Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Investigation of Adsorption Effect of Carbon Monoxide on Coniine: A DFT Study

Author(s): Siyamak Shahab*, Masoome Sheikhi, Mehrnoosh Khaleghian, Marina Murashko, Mahin Ahmadianarog and Mikhail Atroshko

Volume 19, Issue 4, 2022

Published on: 08 January, 2021

Page: [298 - 313] Pages: 16

DOI: 10.2174/1570178617666210108114822

Price: $65

Abstract

For the first time in the present study, the non-bonded interaction of the Coniine (C8H17N) with carbon monoxide (CO) was investigated by density functional theory (DFT/M062X/6-311+G*) in the gas phase and water solvent. The adsorption of the CO over C8H17N affected the electronic properties such as EHOMO, ELUMO, the energy gap between LUMO and HOMO, and global hardness. Furthermore, chemical shift tensors and the natural charge of the C8H17N and complex C8H17N/CO were determined and discussed. According to the natural bond orbital (NBO) results, the molecule C8H17N and CO acted as both electron donor and acceptor at the complex C8H17N/CO in the gas phase and water solvent. On the other hand, the charge transfer occurred between the bonding, antibonding or nonbonding orbitals in two molecules, C8H17N and CO. We have also investigated the charge distribution for the complex C8H17N/CO by molecular electrostatic potential (MEP) calculations using the M062X/6-311+G* level of theory. The electronic spectra of the C8H17N and complex C8H17N/CO were calculated by timedependent DFT (TD-DFT) for investigation of the maximum wavelength value of the C8H17N before and after the non-bonded interaction with the CO in the gas phase and water solvent. Therefore, C8H17N could be used as strong absorbers for air purification and reduce environmental pollution.

Keywords: Coniine, adsorption, DFT, non-bonded interaction, NBO analysis, electronic properties.

Graphical Abstract
[1]
Veerporte, R.; van der Heijden, R.; van Gulik, W.M.; ten Hoopen, H.J.G. Plant biotechnology for the production of alkaloids: Present status and prospects.The Alkaloids; Brossi, A., Ed.; Academic Press: New York, NY, USA, 1991, Vol. 40, pp. 1-188.
[2]
Reynolds, T. Phytochemistry, 2005, 66(12), 1399-1406.
[http://dx.doi.org/10.1016/j.phytochem.2005.04.039] [PMID: 15955542]
[3]
Giseke, A. L. Arch. des Apotheker-Vereins im nördlich Deutschland, 1826, 20, 97-111.
[4]
Hofmann, A.W. Ber. Dtsch. Chem. Ges., 1881, 14, 659-669.
[http://dx.doi.org/10.1002/cber.188101401148]
[5]
Ladenburg, A. Ber. Dtsch. Chem. Ges., 1886, 19, 439-441.
[http://dx.doi.org/10.1002/cber.188601901108]
[6]
Hotti, H.; Rischer, H. molecules, 2017, 22, 1962-1984.
[7]
Dring, J.V.; Nash, R.J.; Roberts, M.F.; Reynolds, T. Planta Med., 1984, 50(5), 442-443.
[http://dx.doi.org/10.1055/s-2007-969761] [PMID: 17340347]
[8]
Nash, R.J.; Beaumont, J.; Veitch, N.C.; Reynolds, T.; Benner, J.; Hughes, C.N.G.; Dring, J.V.; Bennett, R.N.; Dellar, J.E. Planta Med., 1992, 58(1), 84-87.
[http://dx.doi.org/10.1055/s-2006-961396] [PMID: 17226441]
[9]
Blitzke, T.; Porzel, A.; Masaoud, M.; Schmidt, J. Phytochemistry, 2000, 55(8), 979-982.
[http://dx.doi.org/10.1016/S0031-9422(00)00269-7] [PMID: 11140536]
[10]
Cromwell, B.T. Biochem. J., 1956, 64(2), 259-266.
[http://dx.doi.org/10.1042/bj0640259] [PMID: 13363836]
[11]
Mody, N.V.; Henson, R.; Hedin, P.A.; Kokpol, U.; Miles, D.H. Experientia, 1976, 32, 829-830.
[http://dx.doi.org/10.1007/BF02003710]
[12]
Hotti, H.; Gopalacharyulu, P.; Seppänen-Laakso, T.; Rischer, H. PLoS One, 2017, 12(2)e0171078
[http://dx.doi.org/10.1371/journal.pone.0171078] [PMID: 28222171]
[13]
Franz, R.A.; Applegath, F.; Morriss, F.V.; Baiocchi, F.; Bolze, C. J. Org. Chem., 1961, 26, 3309-3312.
[http://dx.doi.org/10.1021/jo01067a067]
[14]
Ozawa, F.; Sugimoto, T.; Yuasa, Y.; Santra, M.; Yamamoto, T.; Yamamoto, A. Organometal., 1984, 3, 683-692.
[http://dx.doi.org/10.1021/om00083a007]
[15]
Noh, H.W.; An, Y.; Lee, S.; Jung, J.; Son, S.U.; Jang, H.Y. Adv. Synth. Catal., 2019, 361, 3068-3073.
[http://dx.doi.org/10.1002/adsc.201900185]
[16]
Vipin Das, K.G.; Yohannan Panicker, C.; Narayana, B.; Nayak, P.S.; Sarojini, B.K.; Al-Saadi, A.A.F.T-I.R. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 162-171.
[http://dx.doi.org/10.1016/j.saa.2014.06.155] [PMID: 25062062]
[17]
El-Dalya, S.A.; Asiria, A.M.; Alamrya, K.A.; Osman, O.I. J. Photochem. Photobiol. Chem., 2015, 312, 64-72.
[18]
Kumar Paul, B.; Guchhait, N. Comput. Theor. Chem., 2011, 978, 67-76.
[http://dx.doi.org/10.1016/j.comptc.2011.09.040]
[19]
Novoa, J.J.; Sosa, C. J. Phys. Chem., 1995, 99, 15837-15845.
[http://dx.doi.org/10.1021/j100043a023]
[20]
Sheikhi, M.; Shahab, S.; Filippovich, L.; Dikusar, E.; Khaleghian, M. DFT Investigations. Chinese. J. Struct. Chem., 2018, 37, 1201-1222.
[21]
Sule, P.; Nagy, A. J. Chem. Phys., 1996, 104, 8524-8535.
[http://dx.doi.org/10.1063/1.471601]
[22]
Shahab, S.; Sheikhi, M.; Khaleghian, M.; Balakhanava, I. Chinese. J. Struct. Chem., 2019, 38, 37-52.
[23]
Sheikhi, M.; Balali, E.; Lari, H. J. Phys. Theor. Chem., 2016, 13, 155-171.
[24]
Shahab, S.; Sheikhi, M.; Khaleghian, M.; Kumar, R.; Murashko, M. J. Environ. Chem. Eng., 2018, 6, 4784-4796.
[http://dx.doi.org/10.1016/j.jece.2018.07.019]
[25]
Zhao, Y.; Truhlar, D.G. Theor. Chem. Acc., 2006, 2006(120), 215-241.
[26]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09 revision A02; Gaussian, Inc.: Wallingford, CT, 2009.
[27]
Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev., 2005, 105(8), 2999-3093.
[http://dx.doi.org/10.1021/cr9904009] [PMID: 16092826]
[28]
Frisch, A.; Nielsen, A.B.; Holder, A.J. Gauss View Users Manual; Gaussian Inc., 2000.
[29]
Koopman, T. Physica, 1934, 1, 104-113.
[30]
Yang, W.; Parr, R.G. Proc. Natl. Acad. Sci. USA, 1985, 82(20), 6723-6726.
[http://dx.doi.org/10.1073/pnas.82.20.6723] [PMID: 3863123]
[31]
Parr, R.G.; Szentpaly, L.V.; Liu, S. J. Am. Chem. Soc., 1999, 121, 1922-1924.
[http://dx.doi.org/10.1021/ja983494x]
[32]
Kutzelnigg, W.; Fleischer, U.; Schindler, M. NMR Basic Principles and Progress; Springer: New York, 1990.
[33]
(a) Hohenberg, P.; Kohn, W. Phys. Rev., 1946, 136, B864-B871.
[http://dx.doi.org/10.1103/PhysRev.136.B864]
(b) Runge, E.; Gross, E.K.U. Phys. Rev. Lett., 1984, 1984(52), 997-1000.
[http://dx.doi.org/10.1103/PhysRevLett.52.997]
[34]
Weinhold, F.; Landis, C.R. Chem. Educ. Res. Pract., 2001, 2, 91-104.
[http://dx.doi.org/10.1039/B1RP90011K]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy