Generic placeholder image

Current Drug Delivery


ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nano- and Micro-Technologies Applied to Food Nutritional Ingredients

Author(s): Sonia Trombino, Federica Curcio and Roberta Cassano*

Volume 18, Issue 6, 2021

Published on: 25 November, 2020

Page: [670 - 678] Pages: 9

DOI: 10.2174/1567201817999201125205025

Price: $65


New technologies are currently investigated to improve the quality of foods by enhancing their nutritional value, freshness, safety, and shelf-life, as well as by improving their tastes, flavors and textures. Moreover, new technological approaches are being explored, in this field, to address nutritional and metabolism-related diseases (i.e., obesity, diabetes, cardiovascular diseases), to improve targeted nutrition, in particular for specific lifestyles and elderly population, and to maintain the sustainability of food production. A number of new processes and materials, derived from micro- and nano-technology, have been used to provide answers to many of these needs and offer the possibility to control and manipulate properties of foods and their ingredients at the molecular level. The present review focuses on the importance of micro- and nano-technology in the food and nutritional sector and, in particular, provides an overview of the micro- and nano-materials used for the administration of nutritional constituents essential to maintain and improve health, as well as to prevent the development and complications of diseases.

Keywords: Delivery, micro-technology, nano-technology, nutrients, nutrition-related diseases, food applications, risk assessment.

Graphical Abstract
Blundell, J.E.; Thurlby, P.L. Experimental manipulations of eating: advances in animal models for studying anorectic agents. Pharmacol. Ther., 1987, 34(3), 349-401.
[] [PMID: 3324113]
Aguilera, J.M. Why food microstructure? J. Food Eng., 2005, 67, 3-11.
Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V.K.; Rather, I.A. Application of nanotechnology in food science: perception and overview. Front. Microbiol., 2017, 8, 1501.
[] [PMID: 28824605]
Pressman, P.; Clemens, R.; Hayes, W.; Reddy, C. Food additive safety: A review of toxicologic and regulatory issues. Toxicol. Res., 2017, 1, 22.
He, X.; Deng, H.; Aker, W.G.; Hwang, H. Regulation and safety of nanotechnology in the food and agriculture industry.Food Applications of Nanotechnology; Molina, G.; Deng, H.; Inamuddin, B.; Pelissari, F.M.; Asiri, A.M., Eds.; CRC Press: Florida, USA, 2020, 23, pp. 517-525.
Weiss, J.; Takhistov, P.; McClements, D.J. Functional materials in food nanotechnology. J. Food Sci., 2006, 719, 107-116.
Chaudhry, Q.; Watkins, R.; Castle, L. Nanotechnologies in Food: What, Why and How? In: Nanotechnologies in Food; Chaudhry, Q.; Castle, L.; Watkins, R; Royal Society of Chemistry: Washington, USA, 2017, pp. 1-19.
Laokuldilok, N.; Thakeow, P.; Kopermsub, P.; Utama-ang, N. Optimisation of microencapsulation of turmeric extract for masking flavour. Food Chem., 2016, 194, 695-704.
[] [PMID: 26471609]
Zaeim, D.; Jamab, M.S.; Ghorani, B.; Kadkhodaee, R.; WeilinLiu, W.; Tromp, R.H. Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and in corporation into ice-cream formulation. Food Struc., 2020, 25, 100147.
Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in microencapsulation of probiotics: A review. Food Sci Food Saf., 2020, 85(2), 394-403.
Fursik, O.; Strashynskiy, I.; Pasichniy, V.; Marynin, A. Some aspects of using the nanotechnology in food industry. Ukrainian J. Food Sci., 2019, 7, 298-306.
Santillán-Urquiza, E.; Ruiz-Espinosa, H.; Angulo-Molina, A.; Vélez Ruiz, J.F.; Méndez-Rojas, M.A. Applications of nanomaterials in functional fortified dairy products: Benefits and implications for human health. In: Nutrient Delivery; Grumezescu, A.M, Ed.; Academic Press: London, UK, 2017; pp. 293-328.
Jones, D.; Caballero, S.; Davidov-Pardo, G. Bioavailability of nanotechnology-based bioactives and nutraceuticals. Adv. Food Nutr. Res., 2019, 88, 235-273.
[] [PMID: 31151725]
Zugic, A.; Tadic, V.; Savic, S. Nano- and microcarriers as drug delivery systems for usnic acid: Review of literature. Pharmaceutics, 2020, 12(2), 156.
[] [PMID: 32075296]
Gutiérrez, T.J.; Álvarez, K. Biopolymers as microencapsulation materials in the food industry. Adv. Phys. Prop. Biop., 2017, 2, 296-322.
Paulo, F.; Santos, L. Design of experiments for microencapsulation applications: A review. Mater. Sci. Eng. C., 2017, 77, 1327-1340.
[] [PMID: 28532010]
Vitali Čepo, D.; Radić, K.; Jurmanović, S.; Jug, M.; GrdićRajković, M.; Pedisić, S.; Moslavac, T.; Albahari, P. Valorization of olive pomace-based nutraceuticals as antioxidants in chemical. Molecules, 2018, 23, 8.
Sánchez Moral, P.; Ruiz Méndez, M.V. Production of pomace olive oil. Grasas Aceites, 2006, 57, 47-55.
Otálora, M.C.; Carriazo, J.G.; Iturriaga, L.; Nazareno, M.A.; Osorio, C. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem., 2015, 187, 174-181.
[] [PMID: 25977013]
Belhadj Slimen, I.; Najar, T.; Abderrabba, M. Chemical and antioxidant properties of Betalains. J. Agric. Food Chem., 2017, 65(4), 675-689.
[] [PMID: 28098998]
El-Mostafa, K.; El Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; El Kebbaj, M.S.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules, 2014, 19(9), 14879-14901.
[] [PMID: 25232708]
Osuna-Martínez, U.; Reyes-Esparza, J.; Rodríguez-Fragoso, L. Cactus (Opuntia ficus-indica): A review on its antioxidants properties and potentialpharmacological use in chronic diseases. Nat. Prod. Chem. Res., 2014, 2, 153-160.
Šipailienė, A.; Petraitytė, S. Encapsulation of probiotics: Proper selection of the probiotic strain and the influence of encapsulation technology and materials on the viability of encapsulated microorganisms. Probiotics Antimicrob. Proteins, 2018, 10(1), 1-10.
[] [PMID: 29124564]
Vidhyalakshmi, R.; Bhakyaraj, R.S.; Subhasree, R. Encapsulation “The Future of Probiotics”-A review. Adv. Biol. Res., 2009, 3, 96-103.
Tomasik, P.; Horton, D. Enzymatic conversions of starch. Adv. Carbohydr. Chem. Biochem., 2012, 68, 59-436.
[] [PMID: 23218124]
Zipp, H. Cyclodextrins-Novel solutions for the food industry. Food Ingr. Brasil, 2012, 22, 56.
Artiss, J.D.; Brogan, K.; Brucal, M.; Moghaddam, M.; Jen, K.L. The effects of a new soluble dietary fiber on weight gain and selected blood parameters in rats. Metabolism, 2006, 55(2), 195-202.
[] [PMID: 16423626]
Bessell, E.; Fuller, N.R.; Markovic, T.P.; Burk, J.; Picone, T.; Hendy, C.; Tan, M.M.C.; Caterson, I.D. Effects of alpha-cyclodextrin on cholesterol control and compound K on glycaemic control in people with pre-diabetes: Protocol for a Phase III randomized controlled trial. Clin. Obes., 2019, 9(4), e12324.
[] [PMID: 31172667]
Pilely, K.; Bakke, S.S.; Palarasah, Y.; Skjoedt, M.O.; Bartels, E.D.; Espevik, T.; Garred, P. Alpha-cyclodextrin inhibits cholesterol crystal-induced complement-mediated inflammation: A potential new compound for treatment of atherosclerosis. Atherosclerosis, 2019, 283, 35-42.
[] [PMID: 30772772]
Salles, C.; Tarrega, A.; Mielle, P.; Maratray, J.; Gorria, P.; Liaboeuf, J.; Liodenot, J. Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment. J. Food Eng., 2007, 82(2), 189-198.
Soottitantawat, A.; Takayama, K.; Okamura, K.; Muranaka, D.; Yoshii, H.; Furuta, T.; Ohkawara, M.; Linko, P. Microencapsulation of l-menthol by spray drying and its release characteristics. Innov. Food Sci. Emerg. Technol., 2005, 6(2), 163-170.
Malone, M.E.; Appelqvist, I.A.M. Gelled emulsion particles for the controlled release of lipophilic volatiles during eating. J. Control. Release, 2003, 90(2), 227-241.
[] [PMID: 12810305]
Anand, U.; Ambarish, J. Fabrication of starch-based microparticles by an emulsification crosslinking method. J. Chem. Pharm. Res., 2011, 3, 839-845.
Mao, S.; Chen, J.; Wei, Z.; Liu, H.; Bi, D. Intranasal administration of melatonin starch microspheres. Int. J. Pharm., 2004, 272(1-2), 37-43.
[] [PMID: 15019067]
Atyabi, F.; Manoochehri, S.; Moghadam, S.H.; Dinarvand, R. Cross-linked starch microspheres: Effect of cross-linking condition on the microsphere characteristics. Arch. Pharm. Res., 2006, 29(12), 1179-1186.
[] [PMID: 17225470]
Franssen, O.; Hennink, W.E. A novel preparation method for polymeric microparticles without the use of organic solvents. Int. J. Pharm., 1998, 168(1), 1-7.
Stenekes, R.J.H.; Franssen, O.; Van Bommel, E.M.; Crommelin, D.J.; Hennink, W.E. The use of aqueous PEG/dextran phase separation for the preparation of dextran microspheres. Int. J. Pharm., 1999, 183(1), 29-32.
[] [PMID: 10361149]
Chen, L.; Subirade, M. Effect of preparation conditions on the nutrient release properties of alginate-whey protein granular microspheres. Eur. J. Pharm. Biopharm., 2007, 65(3), 354-362.
[] [PMID: 17150342]
Taylor, J.; Taylor, J.R.N.; Belton, P.S.; Minnaar, A. Kafirin microparticle encapsulation of catechin and sorghum condensed tannins. J. Agric. Food Chem., 2009, 57(16), 7523-7528.
[] [PMID: 19642673]
Sun, X.; Bandara, N. Applications of reverse micelles technique in food science: A comprehensive review. Trends Food Sci. Technol., 2019, 91, 106-115.
Chen, H.; Wooten, H.; Thompson, L.; Pan, K. Nanoparticles of casein micelles for encapsulation of food ingredients. In: Biopolymer Nanostructures for Food Encapsulation Purposes; Jafari, S.M., Ed.; Academic Press: London, UK, 2019; pp. 39-68.
Sozer, N.; Kokini, J.L. Nanotechnology and its applications in the food sector. Trends Biotechnol., 2009, 27(2), 82-89.
[] [PMID: 19135747]
Livney, Y.D.; Dalgleish, D.G. Casein micelles for nanoencapsulation of hydrophobic compounds. Europe PMC Patent CA2649788, 2019.
Gaysinsky, S.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Growth inhibition of Escherichia coli O157:H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. J. Food Prot., 2005, 68(12), 2559-2566.
[] [PMID: 16355826]
Gaysinsky, S.; Taylor, T.M.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Antimicrobial efficacy of eugenol microemulsions in milk against Listeria monocytogenes and Escherichia coli O157:H7. J. Food Prot., 2007, 70(11), 2631-2637.
[] [PMID: 18044447]
Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Food Sci. Technol., 2011, 44, 1908-1914.
Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and their potential applications in food industry. Front. Sustain. Food Syst., 2019, 19, 857-874.
Ahsan, A.; Shishir, M.R.I.; Saifullah, Md. Production, stability and application of micro- and nanoemulsion in food production and the food processing industry. J. Agric. Food Chem., 2016, 12, 405-442.
Hu, Q.; Gerhard, H.; Upadhyaya, I.; Venkitanarayanan, K.; Luo, Y. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies. Int. J. Biol. Macromol., 2016, 87, 130-140.
[] [PMID: 26902894]
Terjung, N.; Löffler, M.; Gibis, M.; Hinrichs, J.; Weiss, J. Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Food Funct., 2012, 3(3), 290-301.
[] [PMID: 22183117]
Donsì, F.; Annunziata, M.; Vincensi, M.; Ferrari, G. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. J. Biotechnol., 2012, 159(4), 342-350.
[PMID: 21763730]
Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason. Sonochem., 2013, 20(1), 338-344.
[PMID: 22954686]
Jo, W.; Song, H.; Song, N.; Lee, J.; Min, S.; Song, K. Quality and microbial safety of “Fuji” apples coated with carnauba ashellac wax containing lemongrass oil. Lebensm. Wiss. Technol., 2014, 55, 490-497.
Joe, M.M.; Bradeeba, K.; Parthasarathi, R. Development of surfactin based nanoemulsion formulation fromselected cooking oils: Evaluation for antimicrobial activity against selected food associated microorganisms. J. Taiwan Inst. Chem. Eng., 2012, 43, 172-180.
Balcảo, V.; Costa, I.; Matos, C.; Moutinho, C.G.; Amorim, M.; Pintado, M.E.; Patrícia Almeida Gomes, A.P.; Vila, M.; Caldas Teixeira, J.A. Nanoencapsulation of bovine lactoferrin for food and biophamarceutical applications. Food Hydrocoll., 2013, 32, 425-431.
Hamouda, T.; Myc, A.; Donovan, B.; Shih, A.Y.; Reuter, J.D.; Baker, J.R., Jr A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol. Res., 2001, 156(1), 1-7.
[] [PMID: 11372645]
Teixeira, P.C.; Leite, G.M.; Domingues, R.J.; Silva, J.; Gibbs, P.A.; Ferreira, J.P. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int. J. Food Microbiol., 2007, 118(1), 15-19.
[] [PMID: 17610974]
Gonnet, M.; Lethuaut, L.; Boury, F. New trends in encapsulation of liposoluble vitamins. J. Control. Release, 2010, 146(3), 276-290.
[] [PMID: 20600399]
Wajda, R.; Zirkel, J.; Schaffer, T. Increase of bioavailability of coenzyme Q(10) and vitamin E. J. Med. Food, 2007, 10(4), 731-734.
[] [PMID: 18158850]
Relkin, P.; Yung, J.M.; Kalnin, D.; Ollivon, M. Structural behaviour of lipid droplets in protein-stabilized nano-emulsions and stability of α-tocopherol. Food Biophys., 2008, 3, 163-168.
Shtay, R.; Keppler, J.K.; Schrader, K.; Schwarz, K. Encapsulation of (-)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. J. Food Eng., 2019, 244, 91-100.
Da Silva Santos, V.; Ribeiro, A.P.B; Santana, M.H.A. Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Res. Int., 2019, 122, 610-626.
[] [PMID: 31229120]
Ghanbarzadeh, B.; Keivani, F.; Mohammadi, M. Encapsulation of food ingredients by Solid Lipid Nanoparticles (SLNs). In: Lipid-Based Nanostructures for Food Encapsulation Purposes; Jafari, S.M., Ed.; Academic Press: London, UK, 2019; pp. 179-216.
Guragain, S.; Bastakoti, B.P. Synthesis of inorganic hollow nanospheres and their application in drug in delivery. J. Nepal Chem. Soc., 2018, 38, 12-17.
Wang, Y. Y.; Gao, D., Zhou, D.; Li, Y., Wang, X.; He, P.; Zhang, Y., Multifunctional Ag/polymer composite nanospheres for drug delivery and cell imaging. J. Mater. Sci., 2020, 55, 13995-14007.
Han, H.J.; Lee, J.S.; Park, S.A.; Ahn, J.B.; Lee, H.G. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids Surf. B Biointerfaces, 2015, 130, 93-100.
[] [PMID: 25911157]
Sanna, V.; Lubinu, G.; Madau, P.; Pala, N.; Nurra, S.; Mariani, A.; Sechi, M. Polymeric nanoparticles encapsulating white tea extract for nutraceutical application. J. Agric. Food Chem., 2015, 63(7), 2026-2032.
[] [PMID: 25599125]
Granata, G.; Stracquadanio, S.; Leonardi, M.; Napoli, E.; Consoli, G.M.L.; Cafiso, V.; Stefani, S.; Geraci, C. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem., 2018, 269, 286-292.
[] [PMID: 30100436]
Jhala, D.; Rather, H.; Vasita, R. Nano-delivery of food-derived biomolecules: An overview. Funct. Food Human Health, 2018, 447-470.
Letchford, K.; Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm., 2007, 65(3), 259-269.
[] [PMID: 17196803]
Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull., 2017, 7(1), 3-9.
[] [PMID: 28507932]
Srinivasan, V.; Chavan, S.; Jain, U.; Tarwadi, K. Liposomes for Nanodelivery Systems in Food Products. In: Nanoscience for Sustainable Agriculture; Pudake, R.M., Chauhan, N., Kole, C. Springer: Heidelberg, Germany, 2019, pp. 624-638.
Emami, S.; Azadmard-Damirchi, S.; Hadi Peighambardoust, S.; Valizadeh, H.; Hesari, J. Liposomes as carrier vehicles for functional compounds in food sector. J. Exp. Nanosci., 2016, 11(9), 737-759.
Rovoli, M.; Pappas, I.; Lalas, S.; Gortzi, O.; Kontopidis, G. In vitro and in vivo assessment of vitamin A encapsulation in a liposome-protein delivery system. J. Liposome Res., 2019, 29(2), 142-152.
[] [PMID: 30187807]
Lee, S.B.; Martin, C.R. Electromodulated molecular transport in gold-nanotube membranes. J. Am. Chem. Soc., 2002, 124(40), 11850-11851.
[] [PMID: 12358519]
Jafari, S.M.; Katouzian, I.; Rajabi, H.; Ganje, M. Bioavailability and release of bioactive components from nanocapsules. In: Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Jafari, S.M., Ed.; Academic Press: London, UK, 2017, pp. 494-523.
Wei, H.C.; Lin, L. L. Antibacterial activity of liposome containing curry plant essential oil against Bacillus cereus in rice. J. Food Saf., 2017, 37, 12302.
Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Nanoencapsulation of zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov. Food Sci. Emerg. Technol., 2015, 28, 73-80.
EFSA scientific committee. Scientific opinion on guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J., 2011, 9(5), 2140.
EFSA scientific committee. Scientific opinion of the scientific committee on a request from the european commission on the potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J., 2009, 958, 1-39.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy