Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

A Survey on Analytical Methods for the Characterization of Green Synthesized Nanomaterials

Author(s): Paolo N. Catalano*, Ratiram G. Chaudhary, Martín F. Desimone and Pablo L. Santo-Orihuela*

Volume 22, Issue 6, 2021

Published on: 04 January, 2021

Page: [823 - 847] Pages: 25

DOI: 10.2174/1389201022666210104122349

Price: $65

Abstract

Nowadays, nanotechnologies are well established and the uses of a great variety of nanomaterials show exponential growth. The development of green synthesis procedures experienced a great development thanks to the contribution of researchers of diverse origins. The versatility of green chemistry allows producing a wide range of organic and inorganic nanomaterials with numerous promising applications. In all cases, it is of paramount importance to carefully characterize the resulting nanomaterials because their properties will determine their correct performance to accomplish the function to which they were synthesized or even their detrimental effects like nanotoxicological behavior. This review provides an overview of frequently employed characterization methods and their applications for green synthesized nanomaterials. However, while several different nanoscale materials and their associated green construction methodology are being developed, other important techniques would be extensively incorporated into this field soon. The aim is to encourage researchers in the field to employ a variety of these techniques for achieving an exhaustive characterization of new nanomaterials and for contributing to the development of validated green synthesis procedures.

Keywords: Analytical methods, analytical techniques, green synthesis, nanoparticles, instrumentation, nanomaterials, biogenic synthesis, environmentally friendly.

Graphical Abstract
[1]
Mebert, A.M.; Baglole, C.J.; Desimone, M.F.; Maysinger, D. Nanoengineered silica: Properties, applications and toxicity. Food Chem. Toxicol., 2017, 109(Pt 1), 753-770.
[http://dx.doi.org/10.1016/j.fct.2017.05.054] [PMID: 28578101]
[2]
Mebert, A.M.; Tuttolomondo, M.V.; Echazú, M.I.A.; Foglia, M.L.; Alvarez, G.S.; Vescina, M.C.; Santo-Orihuela, P.L.; Desimone, M.F. Nanoparticles and capillary electrophoresis: A marriage with environmental impact. Electrophoresis, 2016, 37(15-16), 2196-2207.
[http://dx.doi.org/10.1002/elps.201600132] [PMID: 27271238]
[3]
Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S-Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev., 2018, 118(13), 6337-6408.
[http://dx.doi.org/10.1021/acs.chemrev.7b00689] [PMID: 29552883]
[4]
Contera, S. Nano comes to life how nanotechnology is transforming medicine and the future of biology; Princeton University Press, 2019.
[5]
Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics, 2020, 12(3), 288.
[http://dx.doi.org/10.3390/pharmaceutics12030288] [PMID: 32210127]
[6]
Wagner, A.M.; Knipe, J.M.; Orive, G.; Peppas, N.A. Quantum dots in biomedical applications. Acta Biomater., 2019, 94, 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022] [PMID: 31082570]
[7]
Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[8]
Maysinger, D.; Ji, J. Nanostructured modulators of neuroglia. Curr. Pharm. Des., 2019, 25(37), 3905-3916.
[http://dx.doi.org/10.2174/1381612825666190912163339] [PMID: 31512994]
[9]
De Marzi, M.C.; Saraceno, M.; Mitarotonda, R.; Todone, M.; Fernandez, M.; Malchiodi, E.L.; Desimone, M.F. Evidence of size dependent effect of silica micro- and nano-particles on basal and specialized monocyte functions. Ther. Deliv., 2017, 8(12), 1035-1049.
[http://dx.doi.org/10.4155/tde-2017-0053] [PMID: 29125067]
[10]
Bacchetta, C.; Ale, A.; Simoniello, M.F.; Gervasio, S.; Davico, C.; Rossi, A.S.; Desimone, M.F.; Poletta, G.; López, G.; Monserrat, J.M.; Cazenave, J. Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol. Indic., 2017, 76, 230-239.
[http://dx.doi.org/10.1016/j.ecolind.2017.01.018]
[11]
Santo-Orihuela, P.L.; Foglia, M.L.; Targovnik, A.M.; Miranda, M.V.; Desimone, M.F. Nanotoxicological effects of SiO2 nanoparticles on Spodoptera frugiperda Sf9 Cells. Curr. Pharm. Biotechnol., 2016, 17(5), 465-470.
[http://dx.doi.org/10.2174/138920101705160303165604] [PMID: 26956111]
[12]
Baudou, F.G.; Fusco, L.; Giorgi, E.; Diaz, E.; Municoy, S.; Desimone, M.F.; Leiva, L.; De Marzi, M.C. Physicochemical and biological characterization of nanovenoms, a new tool formed by silica nanoparticles and Crotalus durissus terrificus venom. Colloids Surf. B Biointerfaces, 2020, 193.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111128] [PMID: 32450505]
[13]
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761), 622-627.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[14]
Ayech, A.; Josende, M.E.; Ventura-Lima, J.; Ruas, C.; Gelesky, M.A.; Ale, A.; Cazenave, J.; Galdopórpora, J.M.; Desimone, M.F.; Duarte, M.; Halicki, P.; Ramos, D.; Carvalho, L.M.; Leal, G.C.; Monserrat, J.M. Toxicity evaluation of nanocrystalline silver-impregnated coated dressing on the life cycle of worm Caenorhabditis elegans. Ecotoxicol. Environ. Saf., 2020, 197.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110570] [PMID: 32311611]
[15]
Mitarotonda, R.; Giorgi, E.; Desimone, M.F.; De Marzi, M.C. Nanoparticles and immune cells. Curr. Pharm. Des., 2019, 25(37), 3960-3982.
[http://dx.doi.org/10.2174/1381612825666190926161209] [PMID: 31556850]
[16]
Gonzalez, C.G.; Álvarez, G.S.; Camporotondi, D.E.; Foglia, M.L.; Aimé, C.; Diaz, L.E.; Coradin, T.; Desimone, M.F. Preliminary evaluation of median lethal concentrations of Stöber silica particles with various sizes and surface functionalities towards fibroblast cells. Silicon, 2019, 11(5), 2307-2312.
[http://dx.doi.org/10.1007/s12633-014-9203-5]
[17]
Ale, A.; Liberatori, G.; Vannuccini, M.L.; Bergami, E.; Ancora, S.; Mariotti, G.; Bianchi, N.; Galdopórpora, J.M.; Desimone, M.F.; Cazenave, J.; Corsi, I. Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. Aquat. Toxicol., 2019, 211, 46-56.
[http://dx.doi.org/10.1016/j.aquatox.2019.03.018] [PMID: 30946994]
[18]
Liu, Z.; Fontana, F.; Python, A.; Hirvonen, J.T.; Santos, H.A. Microfluidics for production of particles: Mechanism, methodology, and applications. Small, 2020, 16(9)
[http://dx.doi.org/10.1002/smll.201904673] [PMID: 31702878]
[19]
Nyoka, M.; Choonara, Y.E.; Kumar, P.; Kondiah, P.P.D.; Pillay, V. Synthesis of cerium oxide nanoparticles using various methods: implications for biomedical applications. Nanomaterials (Basel), 2020, 10(2), 242.
[http://dx.doi.org/10.3390/nano10020242] [PMID: 32013189]
[20]
Desimone, M.F. Fate and affects of nanomaterials. Curr. Pharm. Des., 2019, 25(37), 3903-3904.
[http://dx.doi.org/10.2174/138161282537191217101204] [PMID: 31889489]
[21]
Delgado-González, D.C.; Di Donato, A.; Catalano, P.N.; Bellino, M.G. Silver nanoparticle-based arrays into mesoporous thin films structures for photoelectronic circuits. Curr. Nanosci., 2019, 15(3), 304-308.
[http://dx.doi.org/10.2174/1573413714666180716153501]
[22]
Scodeller, P.; Catalano, P.N.; Salguero, N.; Duran, H.; Wolosiuk, A.; Soler-Illia, G.J.A.A. Hyaluronan degrading silica nanoparticles for skin cancer therapy. Nanoscale, 2013, 5(20), 9690-9698.
[http://dx.doi.org/10.1039/c3nr02787b] [PMID: 23969526]
[23]
Mebert, A.M.; Aimé, C.; Alvarez, G.S.; Shi, Y.; Flor, S.A.; Lucangioli, S.E.; Desimone, M.F.; Coradin, T. Silica core-shell particles for the dual delivery of gentamicin and rifamycin antibiotics. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(18), 3135-3144.
[http://dx.doi.org/10.1039/C6TB00281A] [PMID: 32263051]
[24]
Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14(1), 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[25]
Dos Santos, A.P.; de Araújo, T.G.; Rádis-Baptista, G. Nanoparticles functionalized with venom-derived peptides and toxins for pharmaceutical applications. Curr. Pharm. Biotechnol., 2020, 21(2), 97-109.
[http://dx.doi.org/10.2174/1389201020666190621104624] [PMID: 31223083]
[26]
Rajpoot, K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr. Pharm. Des., 2019, 25(37), 3943-3959.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[27]
Azandaryani, A.H.; Kashanian, S.; Jamshidnejad-Tosaramandani, T. Recent insights into effective nanomaterials and biomacromolecules conjugation in advanced drug targeting. Curr. Pharm. Biotechnol., 2019, 20(7), 526-541.
[http://dx.doi.org/10.2174/1389201020666190417125101] [PMID: 31038063]
[28]
Palierse, E.; Hélary, C.; Krafft, J.M.; Génois, I.; Masse, S.; Laurent, G.; Alvarez Echazu, M.I.; Selmane, M.; Casale, S.; Valentin, L.; Miche, A.; Chan, B.C.L.; Lau, C.B.S.; Ip, M.; Desimone, M.F.; Coradin, T.; Jolivalt, C. Baicalein-modified hydroxyapatite nanoparticles and coatings with antibacterial and antioxidant properties. Mater. Sci. Eng. C, 2021, 118.
[http://dx.doi.org/10.1016/j.msec.2020.111537] [PMID: 33255090]
[29]
Kharissova, O.V.; Kharisov, B.I.; Oliva González, C.M.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci., 2019, 6(11)
[http://dx.doi.org/10.1098/rsos.191378] [PMID: 31827868]
[30]
Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J. Hazard. Mater., 2021, 401.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123401] [PMID: 32763697]
[31]
Mondal, P.; Anweshan, A.; Purkait, M.K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere, 2020, 259.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127509] [PMID: 32645598]
[32]
Si, A.; Pal, K.; Kralj, S.; El-Sayyad, G.S.; de Souza, F.G.; Narayanan, T. Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications., Mater. Today Chem. 2020, 17.
[http://dx.doi.org/10.1016/j.mtchem.2020.100327]
[33]
Chaudhary, R.; Chouke, P.; Potbhare, A.; Bhusari, G.; Mishra, R.; Shaik, D.; Somkuwar, S. Green fabrication of zinc oxide nanospheres by Aspidopterys cordata for effective antioxidant and antibacterial activity. Adv. Mater. Lett., 2019, 10, 355-360.
[http://dx.doi.org/10.5185/amlett.2019.2235]
[34]
Chaudhary, R.G.; Bhusari, G.S.; Tiple, A.D.; Rai, A.R.; Somkuvar, S.R.; Potbhare, A.K.; Lambat, T.L.; Ingle, P.P.; Abdala, A.A. Metal/metal oxide aanoparticles: Toxicity, applications, and future prospects. Curr. Pharm. Des., 2019, 25(37), 4013-4029.
[http://dx.doi.org/10.2174/1381612825666191111091326] [PMID: 31713480]
[35]
Potbhare, A.K.; Chaudhary, R.G.; Chouke, P.B.; Yerpude, S.; Mondal, A.; Sonkusare, V.N.; Rai, A.R.; Juneja, H.D. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Mater. Sci. Eng. C, 2019, 99, 783-793.
[http://dx.doi.org/10.1016/j.msec.2019.02.010] [PMID: 30889753]
[36]
Kagdi, A.R.; Pullar, R.C.; Meena, S.S.; Jotania, R.B.; Mujasam Batoo, K. Studies of structural, magnetic and dielectric properties of X-type Barium Zinc hexaferrite Ba2Zn2Fe28O46 powder prepared by combustion treatment method using ginger root extract as a green reducing agent. J. Alloys Compd., 2020, 842.
[http://dx.doi.org/10.1016/j.jallcom.2020.155120]
[37]
Solanki, N.; Jotania, R.B. Investigation on structural properties of M-type strontium hexaferrite synthesized in presence of neem and Aloe-vera plant leaves extract. AIP Conf. Proc., 2017, 1837(1)..
[http://dx.doi.org/10.1063/1.4982088]
[38]
Garibo, D.; Borbón-Nuñez, H.A.; de León, J.N.D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A.G.; Blanco, A.; Rodríguez, J.A.; Romo, O.A.; Chávez-Almazán, L.A.; Susarrey-Arce, A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep., 2020, 10(1), 12805.
[http://dx.doi.org/10.1038/s41598-020-69606-7] [PMID: 32732959]
[39]
Joshi, S.; Siddiqui, R.; Sharma, P.; Kumar, R.; Verma, G.; Saini, A. Green synthesis of peptide functionalized reduced Graphene Oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Sci. Rep., 2020, 10(1), 9441.
[http://dx.doi.org/10.1038/s41598-020-66230-3] [PMID: 32523022]
[40]
Shikha, S.; Chaudhuri, S.R.; Bhattacharyya, M.S. Facile one pot greener synthesis of sophorolipid capped gold nanoparticles and its antimicrobial activity having special efficacy against gram negative Vibrio cholerae. Sci. Rep., 2020, 10(1), 1463.
[http://dx.doi.org/10.1038/s41598-019-57399-3] [PMID: 31996706]
[41]
Puja, P.; Kumar, P. A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 211, 94-99.
[http://dx.doi.org/10.1016/j.saa.2018.11.047] [PMID: 30521998]
[42]
Cáceres, M.; Vassena, C.V.; Garcerá, M.D.; Santo-Orihuela, P.L. Silica Nanoparticles for insect pest control. Curr. Pharm. Des., 2019, 25(37), 4030-4038.
[http://dx.doi.org/10.2174/1381612825666191015152855] [PMID: 31613723]
[43]
El-Sayed, E.R.; Abdelhakim, H.K.; Ahmed, A.S. Solid-state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioprocess Biosyst. Eng., 2020, 43(5), 797-809.
[http://dx.doi.org/10.1007/s00449-019-02275-7] [PMID: 31898764]
[44]
El-Sayed, E.R.; Abdelhakim, H.K.; Zakaria, Z. Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Mater. Sci. Eng. C, 2020, 107.
[http://dx.doi.org/10.1016/j.msec.2019.110318] [PMID: 31761250]
[45]
Abdelhakim, H.K.; El-Sayed, E.R.; Rashidi, F.B. Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. J. Appl. Microbiol., 2020, 128(6), 1634-1646.
[http://dx.doi.org/10.1111/jam.14581] [PMID: 31954094]
[46]
Sadhasivam, S.; Vinayagam, V.; Balasubramaniyan, M. Recent advancement in biogenic synthesis of iron nanoparticles. J. Mol. Struct., 2020, 1217.
[http://dx.doi.org/10.1016/j.molstruc.2020.128372]
[47]
Monga, Y.; Kumar, P.; Sharma, R.K.; Filip, J.; Varma, R.S.; Zbořil, R.; Gawande, M.B. Sustainable synthesis of nanoscale zerovalent iron particles for environmental remediation. ChemSusChem, 2020, 13(13), 3288-3305.
[http://dx.doi.org/10.1002/cssc.202000290] [PMID: 32357282]
[48]
Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 2020, 6(7),pg. e04508.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04508] [PMID: 32715145]
[49]
Kumar, Y.R.; Deshmukh, K.; Sadasivuni, K.K.; Pasha, S.K.K. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: A review. RSC Advances, 2020, 10(40), 23861-23898.
[http://dx.doi.org/10.1039/D0RA03938A]
[50]
Qin, W.; Wang, C.Y.; Ma, Y.X.; Shen, M.J.; Li, J.; Jiao, K.; Tay, F.R.; Niu, L.N. Microbe-mediated extracellular and intracellular mineralization: Environmental, industrial, and biotechnological applications. Adv. Mater., 2020, 32(22), pg. 1907833.
[http://dx.doi.org/10.1002/adma.201907833] [PMID: 32270552]
[51]
Zia, G.; Sadia, H.; Nazir, S.; Ejaz, K.; Ali, S. Ihsan-Ul-Haq; Iqbal, T.; Khan, M.A.R.; Raza, A.; Andleeb, S. Ihsan ul, H.; Tariq, I.; Muhammad, A.R.K.; Abida, R.; Saiqa, A. In vitro studies on cytotoxic, DNA protecting, antibiofilm and antibacterial effects of biogenic silver nanoparticles prepared with Bergenia ciliata rhizome extract. Curr. Pharm. Biotechnol., 2018, 19(1), 68-78.
[http://dx.doi.org/10.2174/1389201019666180417160049] [PMID: 29667550]
[52]
Al-Salmi, F.A.; Hamza, R.Z.; El-Shenawy, N.S. The interaction of zinc oxide/green tea extract complex nanoparticles and its effect on monosodium glutamate toxicity in liver of rats. Curr. Pharm. Biotechnol., 2019, 20(6), 465-475.
[http://dx.doi.org/10.2174/1389201020666190408120532] [PMID: 30961481]
[53]
Gaurav, I.; Singh, T.; Thakur, A.; Kumar, G.; Rathee, P.; Kumari, P.; Sweta, K. Synthesis, in-vitro and in-silico evaluation of Silver Nanoparticles with Root Extract of Withania somnifera for antibacterial activity via binding of penicillin binding protein-4. Curr. Pharm. Biotechnol., 2020, 21, 1-14.
[http://dx.doi.org/10.2174/1389201021666200702152000] [PMID: 32614743]
[54]
Shobana, S.; Veena, S.; Sameer, S.S.M.; Swarnalakshmi, K.; Vishal, L.A. Vishal*, L. A., Green synthesis of silver nanoparticles using Artocarpus hirsutus seed extract and its antibacterial activity. Curr. Pharm. Biotechnol., 2020, 21(10), 980-989.
[http://dx.doi.org/10.2174/1389201021666200107115849] [PMID: 31914911]
[55]
Shakhatreh, M.A.K.; Al-Rawi, O.F.; Swedan, S.F.; Alzoubi, K.H.; Khabour, O.F.; Al-Fandi, M. Biosynthesis of silver nanoparticles from Citrobacter freundii as antibiofilm agents with their cytotoxic effects on human cells. Curr. Pharm. Biotechnol., 2020.
[http://dx.doi.org/10.2174/1389201021666201020162158] [PMID: 33081683]
[56]
Sadeghi-Aghbash, M.; Rahimnejad, M.; Pourali, S.M. Bio-mediated synthesis and characterization of zinc phosphate nanoparticles using Enterobacter aerogenes cells for antibacterial and anticorrosion applications. Curr. Pharm. Biotechnol., 2020, 21(12), 1232-1241.
[http://dx.doi.org/10.2174/1389201021666200506073534] [PMID: 32370712]
[57]
Mirsadeghi, S.; Koudehi, M.F.; Rajabi, H.R.; Pourmortazavi, S.M.; Masoumeh, F.K.; Hamid, R.R.; Seied, M.P. Green and simple synthesis of silver nanoparticles by aqueous extract of Perovskia abrotanoides: Characterization, optimization and antimicrobial activity. Curr. Pharm. Biotechnol., 2020, 21(11), 1129-1137.
[http://dx.doi.org/10.2174/1389201020666190618121218] [PMID: 31258080]
[58]
Xu, X.; Man, L. Papain mediated synthesized gold nanoparticles encore the potency of bioconjugated Flutamide. Curr. Pharm. Biotechnol., 2020.
[http://dx.doi.org/10.2174/1389201021666200227121144] [PMID: 32106799]
[59]
El-Shenawy, N.S.; Hamza, R.Z.; Al-Salmi, F.A.; Al-Eisa, R.A. Evaluation of the effect of nanoparticles zinc oxide/Camellia sinensis complex on the kidney of rats treated with monosodium glutamate: Antioxidant and histological approaches. Curr. Pharm. Biotechnol., 2019, 20(7), 542-550.
[http://dx.doi.org/10.2174/1389201020666190522075928] [PMID: 31113341]
[60]
Thekkae Padil, V.V.; Černík, M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomedicine, 2013, 8, 889-898.
[PMID: 23467397]
[61]
Michler, G.H. Transmission electron microscopy: fundamentals of methods and instrumentation. Electron Microscopy of Polymers; Laboratory, S., Ed.; Springer: Berlin, Heidelberg, 2008.
[62]
Asadi Asadabad, M.; Jafari Eskandari, M. Electron diffraction, modern electron microscopy in physical and life sciences; Kral, R; Janecek, M., Ed.; IntechOpen: London, 2016.
[63]
Bendersky, L.A.; Gayle, F.W. Electron diffraction using transmission electron microscopy. J. Res. Natl. Inst. Stand. Technol., 2001, 106(6), 997-1012.
[http://dx.doi.org/10.6028/jres.106.051] [PMID: 27500060]
[64]
Du, L.; Jiang, H.; Liu, X.; Wang, E. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem. Commun., 2007, 9(5), 1165-1170.
[http://dx.doi.org/10.1016/j.elecom.2007.01.007]
[65]
Gholami-Shabani, M.; Shams-Ghahfarokhi, M.; Gholami-Shabani, Z.; Akbarzadeh, A.; Riazi, G.; Ajdari, S.; Amani, A.; Razzaghi-Abyaneh, M. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: A green eco-friendly approach. Process Biochem., 2015, 50(7), 1076-1085.
[http://dx.doi.org/10.1016/j.procbio.2015.04.004]
[66]
Jobbágy, M.; Mariño, F.; Schönbrod, B.; Baronetti, G.; Laborde, M. Synthesis of copper-promoted CeO2 catalysts. Chem. Mater., 2006, 18(7), 1945-1950.
[http://dx.doi.org/10.1021/cm052437h]
[67]
Asariha, M.; Chahardoli, A.; Karimi, N.; Gholamhosseinpour, M.; Khoshroo, A.; Nemati, H.; Shokoohinia, Y.; Fattahi, A. Green synthesis and structural characterization of gold nanoparticles from Achillea wilhelmsii leaf infusion and in vitro evaluation. Bull. Mater. Sci., 2020, 43(1), 57.
[http://dx.doi.org/10.1007/s12034-019-2005-z]
[68]
Sharma, S.; Kumar, K.; Thakur, N.; Chauhan, S.; Chauhan, M.S. The effect of shape and size of ZnO nanoparticles on their antimicrobial and photocatalytic activities: A green approach. Bull. Mater. Sci., 2019, 43(1), 20.
[http://dx.doi.org/10.1007/s12034-019-1986-y]
[69]
Edison, T.N.J.I.; Atchudan, R.; Karthik, N.; Balaji, J.; Xiong, D.; Lee, Y.R. Catalytic degradation of organic dyes using green synthesized N-doped carbon supported silver nanoparticles. Fuel, 2020, 280.
[http://dx.doi.org/10.1016/j.fuel.2020.118682]
[70]
Wicaksono, W.; Sahroni, I.; Saba, A.; Rahman, R.; Fatimah, I. Biofabricated SnO2 nanoparticles using Red Spinach (Amaranthus tricolor L.) extract and the study on photocatalytic and electrochemical sensing activity. Mater. Res. Express, 2020, 7(7)
[71]
Muktha, H.; Sharath, R.; Kottam, N.; Smrithi, S.P.; Samrat, K.; Ankitha, P. Green synthesis of carbon dots and evaluation of its pharmacological activities. Bionanoscience, 2020, 10(3), 731-744.
[http://dx.doi.org/10.1007/s12668-020-00741-1]
[72]
Luo, C.; Yang, J.; Li, J.; He, S.; Meng, B.; Shao, T.; Zhang, Q.; Zhang, D.; Zhou, X. Green synthesis of Au@N-CQDs@Pd core-shell nanoparticles for enhanced methanol electrooxidation. J. Electroanal. Chem. (Lausanne Switz.), 2020, 873.
[http://dx.doi.org/10.1016/j.jelechem.2020.114423]
[73]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[74]
Ferreira, L.M.B.; Kiill, C.P.; Pedreiro, L.N.; Santos, A.M.; Gremião, M.P.D. Supramolecular design of hydrophobic and hydrophilic polymeric nanoparticles. Design and Development of New Nanocarriers; Grumezescu, A.M., Ed.; William Andrew Publishing, 2018, pp. 181-221.
[http://dx.doi.org/10.1016/B978-0-12-813627-0.00005-3]
[75]
Maity, G.N.; Maity, P.; Choudhuri, I.; Sahoo, G.C.; Maity, N.; Ghosh, K.; Bhattacharyya, N.; Dalai, S.; Mondal, S. Green synthesis, characterization, antimicrobial and cytotoxic effect of silver nanoparticles using arabinoxylan isolated from Kalmegh. Int. J. Biol. Macromol., 2020, 162, 1025-1034.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.215] [PMID: 32599238]
[76]
Nasrollahzadeh, M.; Sajjadi, M.; Khonakdar, H.A. Synthesis and characterization of novel Cu(II) complex coated Fe3O4@SiO2 nanoparticles for catalytic performance. J. Mol. Struct., 2018, 1161, 453-463.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.026]
[77]
Ryu, J.; Kim, H-s.; Hahn, H. Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. J. Electron. Mater., 2011, 40, 42-50.
[http://dx.doi.org/10.1007/s11664-010-1384-0]
[78]
Abdullah, J.A.A.; Salah Eddine, L.; Abderrhmane, B.; Alonso-González, M.; Guerrero, A.; Romero, A. Green synthesis and characterization of iron oxide nanoparticles by Pheonix dactylifera leaf extract and evaluation of their antioxidant activity., Sustain. Chem. Pharm., 2020, 17.
[http://dx.doi.org/10.1016/j.scp.2020.100280]
[79]
Kahsay, M.H.; Tadesse, A. RamaDevi, D.; Belachew, N.; Basavaiah, K., Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications. RSC Adv, 2019, 9(63), 36967-36981.
[http://dx.doi.org/10.1039/C9RA07630A]
[80]
Sharma, N.; Das, G.S.; Yun, K. Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Appl. Microbiol. Biotechnol., 2020, 104(16), 7187-7200.
[http://dx.doi.org/10.1007/s00253-020-10726-5] [PMID: 32572575]
[81]
Vijayakumar, S.; Vinayagam, R.; Anand, M.A.V.; Venkatachalam, K.; Saravanakumar, K.; Wang, M.H.; Casimeer, C.S.; Km, G.; David, E. Green synthesis of gold nanoparticle using Eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J. Drug Deliv. Sci. Technol., 2020, 58, 101786.
[http://dx.doi.org/10.1016/j.jddst.2020.101786]
[82]
Tripathi, R.M.; Hameed, P.; Rao, R.P.; Shrivastava, N.; Mittal, J.; Mohapatra, S. Biosynthesis of highly stable fluorescent selenium nanoparticles and the evaluation of their photocatalytic degradation of dye. Bionanoscience, 2020, 10(2), 389-396.
[http://dx.doi.org/10.1007/s12668-020-00718-0]
[83]
Rasheed, T.; Bilal, M.; Li, C.; Iqbal, H.M.N. Biomedical potentialities of Taraxacum officinale-based nanoparticles biosynthesized using methanolic leaf extract. Curr. Pharm. Biotechnol., 2017, 18(14), 1116-1123.
[http://dx.doi.org/10.2174/1389201019666180214145421] [PMID: 29446732]
[84]
Rigopoulos, N.; Thomou, E.; Kouloumpis, A.; Lamprou, E.R.; Petropoulea, V.; Gournis, D.; Poulios, E.; Karantonis, H.C.; Giaouris, E. Optimization of silver nanoparticle synthesis by banana peel extract using statistical experimental design, and testing of their antibacterial and antioxidant properties. Curr. Pharm. Biotechnol., 2019, 20(10), 858-873.
[http://dx.doi.org/10.2174/1389201020666181210113654] [PMID: 30526454]
[85]
Ahmeda, A.; Zangeneh, A.; Kalbasi, R.J.; Seydi, N.; Zangeneh, M.M.; Mansouri, S.; Goorani, S.; Moradi, R. Green synthesis of silver nanoparticles from aqueous extract of Ziziphora clinopodioides Lam and evaluation of their bio-activities under in vitro and in vivo conditions. Appl. Organomet. Chem., 2020, 34(4)
[http://dx.doi.org/10.1002/aoc.5358]
[86]
Tripathi, R. R, P. R.; Tsuzuki, T., Green synthesis of sulfur nanoparticles and evaluation of their catalytic detoxification of hexavalent chromium in water. RSC Advances, 2018, 8, 36345-36352.
[http://dx.doi.org/10.1039/C8RA07845A]
[87]
Titus, D.; James Jebaseelan Samuel, E.; Roopan, S.M. Nanoparticle characterization techniques. Green Synthesis, Characterization and Applications of Nanoparticles; Shukla, A.K; Iravani, S., Ed.; Elsevier, 2019, pp. 303-319.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00012-5]
[88]
Khan, S.A.; Khan, S.B.; Khan, L.U.; Farooq, A.; Akhtar, K.; Asiri, A.M. Fourier transform infrared spectroscopy: Fundamentals and application in functional groups and nanomaterials characterization. Handbook of Materials Characterization; Sharma, S., Ed.; Springer: Cham, 2018, pp. 317-344.
[http://dx.doi.org/10.1007/978-3-319-92955-2_9]
[89]
Macawile, M.C.; Quitain, A.T.; Kida, T.; Tan, R.; Auresenia, J. Green synthesis of sulfonated organosilane functionalized multiwalled carbon nanotubes and its catalytic activity for one-pot conversion of high free fatty acid seed oil to biodiesel. J. Clean. Prod., 2020, 275, pp. 123146.
[http://dx.doi.org/10.1016/j.jclepro.2020.123146]
[90]
Rao, S.S.; Saptami, K.; Venkatesan, J.; Rekha, P.D. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: characterization with assessment of biocompatibility and antimicrobial activity. Int. J. Biol. Macromol., 2020, 163, 745-755.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.230] [PMID: 32599248]
[91]
Kalantari, E.; Khalilzadeh, M.A.; Zareyee, D.; Shokouhimehr, M. Catalytic degradation of organic dyes using green synthesized Fe3O4-cellulose-copper nanocomposites. J. Mol. Struct., 2020, 1218, 128488.
[http://dx.doi.org/10.1016/j.molstruc.2020.128488]
[92]
Kalaiyan, G.; Suresh, S.; Thambidurai, S.; Prabu, K.M.; Kumar, S.K.; Pugazhenthiran, N.; Kandasamy, M. Green synthesis of hierarchical copper oxide microleaf bundles using Hibiscus cannabinus leaf extract for antibacterial application. J. Mol. Struct., 2020, 1217, 128379.
[http://dx.doi.org/10.1016/j.molstruc.2020.128379]
[93]
Manjari, G.; Saran, S.; Radhakrishanan, S.; Rameshkumar, P.; Pandikumar, A.; Devipriya, S.P. Facile green synthesis of Ag-Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions. J. Environ. Manage., 2020, 262, 110282.
[http://dx.doi.org/10.1016/j.jenvman.2020.110282] [PMID: 32090885]
[94]
Illanes Tormena, R.P.; Rosa, E.V.; Oliveira Mota, B.F.; Chaker, J.A.; Fagg, C.W.; Freire, D.O.; Martins, P.M.; Rodrigues da Silva, I.C.; Sousa, M.H. Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract. RSC Advances, 2020, 10(35), 20676-20681.
[http://dx.doi.org/10.1039/D0RA03240A]
[95]
Bharath, B.; Sasidharan, S.; Bhamidipati, S.K.; Saudagar, P. Green-synthesized FeSO4 nanoparticles exhibit antibacterial and cytotoxic activity by DNA degradation. Curr. Pharm. Biotechnol., 2020, 21(7), 587-595.
[http://dx.doi.org/10.2174/1389201021666200101111643] [PMID: 31893988]
[96]
Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res., 2010, 1(1), 13-28.
[http://dx.doi.org/10.1016/j.jare.2010.02.002]
[97]
Gradess, R.; Abderrafi, K.; Karoumi, A.; Bouchrif, B.; Habbou, A. A simple procedure to assemble silver and gold noble metal nanoparticles., Chem. Sci. J., 2018, 09..
[http://dx.doi.org/10.4172/2150-3494.1000182]
[98]
Nazer, S.; Andleeb, S.; Ali, S.; Gulzar, N.; Iqbal, T.; Khan, M.A.R.; Raza, A. Synergistic antibacterial efficacy of biogenic synthesized silver nanoparticles using Ajuga bractosa with standard antibiotics: A study against bacterial pathogens. Curr. Pharm. Biotechnol., 2020, 21(3), 206-218.
[http://dx.doi.org/10.2174/1389201020666191001123219] [PMID: 31573882]
[99]
Hosseinzadeh, N.; Shomali, T.; Hosseinzadeh, S.; Raouf Fard, F.; Pourmontaseri, M.; Fazeli, M. Green synthesis of gold nanoparticles by using Ferula persica willd. Gum essential oil: Production, characterization and in vitro anti-cancer effects. J. Pharm. Pharmacol., 2020, 72(8), 1013-1025.
[http://dx.doi.org/10.1111/jphp.13274] [PMID: 32319112]
[100]
Amendola, V.; Meneghetti, M. size evaluation of gold nanoparticles by UV-vis spectroscopy. J. Phys. Chem. C, 2009, 113(11), 4277-4285.
[http://dx.doi.org/10.1021/jp8082425]
[101]
Vijayakumar, S.; Krishnakumar, C.; Arulmozhi, P.; Mahadevan, S.; Parameswari, N. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb. Pathog., 2018, 116, 44-48.
[http://dx.doi.org/10.1016/j.micpath.2018.01.003] [PMID: 29330059]
[102]
Vijayakumar, S.; Nilavukkarasi, M.; Sakthivel, B. Bio-synthesized zinc oxide nanoparticles for anti-tuberculosis agent: Scientifically unexplored. Gene Rep., 2020, 20, 100764.
[http://dx.doi.org/10.1016/j.genrep.2020.100764]
[103]
Xiong, Y.; Huang, L.; Mahmud, S.; Yang, F.; Liu, H. Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes. Chin. J. Chem. Eng., 2020, 28(5), 1334-1343.
[http://dx.doi.org/10.1016/j.cjche.2020.02.014]
[104]
Olajire, A.A.; Mohammed, A.A. Green synthesis of bimetallic PdcoreAushell nanoparticles for enhanced solid-phase photodegradation of low-density polyethylene film. J. Mol. Struct., 2020, 1206, 127724.
[http://dx.doi.org/10.1016/j.molstruc.2020.127724]
[105]
Mahmoudvand, H.; Khaksarian, M.; Ebrahimi, K.; Shiravand, S.; Jahanbakhsh, S.; Niazi, M.; Nadri, S. Antinociceptive effects of green synthesized copper nanoparticles alone or in combination with morphine. Ann. Med. Surg. (Lond.), 2020, 51, 31-36.
[http://dx.doi.org/10.1016/j.amsu.2019.12.006] [PMID: 32042414]
[106]
Alam, H.; Khatoon, N.; Raza, M.; Ghosh, P.C.; Sardar, M. Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. Bionanoscience, 2019, 9(1), 96-104.
[http://dx.doi.org/10.1007/s12668-018-0569-5]
[107]
Sampaio, S.; Viana, J.C. Production of silver nanoparticles by green synthesis using artichoke (Cynara scolymus L.) aqueous extract and measurement of their electrical conductivity. Adv. Nat. Sci. Nanosci. Nanotechnol., 2018, 9(4)..
[http://dx.doi.org/10.1088/2043-6254/aae987]
[108]
Lim, J.; Yeap, S.P.; Che, H.X.; Low, S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett., 2013, 8(1), 381.
[http://dx.doi.org/10.1186/1556-276X-8-381] [PMID: 24011350]
[109]
Chand, K.; Cao, D.; Eldin Fouad, D.; Hussain Shah, A.; Qadeer Dayo, A.; Zhu, K.; Nazim Lakhan, M.; Mehdi, G.; Dong, S. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab. J. Chem., 2020.
[http://dx.doi.org/10.1016/j.arabjc.2020.01.009]
[110]
Rao, B.; Tang, R.C. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract., Adv. Nat. Sci. Nanosci. Nanotechnol., 2017, 8(1)..
[http://dx.doi.org/10.1088/2043-6254/aa5983]
[111]
Kandathil, V.; Dateer, R.B.; Sasidhar, B.S.; Patil, S.A.; Patil, S.A. Green synthesis of palladium nanoparticles: Applications in aryl halide cyanation and hiyama cross-coupling reaction under ligand free conditions. Catal. Lett., 2018, 148(6), 1562-1578.
[http://dx.doi.org/10.1007/s10562-018-2369-5]
[112]
Narayanan, K.B.; Park, H.H.; Han, S.S. Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential. Chemosphere, 2015, 141, 169-175.
[http://dx.doi.org/10.1016/j.chemosphere.2015.06.101] [PMID: 26207976]
[113]
Caires, C.S.A.; Farias, L.A.S.; Gomes, L.E.; Pinto, B.P.; Gonçalves, D.A.; Zagonel, L.F.; Nascimento, V.A.; Alves, D.C.B.; Colbeck, I.; Whitby, C.; Caires, A.R.L.; Wender, H. Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets. Mater. Sci. Eng. C, 2020, 113.
[http://dx.doi.org/10.1016/j.msec.2020.110984] [PMID: 32487400]
[114]
Karthik, M.; Suresh, P. Greener synthesis of reduced graphene oxide-nickel nanocomposite: Rapid and sustainable catalyst for the reduction of nitroaromatics. ChemistrySelect, 2017, 2(23), 6916-6928.
[http://dx.doi.org/10.1002/slct.201701314]
[115]
Kuriakose, L.; Simi, N.J.; Ison, V.V. CuZn2InTe4 quantum dots-a novel nanostructure employing a green synthesis route. RSC Advances, 2020, 10(32), 18560-18564.
[http://dx.doi.org/10.1039/D0RA02980G]
[116]
Abdollahnia, M.; Makhdoumi, A.; Mashreghi, M.; Eshghi, H. Exploring the potentials of halophilic prokaryotes from a solar saltern for synthesizing nanoparticles: The case of silver and selenium. PLoS One, 2020, 15(3)
[http://dx.doi.org/10.1371/journal.pone.0229886] [PMID: 32130283]
[117]
Kora, A.J.; Rastogi, L. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. J. Environ. Manage., 2016, 181, 231-236.
[http://dx.doi.org/10.1016/j.jenvman.2016.06.029] [PMID: 27353373]
[118]
Nakkala, J.R.; Mata, R.; Sadras, S.R. Green synthesized nano silver: Synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. J. Colloid Interface Sci., 2017, 499, 33-45.
[http://dx.doi.org/10.1016/j.jcis.2017.03.090] [PMID: 28363102]
[119]
Saif, S.; Tahir, A.; Asim, T.; Chen, Y. Plant mediated green synthesis of CuO nanoparticles: Comparison of toxicity of engineered and plant mediated CuO nanoparticles towards Daphnia magna. Nanomaterials (Basel), 2016, 6(11), 6.
[http://dx.doi.org/10.3390/nano6110205] [PMID: 28335333]
[120]
Akter, M.; Ullah, A.K.M.A.; Rahaman, M.S.; Rahman, M.M.; Sikder, M.T.; Hosokawa, T.; Saito, T.; Kurasaki, M. Stability enhancement of silver nanoparticles through surface encapsulation via a facile green synthesis approach and toxicity reduction. J. Inorg. Organomet. Polym. Mater., 2020, 30(6), 1956-1965.
[http://dx.doi.org/10.1007/s10904-019-01373-z]
[121]
Akter, M.; Rahman, M.M.; Ullah, A.K.M.A.; Sikder, M.T.; Hosokawa, T.; Saito, T.; Kurasaki, M. Brassica rapa var. japonica leaf extract mediated green synthesis of crystalline silver nanoparticles and evaluation of their stability, cytotoxicity and antibacterial activity. J. Inorg. Organomet. Polym. Mater., 2018, 28(4), 1483-1493.
[http://dx.doi.org/10.1007/s10904-018-0818-7]
[122]
Mohamad, N.A.N.; Arham, N.; Jai, J.; Hadi, A.; Idris, S. Green synthesis of Ag, Cu and AgCu nanoparticles using palm leaves extract as the reducing and stabilizing agents. IOP Conf. Ser. Mater. Sci. Eng., 2018, 358, 012063..
[http://dx.doi.org/10.1088/1757-899X/358/1/012063]
[123]
Prasad, A.S. Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Mater. Sci. Semicond. Process., 2016, 53, 79-83.
[http://dx.doi.org/10.1016/j.mssp.2016.06.009]
[124]
Sidkey, N.; Arafa, R.; Moustafa, Y.M.M.; Morsi, R.; Elhateir, M. Biosynthesis of Mg and Mn intracellular nanoparticles via extremo-metallotolerant Pseudomonas stutzeri, B4 Mg/W and Fusarium nygamai, F4 Mn/S. J. Microbiol. Biotechnol. Food Sci., 2017, 6, 1181-1187.
[http://dx.doi.org/10.15414/jmbfs.2017.6.5.1181-1187]
[125]
Singh, A.; Singh, N.B.; Hussain, I.; Singh, H. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J. Biotechnol., 2017, 262, 11-27.
[http://dx.doi.org/10.1016/j.jbiotec.2017.09.016] [PMID: 28962841]
[126]
Sonkusare, V.N.; Chaudhary, R.G.; Bhusari, G.S.; Mondal, A.; Potbhare, A.K.; Mishra, R.K.; Juneja, H.D.; Abdala, A.A. Mesoporous octahedron-shaped tricobalt tetroxide nanoparticles for photocatalytic degradation of toxic dyes. ACS Omega, 2020, 5(14), 7823-7835.
[http://dx.doi.org/10.1021/acsomega.9b03998] [PMID: 32309692]
[127]
Asiri, S.; Sertkol, M.; Güner, S.; Gungunes, H.; Batoo, K.; Saleh, T.A.; Sözeri, H.; Almessiere, M.A.; Manikandan, A.; Baykal, A. Hydrothermal synthesis of Co y Zn y Mn 1-2y Fe2O4 nanoferrites: Magneto-optical investigation. Ceram. Int., 2017, 44(5), 5751-5759.
[http://dx.doi.org/10.1016/j.ceramint.2017.12.233]
[128]
Zheng, F-L.; Li, G-R.; Ou, Y-N.; Wang, Z-L.; Su, C-Y.; Tong, Y-X. Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem. Commun. (Camb.), 2010, 46(27), 5021-5023.
[http://dx.doi.org/10.1039/c002126a] [PMID: 20526518]
[129]
Ravichandran, A.T.; Srinivas, J.; Karthick, R.; Manikandan, A.; Baykal, A. Facile combustion synthesis, structural, morphological, optical and antibacterial studies of Bi1−xAlxFeO3 (0.0 ≤ x ≤ 0.15) nanoparticles. Ceram. Int., 2018, 44(11), 13247-13252.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.153]
[130]
Selim, Y.A.; Azb, M.A.; Ragab, I.; Abd El-Azim, M.M. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci. Rep., 2020, 10(1), 3445.
[http://dx.doi.org/10.1038/s41598-020-60541-1] [PMID: 32103090]
[131]
Hafez Ghoran, S.; Dashti, M.; Maroofi, A.; Shafiee, M.; Zare-Hoseinabadi, A.; Behzad, F.; Mehrabi, M.; Jangjou, A.; Jamali, K. Biosynthesis of zinc ferrite nanoparticles using polyphenol-rich extract of Citrus aurantium flowers. Nanomed. Res. J., 2020, 5(1), 20-28.
[132]
Esmaile, F.; Koohestani, H.; Abdollah-Pour, H. Characterization and antibacterial activity of silver nanoparticles green synthesized using Ziziphora clinopodioides extract. Environ. Nanotechnol. Monit. Manag., 2020, 14.
[http://dx.doi.org/10.1016/j.enmm.2020.100303]
[133]
Jaloot, A.S.; Owaid, M.N.; Naeem, G.A.; Muslim, R.F. Mycosynthesizing and characterizing silver nanoparticles from the mushroom Inonotus hispidus (Hymenochaetaceae), and their antibacterial and antifungal activities. Environ. Nanotechnol. Monit. Manag., 2020, 14.
[http://dx.doi.org/10.1016/j.enmm.2020.100313]
[134]
Hou, H.; Mahdavi, B.; Paydarfard, S.; Zangeneh, M.M.; Zangeneh, A.; Sadeghian, N.; Taslimi, P.; Erduran, V.; Sen, F. Novel green synthesis and antioxidant, cytotoxicity, antimicrobial, antidiabetic, anticholinergics, and wound healing properties of cobalt nanoparticles containing Ziziphora clinopodioides Lam leaves extract. Sci. Rep., 2020, 10(1), 12195.
[http://dx.doi.org/10.1038/s41598-020-68951-x] [PMID: 32699314]
[135]
Bhanja, S.K.; Samanta, S.K.; Mondal, B.; Jana, S.; Ray, J.; Pandey, A.; Tripathy, T. Green synthesis of Ag@Au bimetallic composite nanoparticles using a polysaccharide extracted from Ramaria botrytis mushroom and performance in catalytic reduction of 4-nitrophenol and antioxidant, antibacterial activity. Environ. Nanotechnol. Monit. Manag., 2020, 14.
[http://dx.doi.org/10.1016/j.enmm.2020.100341]
[136]
Rajangam, K.; Amuthameena, S.; Thangavel, S.; Sanjanadevi, V.S.; Balraj, B. Synthesis and characterisation of Ag incorporated TiO2 nanomaterials for supercapacitor applications. J. Mol. Struct., 2020, 1219.
[http://dx.doi.org/10.1016/j.molstruc.2020.128661]
[137]
Wang, F.; Ding, X.; Niu, X.; Liu, X.; Wang, W.; Zhang, J. Green preparation of core-shell Cu@Pd nanoparticles with chitosan for glucose detection. Carbohydr. Polym., 2020, 247.
[http://dx.doi.org/10.1016/j.carbpol.2020.116647] [PMID: 32829791]
[138]
Biosynthesis of multiphase iron nanoparticles using Syzygium aromaticum and their magnetic properties. Colloids Surf. Physicochem. Eng. Aspects, 2020, 603.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125241]
[139]
Scimeca, M.; Bischetti, S.; Lamsira, H.K.; Bonfiglio, R.; Bonanno, E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur. J. Histochem., 2018, 62(1), 2841-2841.
[http://dx.doi.org/10.4081/ejh.2018.2841] [PMID: 29569878]
[140]
Gnanasangeetha, D. SaralaThambavani, D., One pot synthesis of zinc oxide nanoparticles via chemical and green method. Res. J. Material Sci., 2013, 1(7), 1-8.
[141]
Manivasagan, P.; Venkatesan, J.; Kang, K.H.; Sivakumar, K.; Park, S.J.; Kim, S.K. Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Int. J. Biol. Macromol., 2015, 72, 71-78.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.045] [PMID: 25128097]
[142]
Baer, D.R.; Thevuthasan, S. Characterization of thin films and coatings. Handbook of Deposition Technologies for Films and Coatings, 3rd ed; Martin, P.M., Ed.; William Andrew Publishing: Boston, 2010, pp. 749-864.
[http://dx.doi.org/10.1016/B978-0-8155-2031-3.00016-8]
[143]
Engelhard, M.H.; Droubay, T.C.; Du, Y. .X-Ray Photoelectron spectroscopy applications. Encyclopedia of Spectroscopy and Spectrometry, Third Edition; Lindon, J. C.; Tranter, G. E.; Koppenaal, D. W., Eds.; Academic Press: Oxford., 2017, pp. 716-724..
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12102-X]
[144]
Göl, F.; Aygün, A.; Seyrankaya, A.; Gür, T.; Yenikaya, C.; Şen, F. Green synthesis and characterization of camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications. Mater. Chem. Phys., 2020, 250, 123037.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123037]
[145]
Matussin, S.N.; Harunsani, M.H.; Tan, A.L.; Mohammad, A.; Cho, M.H.; Khan, M.M. Photoantioxidant studies of SnO2 nanoparticles fabricated using aqueous leaf extract of Tradescantia spathacea. Solid State Sci., 2020, 105.
[http://dx.doi.org/10.1016/j.solidstatesciences.2020.106279]
[146]
Su, B.; Lin, J.; Owens, G.; Chen, Z. Impact of green synthesized iron oxide nanoparticles on the distribution and transformation of As species in contaminated soil. Environ. Pollut., 2020, 258, 113668.
[http://dx.doi.org/10.1016/j.envpol.2019.113668] [PMID: 31796319]
[147]
Khan, M.M.; Harunsani, M.H.; Tan, A.L.; Hojamberdiev, M.; Poi, Y.A.; Ahmad, N. Antibacterial studies of ZnO and Cu-doped ZnO nanoparticles synthesized using aqueous leaf extract of Stachytarpheta jamaicensis. Bionanoscience, 2020, 10, 1037-1048.
[http://dx.doi.org/10.1007/s12668-020-00775-5]
[148]
Shaheen, I.; Ahmad, K.S.; Zequine, C.; Gupta, R.K.; Thomas, A.; Malik, M.A. Organic template-assisted green synthesis of CoMoO4 nanomaterials for the investigation of energy storage properties. RSC Advances, 2020, 10(14), 8115-8129.
[http://dx.doi.org/10.1039/C9RA09477F]
[149]
Potts, P.J.; Ellis, A.T.; Holmes, M.; Kregsamer, P.; Streli, C.; West, M.; Wobrauschek, P. X-ray fluorescence spectrometry. J. Anal. At. Spectrom., 2000, 15(10), 1417-1442.
[http://dx.doi.org/10.1039/b005284l]
[150]
Alaya-Ibrahim, S.; Kovo, A.S.; Abdulkareem, A.S.; Adeniyi, O.D.; Yahya, M.D. Development of nano-silver doped zeolite A synthesized from Nigerian Ahoko kaolin for treatment of wastewater of a typical textile company. Chem. Eng. Commun., 2020, 207(8), 1114-1137.
[http://dx.doi.org/10.1080/00986445.2019.1641490]
[151]
Kunoh, T.; Takeda, M.; Matsumoto, S.; Suzuki, I.; Takano, M.; Kunoh, H.; Takada, J. Green synthesis of gold nanoparticles coupled with nucleic acid oxidation. ACS Sustain. Chem. Eng., 2018, 6(1), 364-373.
[http://dx.doi.org/10.1021/acssuschemeng.7b02610]
[152]
Kandasamy, K.; Venkatesh, M.; Syed Khadar, Y.A.; Rajasingh, P. One-pot green synthesis of CdS quantum dots using Opuntia ficus-indica fruit sap. Mater. Today-Proc., 2020, 26, 3503-3506.
[http://dx.doi.org/10.1016/j.matpr.2019.06.003]
[153]
Rehr, J.J.; Ankudinov, A.L. Progress in the theory and interpretation of XANES. Coord. Chem. Rev., 2005, 249(1), 131-140.
[http://dx.doi.org/10.1016/j.ccr.2004.02.014]
[154]
Chrysochoou, M.; Oakes, J.; Dyar, M.D. Investigation of iron reduction by green tea polyphenols. Appl. Geochem., 2018, 97, 263-269.
[http://dx.doi.org/10.1016/j.apgeochem.2018.08.026]
[155]
Saravanan, S.; Balamurugan, M.; Lippitz, A.; Fonda, E.; Swaraj, S. XANES studies of titanium dioxide nanoparticles synthesized by using Peltophorum pterocarpum plant extract. Physica B, 2016, 503, 86-92.
[http://dx.doi.org/10.1016/j.physb.2016.09.011]
[156]
Giaccherini, A.; Colantoni, I.; D’acapito, F.; De Luca, A.; Capolupo, F.; Montegrossi, G.; Romanelli, M.; Innocenti, M.; Di Benedetto, F. Green synthesis of pyrite nanoparticles for energy conversion and storage: a spectroscopic investigation. Eur. J. Mineral., 2016, 28(3), 611-618.
[http://dx.doi.org/10.1127/ejm/2016/0028-2534]
[157]
Ali, H.S.S.; Alghamdi, A.S.; Murtaza, G.; Arif, H.S.S.; Naeem, W.; Farid, G.; Sharif, S.; Ashiq, M.G.B.; Shabbir, S.A. Facile microemulsion synthesis of Vanadium-doped ZnO nanoparticles to analyze the compositional, optical, and electronic properties. Materials (Basel), 2019, 12(5), 821.
[http://dx.doi.org/10.3390/ma12050821] [PMID: 30862056]
[158]
Hashem, A.M.; Abuzeid, H.M.; Winter, M.; Li, J.; Julien, C.M. Synthesis of high durface area α-K(y)MnO2 nanoneedles using extract of broccoli as bioactive reducing agent and application in lithium battery. Materials (Basel), 2020, 13(6), 1269.
[http://dx.doi.org/10.3390/ma13061269] [PMID: 32168857]
[159]
Garole, V.J.; Choudhary, B.C.; Tetgure, S.R.; Garole, D.J.; Borse, A.U. Palladium nanocatalyst: Green synthesis, characterization, and catalytic application. Int. J. Environ. Sci. Technol. (Tehran), 2019, 16(12), 7885-7892.
[http://dx.doi.org/10.1007/s13762-018-2173-1]
[160]
Mahalakhsmi, A.; Baskar, G. Green synthesis and characterization of Cadmium-Tellurium quantum dots using pomelo peel aqueous extract. J. Electron. Mater., 2019, 48(9), 5975-5979.
[http://dx.doi.org/10.1007/s11664-019-07352-x]
[161]
Shah, Z.; Hassan, S.; Shaheen, K.; Khan, S.A.; Gul, T.; Anwar, Y.; Al-Shaeri, M.A.; Khan, M.; Khan, R.; Haleem, M.A.; Suo, H. Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants. Mater. Sci. Eng. C, 2020, 111, 110829.
[http://dx.doi.org/10.1016/j.msec.2020.110829] [PMID: 32279826]
[162]
Khan, Z.; Al-Thabaiti, S.A. Biogenic silver nanoparticles: Green synthesis, encapsulation, thermal stability and antimicrobial activities. J. Mol. Liq., 2019, 289, 111102.
[http://dx.doi.org/10.1016/j.molliq.2019.111102]
[163]
Ameen, F.; Abdullah, M.M.S.; Al-Homaidan, A.A.; Al-Lohedan, H.A.; Al-Ghanayem, A.A.; Almansob, A. Fabrication of silver nanoparticles employing the cyanobacterium Spirulina platensis and its bactericidal effect against opportunistic nosocomial pathogens of the respiratory tract. J. Mol. Struct., 2020, 1217, 128392.
[http://dx.doi.org/10.1016/j.molstruc.2020.128392]
[164]
Sackey, J.; Nwanya, A.C.; Bashir, A.K.H.; Matinise, N.; Ngilirabanga, J.B.; Ameh, A.E.; Coetsee, E.; Maaza, M. Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles. Mater. Chem. Phys., 2020, 244, 122714.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122714]
[165]
Gan, L.; Li, B.; Chen, Y.; Yu, B.; Chen, Z. Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain. Chemosphere, 2019, 219, 148-154.
[http://dx.doi.org/10.1016/j.chemosphere.2018.11.181] [PMID: 30537587]
[166]
Tabrizi Hafez Moghaddas, S.M.; Elahi, B.; Darroudi, M.; Javanbakht, V. Green synthesis of hexagonal-shaped zinc oxide nanosheets using mucilage from flaxseed for removal of methylene blue from aqueous solution. J. Mol. Liq., 2019, 296, 111834.
[http://dx.doi.org/10.1016/j.molliq.2019.111834]
[167]
Sett, A.; Gadewar, M.; Sharma, P.; Deka, M.; Bora, U. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica. Adv. Nat. Sci. Nanosci. Nanotechnol., 2016, 7(2), 025005.
[http://dx.doi.org/10.1088/2043-6262/7/2/025005]
[168]
Mata, R.; Reddy Nakkala, J.; Rani Sadras, S. Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater. Sci. Eng. C, 2015, 51, 216-225.
[http://dx.doi.org/10.1016/j.msec.2015.02.053] [PMID: 25842128]
[169]
Ahsan, A.; Farooq, M.A.; Ahsan Bajwa, A.; Parveen, A. Green synthesis of silver nanoparticles using Parthenium hysterophorus: optimization, characterization and In vitro therapeutic evaluation. Molecules, 2020, 25(15), 3324.
[http://dx.doi.org/10.3390/molecules25153324] [PMID: 32707950]
[170]
Vasantharaj, S.; Sathiyavimal, S.; Senthilkumar, P. LewisOscar, F.; Pugazhendhi, A. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation. J. Photochem. Photobiol. B, 2019, 192, 74-82.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.025] [PMID: 30685586]
[171]
Dubey, S.; Kumar, J.; Kumar, A.; Sharma, Y.C. Facile and green synthesis of highly dispersed cobalt oxide (Co3O4) nano powder: Characterization and screening of its eco-toxicity. Adv. Powder Technol., 2018, 29(11), 2583-2590.
[http://dx.doi.org/10.1016/j.apt.2018.03.009]
[172]
Matinise, N.; Fuku, X.G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Appl. Surf. Sci., 2017, 406, 339-347.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.219]
[173]
Ismail, E.; Khenfouch, M.; Dhlamini, M.; Dube, S.; Maaza, M. Green palladium and palladium oxide nanoparticles synthesized via Aspalathus linearis natural extract. J. Alloys Compd., 2017, 695, 3632-3638.
[http://dx.doi.org/10.1016/j.jallcom.2016.11.390]
[174]
Yadav, R.S.; Kuřitka, I.; Vilcakova, J.; Havlica, J.; Masilko, J.; Kalina, L.; Tkacz, J.; Švec, J.; Enev, V.; Hajdúchová, M. Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. Nanosci. Nanotechnol., 2017, 8(4), 045002.
[http://dx.doi.org/10.1088/2043-6254/aa853a]
[175]
Clogston, J.D.; Patri, A.K. Zeta Potential Measurement. Characterization of nanoparticles intended for drug delivery. Methods in molecular biology (methods and protocols); McNeil, S., Ed.; Humana Press, 2011, Vol. 697, pp. 63-70..
[http://dx.doi.org/10.1007/978-1-60327-198-1_6]
[176]
Arya, A.; Chundawat, T. S. Metal nanoparticles from algae: A green approach for the synthesis, characterization and their biological activity.Nanosci Nanotechnol Asia, 2018, 09.
[177]
Swamy, R.S.K. Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and their application as dopamine and hydrogen peroxide sensors. Phys. Chem. Res., 2020, 8, 1-18.
[178]
El-Saadony, M.T.; Abd El-Hack, M.E.; Taha, A.E.; Fouda, M.M.G.; Ajarem, J.S. N Maodaa, S.; Allam, A.A.; Elshaer, N. S.; Allam, A. A.; Elshaer, N. Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials (Basel), 2020, 10(3), 587.
[http://dx.doi.org/10.3390/nano10030587] [PMID: 32210153]
[179]
Vickerman, J.; Gilmore, I. Surface analysis - The Principal Techniques: Second Edition. 2009; p 1-666..
[180]
Saikumari, N.; Preethi, T.; Abarna, B.; Rajarajeswari, G.R. Ecofriendly, green tea extract directed sol-gel synthesis of nano titania for photocatalytic application. J. Mater. Sci. Mater. Electron., 2019, 30(7), 6820-6831.
[http://dx.doi.org/10.1007/s10854-019-00994-x]
[181]
Demir, A.; Topkaya, R.; Baykal, A. Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation. Polyhedron, 2013, 65, 282-287.
[http://dx.doi.org/10.1016/j.poly.2013.08.041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy