticles as an efficient and recyclable catalyst for facile synthesis of 4,4′-(arylmethanediyl)bis(3-methyl-1H-pyrazol-5-ol) derivatives. Chem. Heterocycl. Compd., 2015, 51(1), 34-38.
[http://dx.doi.org/10.1007/s10593-015-1656-y]
[6]
Adkins, H.; Connor, R. The catalytic hydrogenation of organic compounds over copper chromite. J. Am. Chem. Soc., 1931, 53(3), 1091-1095.
[http://dx.doi.org/10.1021/ja01354a041]
[7]
Kawamoto, A.M.; Pardini, L.C.; Rezende, L.C. Synthesis of copper chromite catalyst. Aerosp. Sci. Technol., 2004, 8(7), 591-598.
[http://dx.doi.org/10.1016/j.ast.2004.06.010]
[8]
Sathiskumar, P.S.; Thomas, C.R.; Madras, G. Solution combustion synthesis of nanosized copper chromite and its use as a burn rate modifier in solid propellants. Ind. Eng. Chem. Res., 2012, 51(30), 10108-10116.
[http://dx.doi.org/10.1021/ie301435r]
[9]
Pratap, R.; Ram, V.J. Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev., 2014, 114(20), 10476-10526.
[http://dx.doi.org/10.1021/cr500075s] [PMID: 25303539]
[10]
Costa, M.; Dias, T.A.; Brito, A.; Proença, F. Biological importance of structurally diversified chromenes. Eur. J. Med. Chem., 2016, 123, 487-507.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.057] [PMID: 27494166]
[11]
Raj, V.; Lee, J. 2H/4H-chromenes-A versatile biologically attractive scaffold. Front Chem., 2020, 8, 623.https://doi.org/10.3389
[12]
Kumar, R.R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. An atom efficient, solvent-free, green synthesis and antimycobacterial evaluation of 2-amino-6-methyl-4-aryl-8-[(E)-arylmethylidene]-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridine-3-carbonitriles. Bioorg. Med. Chem. Lett., 2007, 17(23), 6459-6462.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.095] [PMID: 17933535]
[13]
Donkor, I.O.; Klein, C.L.; Liang, L.; Zhu, N.; Bradley, E.; Clark, A.M. Synthesis and antimicrobial activity of 6,7-annulated pyrido[2,3-d]pyrimidines. J. Pharm. Sci., 1995, 84(5), 661-664.
[http://dx.doi.org/10.1002/jps.2600840526] [PMID: 7658362]
[14]
Khafagy, M.M.; Abd el-Wahab, A.H.; Eid, F.A.; el-Agrody, A.M. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco, 2002, 57(9), 715-722.
[http://dx.doi.org/10.1016/S0014-827X(02)01263-6] [PMID: 12385521]
[15]
Mladenović, M.; Mihailović, M.; Bogojević, D.; Matić, S.; Nićiforović, N.; Mihailović, V.; Vuković, N.; Sukdolak, S.; Solujić, S. In vitro antioxidant activity of selected 4-hydroxy-chromene-2-one derivatives-SAR, QSAR and DFT studies. Int. J. Mol. Sci., 2011, 12(5), 2822-2841.
[http://dx.doi.org/10.3390/ijms12052822] [PMID: 21686153]
[16]
Symeonidis, T.; Chamilos, M.; Hadjipavlou-Litina, D.J.; Kallitsakis, M.; Litinas, K.E. Synthesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(4), 1139-1142.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.098] [PMID: 19150597]
[17]
Schobert, R.; Biersack, B.; Dietrich, A.; Effenberger, K.; Knauer, S.; Mueller, T. 4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and -N-methylimidazoles that are cytotoxic against combretastatin A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model. J. Med. Chem., 2010, 53(18), 6595-6602.
[http://dx.doi.org/10.1021/jm100345r] [PMID: 20731355]
[18]
Cai, S.X.; Drewe, J.; Kemnitzer, W. Discovery of 4-aryl-4H-chromenes as potent apoptosis inducers using a cell- and caspase-based Anti-cancer Screening Apoptosis Program (ASAP): SAR studies and the identification of novel vascular disrupting agents. Anticancer. Agents Med. Chem., 2009, 9(4), 437-456.
[http://dx.doi.org/10.2174/1871520610909040437] [PMID: 19442043]
[19]
Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[20]
Cheng, J.F.; Ishikawa, A.; Ono, Y.; Arrhenius, T.; Nadzan, A. Novel chromene derivatives as TNF-α inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(21), 3647-3650.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.025] [PMID: 14552749]
[21]
Grée, D.; Vorin, S.; Manthati, V.L.; Caijo, F.; Viault, G.; Manero, F.; Juin, P.; Grée, R. Synthesis of new selected analogues of the proapoptotic and anticancer molecule HA 14-1. Tetrahedron Lett., 2008, 49(20), 3276-3278.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.070]
[22]
Kumar, K.S.; Rambabu, D.; Prasad, B.; Mujahid, M.; Krishna, G.R.; Rao, M.V.B.; Reddy, C.M.; Vanaja, G.R.; Kalle, A.M.; Pal, M. A new approach to construct a fused 2-ylidene chromene ring: highly regioselective synthesis of novel chromeno quinoxalines. Org. Biomol. Chem., 2012, 10(24), 4774-4781.
[http://dx.doi.org/10.1039/c2ob25416f] [PMID: 22588576]
[23]
Ram Reddy, T.; Srinivasula Reddy, L.; Rajeshwar Reddy, G.; Nuthalapati, V.S.; Lingappa, Y.; Sandra, S.; Kapavarapu, R.; Misra, P.; Pal, M. A Pd-mediated new strategy to functionalized 2-aminochromenes: their in vitro evaluation as potential anti tuberculosis agents. Bioorg. Med. Chem. Lett., 2011, 21(21), 6433-6439.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.088] [PMID: 21920745]
[24]
Longobardi, M.; Bargagna, A.; Mariani, E.; Schenone, P.; Vitagliano, S.; Stella, L.; Di Sarno, A.; Marmo, E. 2H-[1]benzothiepino [5,4-b]pyran derivatives with local anesthetic and antiarrhythmic activities. Farmaco, 1990, 45(4), 399-404.
[PMID: 2400514]
[25]
Bayer, T.A.; Schäfer, S.; Breyhan, H.; Wirths, O.; Treiber, C.; Multhaup, G. A vicious circle: role of oxidative stress, intraneuronal Abeta and Cu in Alzheimer’s disease. Clin. Neuropathol., 2006, 25(4), 163-171.
[PMID: 16866297]
[26]
Zhu, J.; Bienayme´, H. Multicomponent reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118]
[27]
Trost, B.M. On inventing reactions for atom economy. Acc. Chem. Res., 2002, 35(9), 695-705.
[http://dx.doi.org/10.1021/ar010068z] [PMID: 12234199]
[28]
Wender, P.A.; Verma, V.A.; Paxton, T.J.; Pillow, T.H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res., 2008, 41(1), 40-49.
[http://dx.doi.org/10.1021/ar700155p] [PMID: 18159936]
[29]
Farshbaf, S.; Sreerama, L.; Khodayari, T.; Vessally, E. Propargylic ureas as powerful and versatile building blocks in the synthesis of various key medicinal heterocyclic compounds. Chem. Rev. Lett, 2018, 1(2), 56-67.
[http://dx.doi.org/10.22034/crl.2018.85120]
[30]
Behmagham, F.; Asadi, Z.; Sadeghi, Y.J. Synthesis, spectroscopic and computational investigation of bis(3-methoxyphenylthio) ethyl) naphthalene. Chem. Rev. Lett., 2018, 1(2), 68-76.
[http://dx.doi.org/10.22034/crl.2018.85210]
[31]
Zhi, S.; Ma, X.; Zhang, W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem., 2019, 17(33), 7632-7650.
[http://dx.doi.org/10.1039/C9OB00772E] [PMID: 31339143]
[32]
Alvim, H.G.O.; Correa, J.R.; Assumpção, J.A.F.; da Silva, W.A.; Rodrigues, M.O.; de Macedo, J.L.; Fioramonte, M.; Gozzo, F.C.; Gatto, C.C.; Neto, B.A.D. Heteropolyacid-containing ionic liquid-catalyzed multicomponent synthesis of bridgehead nitrogen heterocycles: Mechanisms and mitochondrial staining. J. Org. Chem., 2018, 83(7), 4044-4053.
[http://dx.doi.org/10.1021/acs.joc.8b00472] [PMID: 29547280]
[33]
Vasco, A.V.; Méndez, Y.; Porzel, A.; Balbach, J.; Wessjohann, L.A.; Rivera, D.G. A multicomponent stapling approach to exocyclic functionalized helical peptides: Adding lipids, sugars, PEGs, labels, and handles to the lactam bridge. Bioconjug. Chem., 2019, 30(1), 253-259.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00906] [PMID: 30575393]
[34]
da Silveira Pinto, L.S.; Couri, M.R.C.; de Souza, M.V.N. Multicomponent reactions in the synthesis of complex fused coumarin derivatives. Curr. Org. Synth., 2018, 15(1), 21-37.
[http://dx.doi.org/10.2174/1570179414666170614124053]
[35]
Boukis, A.C.; Reiter, K.; Frölich, M.; Hofheinz, D.; Meier, M.A.R. Multicomponent reactions provide key molecules for secret communication. Nat. Commun., 2018, 9(1), 1439.
[http://dx.doi.org/10.1038/s41467-018-03784-x] [PMID: 29651145]
[36]
Nikpassand, M. ZareFekri, L. Synthesis of bis coumarinyl methanes using of potassium 2-oxoimidazolidine-1,3-diide as a novel, efficient and reusable catalyst. Chem. Rev. Lett, 2019, 2(1), 7-12.
[http://dx.doi.org/10.22034/crl.2019.85819]
[37]
Valinia, F.; Shojaei, N.; Ojaghloo, P. Novel 1-(4-chlorophenyl)-3-(2-ethoxyphenyl)triazene ligand: Synthesis, X-ray crystallographic studies, spectroscopic characterization and DFT calculations. Chem. Rev. Lett., 2019, 2(2), 90-97.
[http://dx.doi.org/10.22034/crl.2018.85596]
[38]
Jafari, E.; Farajzadeh, P.; Akbari, N.; Karbakhshzadeh, A. An efficient and facile synthesis of the coumarin and ester derivatives using sulfonated polyionic liquid as a highly active heterogeneous catalyst. Chem. Rev. Lett, 2019, 2(3), 123-129.
[http://dx.doi.org/10.22034/crl.2019.207939.1025]
[39]
Melville, J.L.; Andrews, B.I.; Lygo, B.; Hirst, J.D. Computational screening of combinatorial catalyst libraries. Chem. Commun., 2004, 12, 1410-1414. https://doi.org/10.1039
[40]
(a) Abdolmohammadi, S.; Mohammadnejad, M.; Shafaei, F. TiO2 nanoparticles as an efficient catalyst for the one-pot preparation of tetrahydrobenzo[c]acridines in aqueous media. Z. Naturforsch. B, 2013, 68(4), 362-366. [https://doi.org/10.5560/znb.2013-2323] (b) Abdolmohammadi, S. Solvent-free synthesis of 4,5- dihydropyrano[c]chromene derivatives over TiO2 nanoparticles as an economical and efficient catalyst. Curr. Catal., 2013, 2(2), 116-121. [https://doi.org/10.2174/2211544711302020005] (c) Abdolmohammadi, S. ZnO nanoparticles-catalyzed cyclocondensation reaction of arylmethylidenepyruvic acids with 6- aminouracils. Comb. Chem. High Throughput Screen., 2013, 16(1), 32-36. [https://doi.org/10.2174/1386207311316010005] (d) Abdolmohammadi, S.; Afsharpour, M.; Keshavarz-Fatideh, S. An efficient green synthesis of 3-amino-1H-chromenes catalysed by ZnO nanoparticles thin-film. S. Afr. J. Chem., 2014, 67(1), 203-210. [http://journals.sabinet.co.za/sajchem/] (e) Rabiei, A.; Abdolmohammadi, S.; Shafaei, F. A green approach for an efficient preparation of 2,4-diamino-6-aryl-5- pyrimidinecarbonitriles using a TiO2/SiO2 nanocomposite catalyst under solvent-free conditions. Z. Naturforsch. B, 2017, 72(4), 241-247. [http://dx.doi.org/10.1515/znb-2016-0219] (f) Khalilian, S.; Abdolmohammadi, S.; Nematolahi, F. An ecofriendly and highly efficient synthesis of pyrimidinones using a TiO2- CNTs nanocomposite catalyst. Lett. Org. Chem., 2017, 14(5), 361-367. [https://doi.org/10.2174/1570178614666170321113926] (g) Kiani, M.; Abdolmohammadi, S.; Janitabar-Darzi, S. Fast and efficient synthesis of chromeno[d]pyrimidinediones catalysed by a TiO2–SiO2 nanocomposite in aqueous media. J. Chem. Res., 2017, 41(6), 337-340. [https://doi.org/10.3184/174751917X14949407124706] (h) Samani, A.; Abdolmohammadi, S.; Otaredi-Kashani, A. A green synthesis of xanthenone derivatives in aqueous media using TiO2- CNTs nanocomposite as an eco-friendly and re-usable catalyst. Comb. Chem. High Throughput Screen., 2018, 21(2), 111-116. [https://doi.org/10.2174/1386207321666180219151705] (i) Abdolmohammadi, S. TiO2 NPs-coated carbone nanotubes as a green and efficient catalyst for the synthesis of [1]benzopyrano[b] [1]benzopyranones and xanthenols in water. Comb. Chem. High Throughput Screen., 2018, 21(8), 594-601. [https://doi.org/10.2174/1386207321666181018164739] (j) Sadegh-Samiei, S.; Abdolmohammadi, S. TiO2-SiO2 nanocomposite promoted efficient cyclocondensation reaction of arylmethylidenepyruvic acids with dimedone in aqueous media. J. Chin. Chem. Soc., 2018, 65(10), 1155-1159. [https://doi.org/10.1002/jccs.201800057] (k) Sadegh-Samiei, S.; Abdolmohammadi, S. Efficient synthesis of pyrido[2,3-d]pyrimidine-7-carboxylic acids catalyzed by a TiO2-SiO2 nanocomposite in aqueous media at room temperature. Z. Naturforsch. B, 2018, 73(9), 641-645. [https://doi.org/10.1515/znb-2018-0076] (l) Fakheri-Vayeghan, S.; Abdolmohammadi, S.; Kia-Kojoori, R. An expedient synthesis of 6-amino-5-[(4-hydroxy-2-oxo-2H-chromen-3- yl)(aryl)methyl]-1,3-dimethyl-2,4,6(1H,3H)-pyrimidinedione derivatives using Fe3O4@TiO2 nanocomposite as an efficient, magnetically separable, and reusable catalyst. Z. Naturforsch. B, 2018, 73(8), 545-551. [https://doi.org/10.1515/znb-2018-0030] (m) Yaltaghian-Khiabani, N.; Abdolmohammadi, S.; Sadegh-Samiei, S. Aqueous media preparation of pyrido[d]pyrimidines over calcined TiO2-SiO2 nanocomposite as an efficient catalyst at ambient temperature. Lett. Org. Chem., 2019, 16(11), 915-921. [https://doi.org/10.2174/1570178616666181210102146] (n) Janitabar-Darzi, S.; Abdolmohammadi, S. TiO2-SiO2 nanocomposite as a highly efficient catalyst for the solvent-free cyclocondensation reaction of isatins, cyclohexanones, and urea. Z. Naturforsch. B, 2019, 74(7-8), 559-564. [https://doi.org/10.1515/znb-2019-0059] (o) Abdolmohammadi, S.; Hossaini, Z. Fe3O4 MNPs as a green catalyst for syntheses of functionalized [1,3]-oxazole and 1H-pyrrolo- [1,3]-oxazole derivatives and evaluation of their antioxidant activity. Mol. Divers., 2019, 23(4), 885-896. [https://doi.org/10.1007/s11030-019-09916-9] (p) Abdolmohammadi, S.; Mirza, B.; Vessally, E. Immobilized TiO2 nanoparticles on carbon nanotubes: An efficient heterogeneous catalyst for the synthesis of chromeno[b]pyridine derivatives under ultrasonic irradiation. RSC Adv., 2019, 9(79), 41868-41876. [https://doi.org/10.1039/C9RA09031B] (q) Abdolmohammadi, S.; Rasouli Nasrabadi, S.R.; Dabiri, M.R.; Banihashemi Jozdani, S.M. TiO2 nanoparticles immobilized on carbon nanotubes: An efficient heterogeneous catalyst in cyclocondensation reaction of isatins with malononitrile and 4-hydroxycoumarin or 3,4- methylenedioxyphenol under mild reaction conditions. Appl. Organomet. Chem., 2020, 34(4), e5462. [https://doi.org/10.1002/aoc.5462] (r) Chaghari-Farahani, F.; Abdolmohammadi, S.; Kia-Kojoori, R. PANI-Fe3O4@ZnO nanocomposite: A magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido[d] pyrimidine derivatives. RSC Adv., 2020, 10(26), 15614-15621. [https://doi.org/10.1039/d0ra01978j] (s) Ebrahimi, M.; Abdolmohammadi, S.; Kia-Kojoori, R. Ultrasonic accelerated efficient synthesis of aminobenzo-chromenes using Ag2Cr2O7 nanoparticles as a reusable hetero-geneous catalyst. J. Heterocycl. Chem., 2020, 57(4), 1875-1881. [https://doi.org/10.1002/jhet.3915] (t) Abdolmohammadi, S.; Shariati, S.; Elmi Fard, N.; Samani, A. Aqueous-mediated green synthesis of novel spiro[indole-quinazoline] derivatives using Kit-6 mesoporous silica coated Fe3O4 nanoparticles as catalyst. J. Heterocycl. Chem., 2020, 57(7), 2729-2737. [https://doi.org/10.1002/jhet.3981] (u) Saeedi, B.; Abdolmohammadi, S.; MirJafari, Z.; Kia-Kojoori, R. Nickel(II) chromite nanoparticles promoted efficient synthesis of novel [1]benzopyrano[4,3-b]pyridines in aqueous media. Monatsh. Chem., 2020, 151(5), 773-780. [https://doi.org/10.1007/s00706-020-02595-5] (v) Shadmehr, A.; Abdolmohammadi, S. An expedient synthesis of [1]benzopyrano[b]pyridin-3-carbonitriles catalyzed by NiCr2O4 NPs. Polycycl. Aromat. Comp., 2020, in press. [https://doi.org/10.1080/10406638.2020.1739083] (w) Saeedi, B.; Abdolmohammadi, S.; MirJafary, Z.; Kia-Kojoori, R. Nickel(II) chromite nanoparticles: An eco-friendly and reusable catalyst for synthesis of 2,4-diamino-6-aryl-pyrimidine-5-yl cyanides under ultrasonic radiation. Comb. Chem. High Throughput Screen., 2020, in press. [https://doi.org/10.2174/1386207323666200808180527]
[41]
Yavari, I.; Sabbaghan, M.; Hossaini, Z. Proline-promoted efficient synthesis of 4-aryl-3,4-dihydro-2H,5H-pyrano [3,2-c]chromene-2,5-diones in aqueous media. Synlett, 2008, (8), 1153-1154.
[http://dx.doi.org/10.1055/s-2008-1072656]
[42]
Sabbaghan, M.; Yavari, I.; Hossaini, Z. Synthesis of functionalized chromenes from Meldrum’s acid, 4-hydroxycoumarin, and ketones or aldehydes. Comb. Chem. High Throughput Screen., 2010, 13(9), 813-817.
[http://dx.doi.org/10.2174/138620710792927358] [PMID: 20615198]
[43]
Wu, L.Q.; Li, N.L.; Yan, F.L. CeCl3•7H2O as mild and efficient catalyst for the one-pot multicomponent synthesis of 8-aryl-7,8-dihydro[1,3]dioxolo[4,5-g]chromen-6-ones. Collect. Czech. Chem. Commun., 2011, 76(4), 235-241.
[http://dx.doi.org/10.1135/cccc2010139]
[44]
Abdolmohammadi, S.; Ghiasi, R.; Ahmadzadeh-Vatani, S. A highly efficient CuI nanoparticles catalyzed synthesis of tetrahydrochromenediones and dihydropyrano[c]chromenediones under grinding. Z. Naturforsch. B, 2016, 71(7), 777-782.
[http://dx.doi.org/10.1515/znb-2015-0195]
[45]
Ebrahimi, M.; Abdolmohammadi, S.; Kia-Kojoori, R. Ag2Cr2O7 nanoparticles: an eco-friendly and reusable catalyst for synthesis of pyrano[c]chromenediones and [1,3]dioxolo[g]chromeneones in aqueous media at ambient temperature. J. Chin. Chem. Soc. (Taipei), 2020, 67(10), 1895-1902.
[http://dx.doi.org/10.1002/jccs.201900488]
[46]
Beshkar, F.; Salavati-Niasari, M. Facile synthesis of nickel chromite nanostructures by hydrothermal route for photocatalyticdegradation of acid black 1 under visible light. J. Nanostruct., 2015, 5(1), 17-23.
[http://dx.doi.org/10.7508/jns.2015.01.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy