Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Applications of Green Synthesized Nanomaterials in Water Remediation

Author(s): Nakshatra B. Singh, Md. Abu B.H. Susan and Mridula Guin*

Volume 22, Issue 6, 2021

Published on: 27 October, 2020

Page: [733 - 761] Pages: 29

DOI: 10.2174/1389201021666201027160029

Price: $65

Abstract

Water is the most important component on the earth for living organisms. With industrial development, population increase and climate change, water pollution becomes a critical issue around the world. Its contamination with different types of pollutants created naturally or due to anthropogenic activities has become the most concerned global environmental issue. These contaminations destroy the quality of water and become harmful to living organisms. A number of physical, chemical and biological techniques have been used for the purification of water, but they suffer in one or the other respect. The development of nanomaterials and nanotechnology has provided a better path for the purification of water. Compared to conventional methods using activated carbon, nanomaterials offer a better and economical approach for water remediation. Different types of nanomaterials acting as nanocatalysts, nanosorbents, nanostructured catalytic membranes, bioactive nanoparticles, nanomembranes and nanoparticles provide an alternative and efficient methodology in solving water pollution problems. However, the major issue with nanomaterials synthesized in a conventional way is their toxicity. In recent days, a considerable amount of research is being carried out on the synthesis of nanomaterials using green routes. Nanomaterials synthesized by using the green method are now being used in different technologies, including water remediation. The remediation of water by using nanomaterials synthesized by the green method has been reviewed and discussed in this paper.

Keywords: Nanomaterial, green route, applications, water remediation, adsorbents, nanomembranes.

Graphical Abstract
[1]
Ahsan, M.A.; Jabbari, V.; Imam, M.A.; Castro, E.; Kim, H.; Curry, M.L.; Valles-Rosales, D.J.; Noveron, J.C. Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci. Total Environ., 2020, 698, 134214.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134214] [PMID: 31514030]
[2]
Jaspal, D.; Malviya, A. Composites for wastewater purification: A review. Chemosphere, 2020, 246, 125788.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125788] [PMID: 31918098]
[3]
Ahsan, M.A.; Jabbari, V.; Islam, M.T.; Kim, H.; Hernandez-Viezcas, J.A.; Lin, Y.; Díaz-Moreno, C.A.; Lopez, J.; Gardea-Torresdey, J.; Noveron, J.C. Green synthesis of a highly efficient biosorbent for organic, pharmaceutical and heavy metal pollutants removal: Engineering surface chemistry of polymeric biomass of spent coffee waste. J. Water Process Eng., 2018, 25, 309-319.
[http://dx.doi.org/10.1016/j.jwpe.2018.08.005]
[4]
Bolade, O.P.; Williams, A.B.; Benson, N.U. Green synthesis of iron-based nanomaterials for environmental remediation: A review. Environ. Nanotechnol. Monit. Manag., 2020, 13, 100279.
[http://dx.doi.org/10.1016/j.enmm.2019.100279]
[5]
Awad, A.M.; Jalab, R.; Benamor, A.; Nasser, M.S.; Ba-Abbad, M.M.; El-Naas, M.; Mohammad, A.W. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq., 2020, 301, 112335.
[http://dx.doi.org/10.1016/j.molliq.2019.112335]
[6]
Gusain, R.; Kumar, N.; Sinha Ray, S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev., 2020., 405213111.
[http://dx.doi.org/10.1016/j.ccr.2019.213111]
[7]
Singh, N.B.; Nagpal, G.; Agrawal, S.R. Water purification by using adsorbents: A review. Environ. Technol. Inno., 2018, 11, 187-240.
[http://dx.doi.org/10.1016/j.eti.2018.05.006]
[8]
Patanjali, P.; Singh, R.; Kumar, A.; Chaudhary, P. Nanotechnology for water treatment: A green approach. Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier, 2019, Vol. 20, pp. 485-512.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00021-6]
[9]
Devatha, C.P.; Thalla, A.K. Green Synthesis of nanomaterials. Synthesis of Inorganic Nanomaterials; Elsevier, 2018, Vol. 7, pp. 9-184.
[http://dx.doi.org/10.1016/B978-0-08-101975-7.00007-5]
[10]
Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 2016, 38(4), 545-560.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[11]
Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem., 2015, 12, 3576-3600.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.002]
[12]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2017, 12, 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[13]
Goutam, S.P.; Yadav, A.K.; Das, A.J. Coriander extract mediated green synthesis of zinc oxide nanoparticles and their structural, optical and antibacterial properties. J. Nanosci. Nanotechnol., 2017, 3, 249-252.
[14]
Manivasagan, P.; Venkatesan, J.; Kang, K.H.; Sivakumar, K.; Park, S.J.; Kim, S.K. Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Int. J. Biol. Macromol., 2015, 72, 71-78.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.045] [PMID: 25128097]
[15]
Adelere, I.A.; Lateef, A. A novel approach to the green synthesis of metallic nanoparticles: The use of agro-wastes, enzymes, and pigments. Nanotechnol. Rev., 2016, 5, 567-587.
[http://dx.doi.org/10.1515/ntrev-2016-0024]
[16]
Ahsan, M.A.; Fernandez-Delgado, O.; Deemer, E.; Wang, H.; El-Gendy, A.A.; Curry, M.L.; Noveron, J.C. Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J. Mol. Liq., 2019, 290, 111059.
[http://dx.doi.org/10.1016/j.molliq.2019.111059]
[17]
Ahsan, M.A.; Jabbari, V.; El-Gendy, A.A.; Curry, M.L.; Noveron, J.C. Ultrafast catalytic reduction of environmental pollutants in water via MOF derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl. Surf. Sci., 2019., 497143608.
[http://dx.doi.org/10.1016/j.apsusc.2019.143608]
[18]
Ahsan, M.A.; Deemer, E.; Fernandez-Delgado, O.; Wang, H.; Curry, M.L.; El-Gendy, A.A.; Noveron, J.C. Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catal. Commun., 2019, 130, 105753.
[http://dx.doi.org/10.1016/j.catcom.2019.105753]
[19]
Carpenter, A.W.; de Lannoy, C.F.; Wiesner, M.R. Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol., 2015, 49(9), 5277-5287.
[http://dx.doi.org/10.1021/es506351r] [PMID: 25837659]
[20]
Meng, Z.D.; Zhu, L.; Ye, S.; Sun, Q.; Ullah, K.; Cho, K.Y.; Oh, W.C. Fullerene modification CdSe/TiO2 and modification of photocatalytic activity under visible light. Nanoscale Res. Lett., 2013, 8(1), 189-199.
[http://dx.doi.org/10.1186/1556-276X-8-189] [PMID: 23618055]
[21]
Meng, Z.D.; Zhu, L.; Choi, J.G.; Park, C.Y.; Oh, W.C. Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light. Nanoscale Res. Lett., 2011, 6(1), 459.
[http://dx.doi.org/10.1186/1556-276X-6-459] [PMID: 21774800]
[22]
Fu, M.; Li, Q.; Sun, D.; Lu, Y.; He, N.; Deng, X.; Wang, H.; Huang, J. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin. J. Chem. Eng., 2006, 14, 114-117.
[http://dx.doi.org/10.1016/S1004-9541(06)60046-3]
[23]
Korbekandi, H.; Iravani, S.; Abbasi, S. Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J. Chem. Technol. Biotechnol., 2012, 87, 932-937.
[http://dx.doi.org/10.1002/jctb.3702]
[24]
Shivaji, S.; Madhu, S.; Singh, S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem., 2011, 46, 1800-1807.
[http://dx.doi.org/10.1016/j.procbio.2011.06.008]
[25]
Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Fatma, A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces, 2010, 81(1), 81-86.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.029] [PMID: 20656463]
[26]
Sunkar, S.; Nachiyar, C.V. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac. J. Trop. Biomed., 2012, 2(12), 953-959.
[http://dx.doi.org/10.1016/S2221-1691(13)60006-4] [PMID: 23593575]
[27]
Wen, L.; Lin, Z.; Gu, P.; Zhou, J.; Yao, B.; Chen, G.; Fu, J. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J. Nanopart. Res., 2009, 11, 279-288.
[http://dx.doi.org/10.1007/s11051-008-9378-z]
[28]
Du, L.; Jiang, H.; Liu, X.; Wang, E. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem. Commun., 2007, 9, 1165-1170.
[http://dx.doi.org/10.1016/j.elecom.2007.01.007]
[29]
Lengke, M.F.; Fleet, M.E.; Southam, G. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)--chloride complexes. Langmuir, 2006, 22(6), 2780-2787.
[http://dx.doi.org/10.1021/la052652c] [PMID: 16519482]
[30]
Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nagamine, S. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim. Acta, 2007, 53, 186-192.
[http://dx.doi.org/10.1016/j.electacta.2007.02.073]
[31]
Southam, G.; Beveridge, T.J. The in vitro formation of placer gold by bacteria. Geochim. Cosmochim. Acta, 1994, 58, 4527-4530.
[http://dx.doi.org/10.1016/0016-7037(94)90355-7]
[32]
He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett., 2007, 61, 3984-3987.
[http://dx.doi.org/10.1016/j.matlet.2007.01.018]
[33]
Deplanche, K.; Macaskie, L.E. Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol. Bioeng., 2008, 99(5), 1055-1064.
[http://dx.doi.org/10.1002/bit.21688] [PMID: 17969152]
[34]
Chen, Y.L.; Tuan, H.Y.; Tien, C.W.; Lo, W.H.; Liang, H.C.; Hu, Y.C. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol. Prog., 2009, 25(5), 1260-1266.
[http://dx.doi.org/10.1002/btpr.199] [PMID: 19630084]
[35]
Holmes, J.D.; Smith, P.R.; Evans-Gowing, R.; Richardson, D.J.; Russell, D.A.; Sodeau, J.R. Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch. Microbiol., 1995, 163(2), 143-147.
[http://dx.doi.org/10.1007/BF00381789] [PMID: 7710328]
[36]
Bai, H.; Zhang, Z.; Guo, Y.; Jia, W. Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Nanoscale Res. Lett., 2009, 4(7), 717-723.
[http://dx.doi.org/10.1007/s11671-009-9303-0] [PMID: 20596372]
[37]
Mann, S.; Frankel, R.B.; Blakemore, R.P. Structure, morphology and crystal growth of bacterial magnetite. Nature, 1984, 310, 405-407.
[http://dx.doi.org/10.1038/310405a0]
[38]
Philipse, A.P.; Maas, D. Magnetic colloids from magnetotactic bacteria: Chain formation and colloidal stability. Langmuir, 2002, 18, 9977-9984.
[http://dx.doi.org/10.1021/la0205811]
[39]
Marshall, M.J.; Beliaev, A.S.; Dohnalkova, A.C.; Kennedy, D.W.; Shi, L.; Wang, Z.; Boyanov, M.I.; Lai, B. Kemner, K.M.; McLean, J.S.; Reed, S.B.; Culley, D.E.; Bailey, V.L.; Simonson, C.J.; Saffarini, D.A.; Romine, M.F.; Zachara, J.M.; Fredrickson, J.K. c-Type cytochrome dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol., 2006, 4, 1324-1333.
[40]
Waghmare, S.S.; Deshmukh, A.M.; Kulkarni, S.W.; Oswaldo, L.A. Biosynthesis and characterization of manganese and zinc nanoparticles. Univers. J. Environ. Res. Technol., 2011, 1, 64-69.
[41]
Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K.V. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A, 2012, 90, 78-84.
[http://dx.doi.org/10.1016/j.saa.2012.01.006] [PMID: 22321514]
[42]
Gade, A.K.; Bonde, P.; Ingle, A.P.; Marcato, P.D.; Duran, N.; Rai, M.K. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J. Biobased Mater. Bioenergy, 2008, 2, 243-247.
[http://dx.doi.org/10.1166/jbmb.2008.401]
[43]
Bhainsa, K.C.; D’Souza, S.F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B Biointerfaces, 2006, 47(2), 160-164.
[http://dx.doi.org/10.1016/j.colsurfb.2005.11.026] [PMID: 16420977]
[44]
Vigneshwaran, N.; Kathe, A.A.; Varadarajan, P.V.; Nachane, R.P.; Balasubramanya, R.H. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf. B Biointerfaces, 2006, 53(1), 55-59.
[http://dx.doi.org/10.1016/j.colsurfb.2006.07.014] [PMID: 16962745]
[45]
Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine (Lond.), 2009, 5(4), 382-386.
[http://dx.doi.org/10.1016/j.nano.2009.06.005] [PMID: 19616127]
[46]
Sanghi, R.; Verma, P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour. Technol., 2009, 100(1), 501-504.
[http://dx.doi.org/10.1016/j.biortech.2008.05.048] [PMID: 18625550]
[47]
Balaji, D.S.; Basavaraja, S.; Deshpande, R.; Mahesh, D.B.; Prabhakar, B.K.; Venkataraman, A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B Biointerfaces, 2009, 68(1), 88-92.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.022] [PMID: 18995994]
[48]
Basavaraja, S.; Balaji, S.D.; Lagashetty, A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull., 2008, 43, 1164-1170.
[http://dx.doi.org/10.1016/j.materresbull.2007.06.020]
[49]
Ingle, A.; Rai, M.; Gade, A.; Bawaskar, M. Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanopart. Res., 2009, 11, 2079-2085.
[http://dx.doi.org/10.1007/s11051-008-9573-y]
[50]
Vigneshwaran, N.; Ashtaputre, N.M.; Varadarajan, P.V. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett., 2007, 61, 1413-1418.
[http://dx.doi.org/10.1016/j.matlet.2006.07.042]
[51]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine (Lond.), 2010, 6(1), 103-109.
[http://dx.doi.org/10.1016/j.nano.2009.04.006] [PMID: 19447203]
[52]
Mukherjee, P.; Ahmad, A.; Mandal, D. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1, 515-519.
[http://dx.doi.org/10.1021/nl0155274]
[53]
Shaligram, N.S.; Bule, M.; Bhambure, R. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem., 2009, 44, 939-943.
[http://dx.doi.org/10.1016/j.procbio.2009.04.009]
[54]
Ravindra, B.K. Rajasab. A.H. A comparative study on biosynthesis of silver nanoparticles using four different fungal species. Int. J. Pharma Sci., 2014, 6, 372-376.
[55]
Kathiresan, K.; Manivannan, S.; Nabeel, M.A.; Dhivya, B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf. B Biointerfaces, 2009, 71(1), 133-137.
[http://dx.doi.org/10.1016/j.colsurfb.2009.01.016] [PMID: 19269142]
[56]
Birla, S.S.; Tiwari, V.V.; Gade, A.K.; Ingle, A.P.; Yadav, A.P.; Rai, M.K. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol., 2009, 48(2), 173-179.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02510.x] [PMID: 19141039]
[57]
Ahmad, A.; Senapati, S.; Khan, M.I. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotechnol., 2005, 1, 47-53.
[http://dx.doi.org/10.1166/jbn.2005.012]
[58]
Gericke, M.; Pinches, A. Microbial production of gold nanoparticles. Gold Bull., 2006, 39, 22-28.
[http://dx.doi.org/10.1007/BF03215529]
[59]
Binupriya, A.R.; Sathishkumar, M.; Yun, S.I. Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids Surf. B Biointerfaces, 2010, 79(2), 531-534.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.021] [PMID: 20627484]
[60]
Philip, D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Acta. Part A., 2009, 73(2), 374-381.
[http://dx.doi.org/10.1016/j.saa.2009.02.037] [PMID: 19324587]
[61]
Senapati, S.; Ahmad, A.; Khan, M.I.; Sastry, M.; Kumar, R. Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small, 2005, 1(5), 517-520.
[http://dx.doi.org/10.1002/smll.200400053] [PMID: 17193479]
[62]
Dhandapani, P.; Maruthamuthu, S.; Rajagopal, G. Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J. Photochem. Photobiol. B, 2012, 110, 43-49.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.03.003] [PMID: 22483978]
[63]
Raliya, R.; Biswas, P.; Tarafdar, J.C. TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol. Rep. (Amst.), 2014, 5, 22-26.
[http://dx.doi.org/10.1016/j.btre.2014.10.009] [PMID: 28626678]
[64]
Ordenes-Aenishanslins, N.A.; Saona, L.A.; Durán-Toro, V.M.; Monrás, J.P.; Bravo, D.M.; Pérez-Donoso, J.M. Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microb. Cell Fact., 2014, 13(1), 90.
[http://dx.doi.org/10.1186/s12934-014-0090-7] [PMID: 25027643]
[65]
Singh, N.; Naraa, S. Biological synthesis and characterization of lead sulfide nanoparticles using bacterial isolates from heavy metal rich sites. Int. J. Agric. Food. Sci. Technol., 2013, 4, 16-23.
[66]
Khan, S.A.; Ahmad, A. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater. Res. Bull., 2013, 48, 4134-4138.
[http://dx.doi.org/10.1016/j.materresbull.2013.06.038]
[67]
Raliya, R.; Tarafdar, J.C. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: An eco-friendly approach. Int. Nano Lett., 2014, 4, 93.
[http://dx.doi.org/10.1007/s40089-014-0093-8]
[68]
Rajan, A.; Cherian, E.; Baskar, G. Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. Int. J. Mod. Sci. Tech., 2016, 1, 52-57.
[69]
Jayaseelana, C.; Rahumana, A.A.; Kirthi, A.V.; Marimuthua, S.; Santhoshkumara, T.; Bagavana, A. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica. Acta. Part A., 2012, 90, 78-84.
[http://dx.doi.org/10.1016/j.saa.2012.01.006]
[70]
Kowshik, M.; Vogel, W.; Urban, J. Microbial synthesis of semiconductor PbS nanocrystallites. Adv. Mater., 2002, 14, 815-818.
[http://dx.doi.org/10.1002/1521-4095(20020605)14:11<815:AID-ADMA815>3.0.CO;2-K]
[71]
Mourato, A.; Gadanho, M.; Lino, A.R.; Tenreiro, R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg. Chem. Appl., 2011., 2011546074.
[http://dx.doi.org/10.1155/2011/546074] [PMID: 21912532]
[72]
Nagarajan, S.; Arumugam Kuppusamy, K. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J. Nanobiotechnol, 2013, 11, 39.
[http://dx.doi.org/10.1186/1477-3155-11-39] [PMID: 24298944]
[73]
Mahdavi, M.; Namvar, F.; Ahmad, M.B.; Mohamad, R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 2013, 18(5), 5954-5964.
[http://dx.doi.org/10.3390/molecules18055954] [PMID: 23698048]
[74]
Ishwarya, R.; Vaseeharan, B.; Kalyani, S.; Banumathi, B.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Al-Anbr, M.N.; Khaled, J.M.; Benelli, G. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J. Photochem. Photobiol. B, 2018, 178, 249-258.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.006] [PMID: 29169140]
[75]
Xin, H.; Yang, X.; Liu, X.; Tang, X.; Weng, L.; Han, Y. Biosynthesis of iron nanoparticles using tie guanyin tea extract for degradation of bromothymol blue. J. Nanotechnol., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/4059591]
[76]
Mystrioti, C.; Xanthopoulou, T.D.; Tsakiridis, P.; Papassiopi, N.; Xenidis, A. Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction. Sci. Total Environ., 2016, 539, 105-113.
[http://dx.doi.org/10.1016/j.scitotenv.2015.08.091] [PMID: 26356183]
[77]
Kuang, Y.; Wang, Q.; Chen, Z.; Megharaj, M.; Naidu, R. Heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J. Colloid Interface Sci., 2013, 410, 67-73.
[http://dx.doi.org/10.1016/j.jcis.2013.08.020] [PMID: 24034218]
[78]
Ozkan, Z.Y.; Cakirgoz, M.; Kaymak, E.S.; Erdim, E. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles. Water Sci. Technol., 2018, 77(1-2), 511-517.
[http://dx.doi.org/10.2166/wst.2017.559] [PMID: 29377835]
[79]
Devatha, C.P.; Thalla, A.K.; Katte, S.Y. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean. Prod., 2016, 139, 1425-1435.
[http://dx.doi.org/10.1016/j.jclepro.2016.09.019]
[80]
Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ., 2014, 466-467, 210-213.
[http://dx.doi.org/10.1016/j.scitotenv.2013.07.022] [PMID: 23895784]
[81]
Muthukumar, H.; Manickam, M. Amaranthus spinosus leaf extract mediated FeO nanoparticles: Physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain. Chem. Eng., 2015, 3, 3149-3156.
[http://dx.doi.org/10.1021/acssuschemeng.5b00722]
[82]
Ehrampoush, M.H.; Miria, M.; Salmani, M.H.; Mahvi, A.H. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J. Environ. Health Sci. Eng., 2015, 13, 84.
[http://dx.doi.org/10.1186/s40201-015-0237-4] [PMID: 26682059]
[83]
El-Kassas, H.Y.; Aly-Eldeen, M.A.; Gharib, S.M. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Oceanol. Sin., 2016, 35, 89-98.
[http://dx.doi.org/10.1007/s13131-016-0880-3]
[84]
Alagiri, M.; Hamid, S.B.A. Green synthesis of a-Fe2O3 nanoparticles for photocatalytic application. J. Mater. Sci. Mater. Electron., 2014, 25, 3572-3577.
[http://dx.doi.org/10.1007/s10854-014-2058-0]
[85]
Hoag, G.E.; Collins, J.B.; Holcomb, J.L.; Hoag, J.R.; Nadagoudab, M.N.; Varma, R.S. Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J. Mater. Chem., 2009, 19, 8671-8677.
[http://dx.doi.org/10.1039/b909148c]
[86]
Shittu, K.O.; Ihebunna, O. Purification of simulated waste water using green synthesized silver nanoparticles of piliostigma thonningii aqueous leave extract. Adv. Nat. Sci. Nanosci. Nanotechnol., 2017, 8, 1-9.
[http://dx.doi.org/10.1088/2043-6254/aa8536]
[87]
Banerjee, P.; Sau, S.; Das, P.; Mukhopadhyay, A. Green synthesis of silver - nanocomposite for treatment of textile dye. Nanosci. Technol., 2014, 1, 1-6.
[88]
Suárez-Cerda, J.; Alonso-Nuñez, G.; Espinoza-Gómez, H.; Flores-López, L.Z. Synthesis, kinetics and photocatalytic study of “ultra-small” Ag-NPs obtained by a green chemistry method using an extract of Rosa ‘Andeli’ double delight petals. J. Colloid Interface Sci., 2015, 458, 169-177.
[http://dx.doi.org/10.1016/j.jcis.2015.07.049] [PMID: 26218196]
[89]
Al-Qahtani, K.M. Cadmium removal from aqueous solution by green synthesis zero-valent silver nanoparticles with Benjamina leaves extract. Egypt. J. Aquat. Res., 2017, 43, 269-274.
[http://dx.doi.org/10.1016/j.ejar.2017.10.003]
[90]
Kumari, J.; Singh, A. Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J. Genetic. Eng. Biotechnol., 2016, 14, 311-317.
[91]
Devi, G.K.; Kumar, P.S.; Kumar, K.S. Green synthesis of novel silver nanocomposite hydrogel based on sodium alginate as an efficient biosorbent for the dye wastewater treatment: Prediction of isotherm and kinetic parameters. Desalination Water Treat., 2016, 2016, 1-14.
[http://dx.doi.org/10.1080/19443994.2016.1178178]
[92]
Gangula, A.; Podila, R. M, R.; Karanam, L.; Janardhana, C.; Rao, A.M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir, 2011, 27(24), 15268-15274.
[http://dx.doi.org/10.1021/la2034559] [PMID: 22026721]
[93]
Choudhary, B.C.; Paul, D.; Gupta, T.; Tetgure, S.R.; Garole, V.J.; Borse, A.U.; Garole, D.J. Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. J. Environ. Sci. (China), 2017, 55, 236-246.
[http://dx.doi.org/10.1016/j.jes.2016.05.044] [PMID: 28477818]
[94]
Shanker, U.; Jassal, V.; Manviri, R. Catalytic removal of organic colorants from water using some transition 2 metal oxide nanoparticles synthesized under sunlight. RSC Adv, 2016, 6, 94989-94999.
[http://dx.doi.org/10.1039/C6RA17555D]
[95]
Davar, F.; Majedi, A.; Mirzaei, A. Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. J. Am. Ceram. Soc., 2015, 98, 1739-1746.
[http://dx.doi.org/10.1111/jace.13467]
[96]
Fu, L.; Fu, Z. Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram. Int., 2015, 41, 2492-2496.
[http://dx.doi.org/10.1016/j.ceramint.2014.10.069]
[97]
Jassal, V.; Shanker, U.; Kaitha, B.S.; Shankarb, S. Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Advances, 2015, 5, 26141-26149.
[http://dx.doi.org/10.1039/C5RA03266K]
[98]
Goutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.K.; Bharagava, R.N.; Thapa, K.B. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J., 2018, 336, 386-396.
[http://dx.doi.org/10.1016/j.cej.2017.12.029]
[99]
Sinha, T.; Ahmaruzzaman, M. Biogenic synthesis of Cu nanoparticles and its degradation behavior for methyl red. Mater. Lett., 2015, 159, 168-171.
[http://dx.doi.org/10.1016/j.matlet.2015.06.099]
[100]
Vinothkannan, M.; Karthikeyan, C. ; Gnana kumar, G.; Kim, A.R.; Yoo, D.J. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation.. Spectrochim. Acta A Mol. Biomol. Spectrosc.,, 2015, 136(Pt B), 256-264.
[http://dx.doi.org/10.1016/j.saa.2014.09.031 ] [PMID: 25311523]
[101]
Thakur, S.; Das, G.; Raul, P.K.; Karak, N. Green one-step approach to prepare sulfur/reduced graphene oxide nanohybrid for effective mercury ions removal. J. Phys. Chem. C, 2013, 117, 7636-7642.
[http://dx.doi.org/10.1021/jp400221k]
[102]
Hakim, Y.Z.; Yulizar, Y.; Nurcahyo, A.; Surya, M. Green synthesis of carbon nanotubes from coconut shell waste for Pb(II) Ion adsorption. Acta. Chim. Asiana, 2019, 1, 6-10.
[http://dx.doi.org/10.29303/aca.v1i1.2]
[103]
Vukovic, G.D.; Marinkovic, A.D.; Colic, M.; Ristic, M.D.; Aleksic, R.; Peric-Grujic, A.A. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J., 2010, 157, 238-248.
[http://dx.doi.org/10.1016/j.cej.2009.11.026]
[104]
Vukovic, G.D.; Marinkovic, A.D.; Skapin, S.D.; Ristic, M.D.; Aleksic, R.; Peric-Grujic, A.A. Removal of lead from water by amino modified multiwalled carbon nanotubes. Chem. Eng. J., 2011, 173, 855-865.
[http://dx.doi.org/10.1016/j.cej.2011.08.036]
[105]
Campos, A.F.C.; Aquino, R.; Cotta, T.A.P.G.; Tourinho, F.A.; Depeyrot, J. Using speciation diagrams to improve synthesis of magnetic nanosorbents for environmental applications. Bull. Mater. Sci., 2011, 34, 1357-1361.
[http://dx.doi.org/10.1007/s12034-011-0328-5]
[106]
Gupta, V.K.; Agarwal, S.; Saleh, T.A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res., 2011, 45(6), 2207-2212.
[http://dx.doi.org/10.1016/j.watres.2011.01.012] [PMID: 21303713]
[107]
Baby, R.; Saifullah, B.; Hussein, M.Z. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res. Lett., 2019, 14(1), 341.
[http://dx.doi.org/10.1186/s11671-019-3167-8] [PMID: 31712991]
[108]
Alekseeva, O.V.; Bagrovskaya, N.A.; Noskov, A.V. Sorption of heavy metal ions by fullerene and polystyrene/fullerene film compositions. Prot. Met. Phys. Chem. Surf., 2016, 52, 443-447.
[http://dx.doi.org/10.1134/S2070205116030035]
[109]
Mousavi, S.M. Pb(II) removal from synthetic wastewater using Kombucha scoby and graphene oxide/Fe3O4. Phys. Chem. Res., 2018, 6, 759-771.
[110]
Guo, T.; Bulin, C.; Li, B. Efficient removal of aqueous Pb(II) using partially reduced graphene oxide-Fe3O4. Adsorpt. Sci. Technol., 2018, 36, 1031-1048.
[http://dx.doi.org/10.1177/0263617417744402]
[111]
Zhang, C.Z.; Chen, B.; Bai, Y.; Xie, J. A new functionalized reduced graphene oxide adsorbent for removing heavy metal ions in water via coordination and ion exchange. Sep. Sci. Technol., 2018, 53, 2896-2905.
[http://dx.doi.org/10.1080/01496395.2018.1497655]
[112]
Tabish, T.A.; Memon, F.A.; Gomez, D.E.; Horsell, D.W.; Zhang, S. A facile synthesis of porous graphene for efficient water and wastewater treatment. Sci. Rep., 2018, 8(1), 1817.
[http://dx.doi.org/10.1038/s41598-018-19978-8] [PMID: 29379045]
[113]
Zheng, S.; Hao, L.; Zhang, L.; Wang, K.; Zheng, W.; Wang, X.; Zhou, X.; Li, W.; Zhang, L. Tea polyphenols functionalized and reduced graphene oxide-ZnO composites for selective Pb2+ removal and enhanced antibacterial activity. J. Biomed. Nanotechnol., 2018, 14(7), 1263-1276.
[http://dx.doi.org/10.1166/jbn.2018.2584] [PMID: 29944100]
[114]
Mohammad, H.; Dehghani, M.M.T.; Bajpai, A.K.; Heibati, B.; Tyagi, I.; Asif, M.; Agarwal, S.; Gupta, V.K. Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chem. Eng. J., 2015, 279, 8.
[115]
Alijani, H.; Shariatinia, Z. Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal. Chem. Eng. Res. Des., 2018, 129, 132-149.
[http://dx.doi.org/10.1016/j.cherd.2017.11.014]
[116]
Gupta, S.; Bhatiya, D.; Murthy, C.N. Metal removal studies by composite membrane of polysulfone and functionalized single-walled carbon nanotubes. Sep. Sci. Technol., 2015, 50, 9.
[http://dx.doi.org/10.1080/01496395.2014.973516]
[117]
Gupta, V.K.; Agarwal, S.; Saleh, T.A. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater., 2011, 185(1), 17-23.
[http://dx.doi.org/10.1016/j.jhazmat.2010.08.053] [PMID: 20888691]
[118]
Moosa, A.A.; Ridha, A.M.; Abdullha, I.N. Chromium ions removal from wastewater using carbon nanotubes. Int. J. Innovative. Res. Sci. Eng. Technol., 2015, 4, 8.
[119]
Farghali, A.A.; Abel Tawab, H.A.; Abdel Moaty, S.A.; Khaled, R. Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. J. Nanostructure. Chem., 2017, 7, 101-111.
[http://dx.doi.org/10.1007/s40097-017-0227-4]
[120]
Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem. Eng. J., 2016, 286, 640-662.
[http://dx.doi.org/10.1016/j.cej.2015.10.105]
[121]
Taghipour, S.; Hosseini, S.M.; Ataie-Ashtiani, B. Engineering nanomaterials for water and wastewater treatment: Review of classifications, properties and applications. New J. Chem., 2019, 43, 7902-7927.
[http://dx.doi.org/10.1039/C9NJ00157C]
[122]
Yang, H.Y.; Han, Z.J.; Yu, S.F.; Pey, K.L.; Ostrikov, K.; Karnik, R. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun., 2013, 4, 2220.
[http://dx.doi.org/10.1038/ncomms3220] [PMID: 23941894]
[123]
Pendolino, F.; Armata, N. Graphene Oxide in Environmental Remediation Process; Springer: Switzerland, 2017.
[http://dx.doi.org/10.1007/978-3-319-60429-9]
[124]
Lü, K.; Zhao, G.; Wang, X. A brief review of graphene-based material synthesis and its application in environmental pollution management. Chin. Sci. Bull., 2012, 57, 1223-1234.
[http://dx.doi.org/10.1007/s11434-012-4986-5]
[125]
Jannesari, M.; Akhavan, O.; Hosseini, H.R. Graphene oxide in generation of nanobubbles using controllable microvortices of jet flows. Carbon, 2018, 138, 8-17.
[http://dx.doi.org/10.1016/j.carbon.2018.05.068]
[126]
Chen, X.; Chen, B. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ. Sci. Technol., 2015, 49(10), 6181-6189.
[http://dx.doi.org/10.1021/es5054946] [PMID: 25877513]
[127]
Jiang, D.E.; Sumpter, B.G.; Dai, S. Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys., 2007, 126(13), 134701.
[http://dx.doi.org/10.1063/1.2715558] [PMID: 17430050]
[128]
Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B Condens. Matter, 1996, 54(24), 17954-17961.
[http://dx.doi.org/10.1103/PhysRevB.54.17954] [PMID: 9985930]
[129]
Hao, F.; Fang, D.; Xu, Z. Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett., 2011, 99, 041901.
[http://dx.doi.org/10.1063/1.3615290]
[130]
Verma, S.; Mungse, H.P.; Kumar, N.; Choudhary, S.; Jain, S.L.; Sain, B.; Khatri, O.P. Graphene oxide: An efficient and reusable carbocatalyst for aza-michael addition of amines to activated alkenes. Chem. Commun. (Camb.), 2011, 47(47), 12673-12675.
[http://dx.doi.org/10.1039/c1cc15230k] [PMID: 22039588]
[131]
Cseri, L.; Baugh, J.; Alabi, A.; AlHajaj, A.; Zou, L.; Dryfe, R.A.; Budd, P.M.; Szekely, G.J. Graphene oxide-polybenzimidazolium nanocomposite anion exchange membranes for electrodialysis. Mater. Chem. A., 2018, 6, 24728-24739.
[http://dx.doi.org/10.1039/C8TA09160A]
[132]
He, L.; Dumée, L.F.; Feng, C.; Velleman, L.; Reis, R.; She, F.; Gao, W.; Kong, L. Promoted water transport across graphene oxide-poly(amide) thin film composite membranes and their antibacterial activity. Desalination, 2015, 365, 126-135.
[http://dx.doi.org/10.1016/j.desal.2015.02.032]
[133]
Li, X.; Zhao, C.; Yang, M.; Yang, B.; Hou, D.; Wang, T. Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities. Appl. Surf. Sci., 2017, 419, 418-428.
[http://dx.doi.org/10.1016/j.apsusc.2017.04.080]
[134]
Chae, S.R.; Hotze, E.M.; Wiesner, M.R. Possible applications of fullerene nanomaterials in water treatment and reuse. Nanotechnology Applications for Clean Water; William Andrew Publishing: USA, 2014.
[http://dx.doi.org/10.1016/B978-1-4557-3116-9.00021-4]
[135]
Brunet, L.; Lyon, D.Y.; Hotze, E.M.; Alvarez, P.J.; Wiesner, M.R. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol., 2009, 43(12), 4355-4360.
[http://dx.doi.org/10.1021/es803093t] [PMID: 19603646]
[136]
Britz, D.A.; Khlobystov, A.N.; Wang, J.; O’Neil, A.S.; Poliakoff, M.; Ardavan, A.; Briggs, G.A. Selective host-guest interaction of single-walled carbon nanotubes with functionalised fullerenes. Chem. Commun. (Camb.), 2004, 2(2), 176-177.
[http://dx.doi.org/10.1039/B313585C] [PMID: 14737536]
[137]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[138]
Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P.T. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 93, 95-99.
[http://dx.doi.org/10.1016/j.saa.2012.03.002] [PMID: 22465774]
[139]
Quang, D.V.; Sarawade, P.B.; Jeon, S.J. Effective water disinfection using silver nanoparticle containing silica beads. Appl. Surf. Sci., 2013, 266, 280-287.
[http://dx.doi.org/10.1016/j.apsusc.2012.11.168]
[140]
Ferreira, A.M.; Roque, E.B.; Fonseca, F.V.D.; Borges, C.P. High flux microfiltration membranes with silver nanoparticles for water disinfection. Desalination Water Treat., 2015, 56, 3590-3598.
[http://dx.doi.org/10.1080/19443994.2014.1000977]
[141]
Ren, D.; Smith, J.A. Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment. Environ. Sci. Technol., 2013, 47(8), 3825-3832.
[http://dx.doi.org/10.1021/es4000752] [PMID: 23496137]
[142]
Qian, H.; Pretzer, L.A.; Velazquez, J.C.; Zhao, Z.; Wong, M.S. Gold nanoparticles for cleaning contaminated water. J. Chem. Technol. Biotechnol., 2013, 88, 735-741.
[http://dx.doi.org/10.1002/jctb.4030]
[143]
Thakor, A.S.; Paulmurugan, R.; Kempen, P.; Zavaleta, C.; Sinclair, R.; Massoud, T.F.; Gambhir, S.S. Oxidative stress mediates the effects of Raman-active gold nanoparticles in human cells. Small, 2011, 7(1), 126-136.
[http://dx.doi.org/10.1002/smll.201001466] [PMID: 21104804]
[144]
Thakor, A.S.; Jokerst, J.; Zavaleta, C.; Massoud, T.F.; Gambhir, S.S. Gold nanoparticles: A revival in precious metal administration to patients. Nano Lett., 2011, 11(10), 4029-4036.
[http://dx.doi.org/10.1021/nl202559p] [PMID: 21846107]
[145]
Thakor, A.S.; Luong, R.; Paulmurugan, R.; Lin, F.I.; Kempen, P.; Zavaleta, C.; Chu, P.; Massoud, T.F.; Sinclair, R.; Gambhir, S.S. The fate and toxicity of raman-active silica-gold nanoparticles in mice. Sci. Transl. Med., 2011, 3(79), 79ra33.
[http://dx.doi.org/10.1126/scitranslmed.3001963] [PMID: 21508310]
[146]
Rana, S.; Bajaj, A.; Mout, R.; Rotello, V.M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev., 2012, 64(2), 200-216.
[http://dx.doi.org/10.1016/j.addr.2011.08.006] [PMID: 21925556]
[147]
Gupta, R.; Kulkarni, G.U. Removal of organic compounds from water by using a gold nanoparticle-poly (dimethylsiloxane) nanocomposite foam. ChemSusChem, 2011, 4(6), 737-743.
[http://dx.doi.org/10.1002/cssc.201000410] [PMID: 21567977]
[148]
Lu, H.; Wang, J.; Stoller, M.; Wang, T.; Bao, Y.; Hao, H. An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng., 2016, 2016, 4964828.
[http://dx.doi.org/10.1155/2016/4964828]
[149]
Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater., 2014, 267, 194-205.
[http://dx.doi.org/10.1016/j.jhazmat.2013.12.062] [PMID: 24457611]
[150]
Liang, D.W.; Yang, Y.H.; Xu, W.W.; Peng, S.K.; Lu, S.F.; Xiang, Y. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: Mechanism and kinetics. J. Hazard. Mater., 2014, 278, 592-596.
[http://dx.doi.org/10.1016/j.jhazmat.2014.06.030] [PMID: 25019577]
[151]
Xiong, Z.; Lai, B.; Yang, P.; Zhou, Y.; Wang, J.; Fang, S. Comparative study on the reactivity of Fe/Cu bimetallic particles and Zero- Valent Iron (ZVI) under different conditions of N2, air or without aeration. J. Hazard. Mater., 2015, 297, 261-268.
[http://dx.doi.org/10.1016/j.jhazmat.2015.05.006] [PMID: 25978189]
[152]
Brasili, E.; Bavasso, I.; Petruccelli, V.; Vilardi, G.; Valletta, A.; Bosco, C.D.; Gentili, A.; Pasqua, G.; Di Palma, L. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci. Rep., 2020, 10(1), 1920.
[http://dx.doi.org/10.1038/s41598-020-58639-7] [PMID: 32024866]
[153]
Ling, L.; Pan, B.; Zhang, W.X. Removal of selenium from water with nanoscale zero-valent iron: Mechanisms of intraparticle reduction of Se(IV). Water Res., 2015, 71, 274-281.
[http://dx.doi.org/10.1016/j.watres.2015.01.002] [PMID: 25622004]
[154]
Ling, L.; Zhang, W.X. Enrichment and encapsulation of uranium with iron nanoparticle. J. Am. Chem. Soc., 2015, 137(8), 2788-2791.
[http://dx.doi.org/10.1021/ja510488r] [PMID: 25689272]
[155]
Gueye, M.T.; Palma, L.D.; Allahverdeyeva, G. Hexavalent chromium reduction by nano zero-valent iron in soil. Chem. Eng. Trans., 2016, 47, 289-294.
[156]
Wang, Y.; Fang, Z.; Kang, Y.; Tsang, E.P. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. J. Hazard. Mater., 2014, 275, 230-237.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.056] [PMID: 24880637]
[157]
Singh, R.; Misra, V. Stabilization of zero-valent iron nanoparticles: role of polymers and surfactants. Handbook of Nanoparticles; Aliofkhazraei, M., Ed.; Springer: New York, NY, USA, 2015, Vol. 1-19, pp. 985-1007.
[http://dx.doi.org/10.1007/978-3-319-13188-7_44-2]
[158]
Chen, Z.X.; Jin, X.Y.; Chen, Z.; Megharaj, M.; Naidu, R. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J. Colloid Interface Sci., 2011, 363(2), 601-607.
[http://dx.doi.org/10.1016/j.jcis.2011.07.057] [PMID: 21864843]
[159]
Li, X.Y.; Ai, L.H.; Jiang, J. Nanoscale zero-valent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: surface corrosion retard induced the enhanced performance. Chem. Eng. J., 2016, 288, 789-797.
[http://dx.doi.org/10.1016/j.cej.2015.12.022]
[160]
Lv, X.; Xue, X.; Jiang, G.; Wu, D.; Sheng, T.; Zhou, H.; Xu, X. Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. J. Colloid Interface Sci., 2014, 417, 51-59.
[http://dx.doi.org/10.1016/j.jcis.2013.11.044] [PMID: 24407658]
[161]
Berge, N.D.; Ramsburg, C.A. Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environ. Sci. Technol., 2009, 43(13), 5060-5066.
[http://dx.doi.org/10.1021/es900358p] [PMID: 19673307]
[162]
Tratnyek, P.G.; Salter, A.J.; Nurmi, J.T.; Sarathy, V. Environmental applications of zero-valent metals: Iron vs. zinc. ACS Symp. Series, 2010, 1045, 165-178.
[http://dx.doi.org/10.1021/bk-2010-1045.ch009]
[163]
Bokare, V.; Jung, J.L.; Chang, Y.Y.; Chang, Y.S. Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zero-valent zinc: Modeling of rate kinetics and congener profile. J. Hazard. Mater., 2013, 250-251, 397-402.
[http://dx.doi.org/10.1016/j.jhazmat.2013.02.020] [PMID: 23500419]
[164]
Imamura, K.; Yoshikawa, T.; Hashimoto, K.; Kominami, H. Stoichiometric production of aminobenzenes and ketones by photocatalytic reduction of nitrobenzenes in secondary alcoholic suspension of titanium(IV) oxide under metal-free conditions. Appl. Catal. B, 2013, 134-135, 193-197.
[http://dx.doi.org/10.1016/j.apcatb.2013.01.015]
[165]
Rawal, S.B.; Bera, S.; Lee, D.; Jang, D.J.; Lee, W.I. Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: Effect of their relative energy band positions on the photocatalytic efficiency. Catal. Sci. Technol., 2013, 3, 1822-1830.
[http://dx.doi.org/10.1039/c3cy00004d]
[166]
Ohsaka, T.; Shinozaki, K.; Tsuruta, K.; Hirano, K. Photo-electrochemical degradation of some chlorinated organic compounds on n-TiO2 electrode. Chemosphere, 2008, 73(8), 1279-1283.
[http://dx.doi.org/10.1016/j.chemosphere.2008.07.016] [PMID: 18718634]
[167]
Guo, M.; Song, W.; Wang, T.; Li, Y.; Wang, X.; Du, X. Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta, 2015, 144, 998-1006.
[http://dx.doi.org/10.1016/j.talanta.2015.07.064] [PMID: 26452919]
[168]
Lee, Y.; Kim, S.; Venkateswaran, P.; Jang, J.; Kim, H.; Kim, J. Anion co-doped titania for solar photocatalytic degradation of dyes., Carbon lett.,, 2008, 9, 131-136.
[169]
Nguyen, A.T.; Hsieh, C.T.; Juang, R.S. Substituent effects on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation. J. Taiwan. Inst. Chem. E., 2016, 62, 68-75.
[170]
Alalm, M.G.; Tawfik, A.; Ookawara, S. Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: Operational conditions, kinetics, and costs. J. Water Process Eng., 2015, 8, 55-63.
[http://dx.doi.org/10.1016/j.jwpe.2015.09.007]
[171]
Chen, Z.; Li, Y.; Guo, M.; Xu, F.; Wang, P.; Du, Y.; Na, P. One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III). J. Hazard. Mater., 2016, 310, 188-198.
[http://dx.doi.org/10.1016/j.jhazmat.2016.02.034] [PMID: 26921512]
[172]
Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol., 2011, 90(6), 1847-1868.
[http://dx.doi.org/10.1007/s00253-011-3213-7] [PMID: 21523480]
[173]
Anpo, M.; Kishiguchi, S.; Ichihashi, Y. The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method. Res. Chem. Intermed., 2001, 27, 459-467.
[http://dx.doi.org/10.1163/156856701104202101]
[174]
Seery, M.K.; George, R.; Floris, P.; Pillai, S.C. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. Chem., 2007, 189, 258-263.
[http://dx.doi.org/10.1016/j.jphotochem.2007.02.010]
[175]
Page, K.; Palgrave, R.G.; Parkin, I.P.; Wilson, M.; Savin, S.L.P.; Chadwick, A.V. Titania and silver-titania composite films on glass-potent antimicrobial coatings. J. Mater. Chem., 2007, 17, 95-104.
[http://dx.doi.org/10.1039/B611740F]
[176]
Liu, C.C.; Hsieh, Y.H.; Lai, P.F.; Li, C.H.; Kao, C.L. Photodegradation treatment of azo dye wastewater by UV/TiO2 process. Dyes. Pigm., 2006, 68, 191-195.
[http://dx.doi.org/10.1016/j.dyepig.2004.12.002]
[177]
Meng, S.; Mansouri, J.; Ye, Y.; Chen, V. Effect of templating agents on the properties and membrane distillation performance of TiO2-coated PVDF membranes. J. Membr. Sci., 2014, 450, 48-59.
[http://dx.doi.org/10.1016/j.memsci.2013.08.036]
[178]
Razmjou, A.; Mansouri, J.; Chen, V.; Lim, M.; Amal, R. Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process. J. Membr. Sci., 2011, 380, 98-113.
[http://dx.doi.org/10.1016/j.memsci.2011.06.035]
[179]
Razmjou, A.; Holmes, A.R.L.; Li, H.; Mansouri, J.; Chen, V. The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes. Desalination, 2012, 287, 271-280.
[http://dx.doi.org/10.1016/j.desal.2011.11.025]
[180]
Hamming, L.M.; Qiao, R.; Messersmith, P.B.; Brinson, L.C. Effects of dispersion and interfacial modification on the macroscale properties of TiO2 polymer matrix nanocomposites. Compos. Sci. Technol., 2009, 69(11-12), 1880-1886.
[http://dx.doi.org/10.1016/j.compscitech.2009.04.005] [PMID: 20161273]
[181]
Rajesh, S.; Senthilkumar, S.; Jayalakshmi, A.; Nirmala, M.T.; Ismail, A.F.; Mohan, D. Preparation and performance evaluation of poly (amide-imide) and TiO2 nanoparticles impregnated polysulfone nanofiltration membranes in the removal of humic substances. Colloids Surf. A Physicochem. Eng. Asp., 2013, 418, 92-104.
[http://dx.doi.org/10.1016/j.colsurfa.2012.11.029]
[182]
Kangwansupamonkon, W.; Jitbunpot, W.; Kiatkamjornwong, S. Photocatalytic efficiency of TiO2/poly[acrylamide-co-(acrylic acid)] composite for textile dye degradation. Polym. Degrad. Stabil., 2010, 95, 1894-1902.
[http://dx.doi.org/10.1016/j.polymdegradstab.2010.04.019]
[183]
Janotti, A.; Van deWalle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys., 2009, 72, 126501.
[http://dx.doi.org/10.1088/0034-4885/72/12/126501]
[184]
Daneshvar, N.; Salari, D.; Khataee, A.R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. Chem., 2004, 162, 317-322.
[http://dx.doi.org/10.1016/S1010-6030(03)00378-2]
[185]
Gomez-Sol’ıs, C.; Ballesteros, J.C.; Torres-Martinez, L.M. Rapid synthesis of ZnO nano-corncobs from nital solution and its application in the photodegradation of methyl orange. J. Photochem. Photobiol. Chem., 2015, 298, 49-54.
[http://dx.doi.org/10.1016/j.jphotochem.2014.10.012]
[186]
Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res., 2016, 88, 428-448.
[http://dx.doi.org/10.1016/j.watres.2015.09.045] [PMID: 26519627]
[187]
Samadi, M.; Pourjavadi, A.; Moshfegh, A.Z. Role of CdO addition on the growth and photocatalytic activity of electrospun ZnO nanofibers: UV vs. visible light. Appl. Surf. Sci., 2014, 298, 147-154.
[http://dx.doi.org/10.1016/j.apsusc.2014.01.146]
[188]
Liu, I.T.; Hon, M.H.; Teoh, L.G. The preparation, characterization and photocatalytic activity of radical-shaped CeO2/ZnO microstructures. Ceram. Int., 2014, 40, 4019-4024.
[http://dx.doi.org/10.1016/j.ceramint.2013.08.053]
[189]
Uddin, M.T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Servant, L.; Müller, M.M.; Kleebe, H.J.; Ziegler, J.; Jaegermann, W. Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem., 2012, 51(14), 7764-7773.
[http://dx.doi.org/10.1021/ic300794j] [PMID: 22734686]
[190]
Pant, H.R.; Park, C.H.; Pant, B.; Tijing, L.D.; Kim, H.Y.; Kim, C.S. Synthesis, characterization, and photocatalytic properties of ZnO nano-flower containing TiO2 NPs. Ceram. Int., 2012, 38, 2943-2950.
[http://dx.doi.org/10.1016/j.ceramint.2011.11.071]
[191]
Lei, Y.; Chen, F.; Luo, Y.; Zhang, L. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J. Mater. Sci., 2014, 49, 4236-4245.
[http://dx.doi.org/10.1007/s10853-014-8118-2]
[192]
Tan, L.; Xu, J.; Xue, X. Multifunctional nanocomposite Fe3O4αSiO2-mPD/SP for selective removal of Pb(II) and Cr(VI) from aqueous solutions. RSC Advances, 2014, 4, 45920-45929.
[193]
Ge, F.; Li, M.M.; Ye, H.; Zhao, B.X. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater., 2012, 211-212, 366-372.
[http://dx.doi.org/10.1016/j.jhazmat.2011.12.013] [PMID: 22209322]
[194]
Khaydarov, R.A.; Khaydarov, R.R.; Gapurova, O. Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites. Water Res., 2010, 44(6), 1927-1933.
[http://dx.doi.org/10.1016/j.watres.2009.11.041] [PMID: 20031184]
[195]
Liang, H.; Xu, B.; Wang, Z. Self-assembled 3D flower-like α- Fe2O3 microstructures and their superior capability for heavy metal ion removal. Mater. Chem. Phys., 2013, 141, 727-734.
[http://dx.doi.org/10.1016/j.matchemphys.2013.05.070]
[196]
de Souza, K.C.; Andrade, G.F.; Vasconcelos, I.; de Oliveira Viana, I.M.; Fernandes, C.; de Sousa, E.M.B. Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma. Mater. Sci. Eng. C, 2014, 40, 275-280.
[http://dx.doi.org/10.1016/j.msec.2014.04.004] [PMID: 24857494]
[197]
Yu, J.; Huang, D.Y.; Yousaf, M.Z.; Hou, Y.L.; Gao, S. Magnetic nanoparticle-based cancer therapy. Chin. Phys. B, 2013, 22, 27506.
[http://dx.doi.org/10.1088/1674-1056/22/2/027506]
[198]
de la Escosura-Muñiz, A.; Plichta, Z.; Horák, D.; Merkoçi, A. Alzheimer’s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens. Bioelectron., 2015, 67, 162-169.
[http://dx.doi.org/10.1016/j.bios.2014.07.086] [PMID: 25153932]
[199]
Cui, J.; Feng, Y.; Yue, S.; Zhao, Y.; Li, L.; Liu, R.; Lin, T. Magnetic mesoporous enzyme silica composites with high activity and enhanced stability. J. Chem. Technol. Biotechnol., 2016, 91, 1905-1913.
[http://dx.doi.org/10.1002/jctb.4786]
[200]
Pastora, J.G.; Dominguez, S.; Bringas, E.; Rivero, M.J.; Ortiz, I. Review and perspectives on the use of Magnetic Nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J., 2017, 310, 407-427.
[http://dx.doi.org/10.1016/j.cej.2016.04.140]
[201]
Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater., 2012, 211-212, 317-331.
[http://dx.doi.org/10.1016/j.jhazmat.2011.10.016] [PMID: 22018872]
[202]
Ortega, D.; Pankhurst, Q.A. magnetic hyperthermia. ; Nanoscience: Nanostructures through Chemistry; O'Brien, P., Ed; Royal Society of Chemistry, Cambridge, 2012, 1, pp. 60-88.
[203]
Shi, J.; Wang, J.; Wang, W.; Teng, W.; Zhang, W.X. Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC). J. Environ. Sci. (China), 2019, 81, 28-33.
[http://dx.doi.org/10.1016/j.jes.2019.02.010] [PMID: 30975326]
[204]
Du, J.; Che, D.; Li, X.; Guo, W.; Ren, N. Factors affecting p-nitrophenol removal by microscale zero-valent iron coupling with Weak Magnetic Field (WMF). RSC Advances, 2017, 7, 18231-18237.
[http://dx.doi.org/10.1039/C7RA02002C]
[205]
Lu, H.J.; Wang, J.K.; Ferguson, S.; Wang, T.; Bao, Y.; Hao, H.X. Mechanism, synthesis and modification of nano zero-valent iron in water treatment. Nanoscale, 2016, 8(19), 9962-9975.
[http://dx.doi.org/10.1039/C6NR00740F] [PMID: 27128356]
[206]
Wodka, D.; Bielańska, E.; Socha, R.P.; Elzbieciak-Wodka, M.; Gurgul, J.; Nowak, P.; Warszyński, P.; Kumakiri, I. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl. Mater. Interfaces, 2010, 2(7), 1945-1953.
[http://dx.doi.org/10.1021/am1002684] [PMID: 20568701]
[207]
Mesa, J.J.; Bolivar, L.G.; Sarmiento, H.A.; Martínez, E.G.; Páez, C.J.; Lara, M.A.; Santos, J.A.; López, M.D. Urban wastewater treatment by using Ag/ZnO and Pt/TiO2 photocatalysts. Environ. Sci. Pollut. Res. Int., 2018, 2, 1-9.
[208]
Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Lee, J.; Cho, M.H. Biogenic synthesis, photocatalytic, and photoelectro chemical performance of Ag-ZnO nanocomposite. J. Phys. Chem. C, 2013, 117, 27023-27030.
[http://dx.doi.org/10.1021/jp410063p]
[209]
He, W.; Wu, H.; Wamer, W.G.; Kim, H.K.; Zheng, J.; Jia, H.; Zheng, Z.; Yin, J.J. Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers. ACS Appl. Mater. Interfaces, 2014, 6(17), 15527-15535.
[http://dx.doi.org/10.1021/am5043005] [PMID: 25116236]
[210]
Kwiatkowski, M.; Chassagnon, R.; Heintz, O.; Geoffroy, N.; Skompska, M.; Bezverkhyy, I. Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism. Appl. Catal. B, 2017, 204, 200-208.
[http://dx.doi.org/10.1016/j.apcatb.2016.11.030]
[211]
Khaki, M.R.; Shafeeyan, M.S.; Raman, A.A.; Daud, W.M. Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J. Mol. Liq., 2018, 258, 354-365.
[http://dx.doi.org/10.1016/j.molliq.2017.11.030]
[212]
Hadjltaief, H.B.; Zina, M.B.; Galvez, M.E.; Da Costa, P. Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO-TiO2 catalysts. J. Photochem. Photobiol. Chem., 2016, 315, 25-33.
[http://dx.doi.org/10.1016/j.jphotochem.2015.09.008]
[213]
Wang, L.; Liu, S.; Wang, Z.; Zhou, Y.; Qin, Y.; Wang, Z.L. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano, 2016, 10(2), 2636-2643.
[http://dx.doi.org/10.1021/acsnano.5b07678] [PMID: 26745209]
[214]
Jonidi-Jafari, A.; Shirzad-Siboni, M.; Yang, J.K.; Naimi-Joubani, M.; Farrokhi, M. Photocatalytic degradation of diazinon with illuminated ZnO-TiO2 composite. J. Taiwan Inst. Chem. Eng., 2015, 50, 100-107.
[http://dx.doi.org/10.1016/j.jtice.2014.12.020]
[215]
Naimi-Joubani, M.; Shirzad-Siboni, M.; Yang, J.K.; Gholami, M.; Farzadkia, M. Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. J. Ind. Eng. Chem., 2015, 22, 317-323.
[http://dx.doi.org/10.1016/j.jiec.2014.07.025]
[216]
de Franco, M.A.E.; da Silva, W.L.; Bagnara, M.; Lansarin, M.A.; Dos Santos, J.H.Z. Photocatalytic degradation of nicotine in an aqueous solution using unconventional supported catalysts and commercial ZnO/TiO2 under ultraviolet radiation. Sci. Total Environ., 2014, 494-495, 97-103.
[http://dx.doi.org/10.1016/j.scitotenv.2014.06.139] [PMID: 25038428]
[217]
Nezamzadeh-Ejhieh, A.; Bahrami, M. Investigation of the photocatalytic activity of supported ZnO-TiO2 on clinoptilolite nano-particles towards photodegradation of wastewater-contained phenol. Desalination Water Treat., 2015, 55, 1096-1104.
[http://dx.doi.org/10.1080/19443994.2014.922443]
[218]
Sun, W.; Meng, S.; Zhang, S.; Zheng, X.; Ye, X.; Fu, X.; Chen, S. Insight into the transfer mechanisms of photogenerated carriers for heterojunction photocatalysts with the analogous positions of valence band and conduction band: A case study of ZnO/TiO2. J. Phys. Chem. C, 2018, 122, 15409-15420.
[http://dx.doi.org/10.1021/acs.jpcc.8b03753]
[219]
Naseri, A.; Samadi, M.; Mahmoodi, N.M.; Pourjavadi, A.; Mehdipour, H.; Moshfegh, A.Z. Tuning composition of electrospun ZnO/CuO nanofibers: Toward controllable and efficient solar photocatalytic degradation of organic pollutants. J. Phys. Chem. C, 2017, 121, 3327-3338.
[http://dx.doi.org/10.1021/acs.jpcc.6b10414]
[220]
Samad, A.; Furukawa, M.; Katsumata, H.; Suzuki, T.; Kaneco, S. Photocatalytic oxidation and simultaneous removal of arsenite with CuO/ZnO photocatalyst. J. Photochem. Photobiol., 2016, 325, 97-103.
[http://dx.doi.org/10.1016/j.jphotochem.2016.03.035]
[221]
Renuka, L.; Anantharaju, K.S.; Vidya, Y.S.; Nagaswarupa, H.P.; Prashantha, S.C.; Nagabhushana, H. Synthesis of sunlight driven ZnO/CuO nanocomposite: characterization, optical, electrochemical and photocatalytic studies. Mats Today: Proc., 2017, 4, 11782-11790.
[222]
Tuncel, D.; Ökte, A.N. ZnO@CuO derived from Cu-BTC for efficient UV-induced photocatalytic applications. Catal. Today, 2019, 328, 149-156.
[http://dx.doi.org/10.1016/j.cattod.2018.10.049]
[223]
Esmaili-Hafshejani, J.; Nezamzadeh-Ejhieh, A. Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution. J. Hazard. Mater., 2016, 316, 194-203.
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.006] [PMID: 27235827]
[224]
Mukwevho, N.; Fosso-Kankeu, E.; Waanders, F.; Kumar, N.; Ray, S.S.; Mbianda, X.Y. Photocatalytic activity of Gd2O2CO3•ZnO•CuO nanocomposite used for the degradation of phenanthrene. SN Appl. Sci., 2019, 1, 10.
[http://dx.doi.org/10.1007/s42452-018-0012-0]
[225]
Khajeh, M.; Laurent, S.; Dastafkan, K. Nanoadsorbents: Classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev., 2013, 113(10), 7728-7768.
[http://dx.doi.org/10.1021/cr400086v] [PMID: 23869773]
[226]
Diallo, M.S.; Christie, S.; Swaminathan, P.; Johnson, J.H., Jr; Goddard, W.A. III Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ. Sci. Technol., 2005, 39(5), 1366-1377.
[http://dx.doi.org/10.1021/es048961r] [PMID: 15787379]
[227]
Sadeghi-Kiakhani, M.; Mokhtar Arami, M.; Gharanjig, K. Dye removal from colored-textile wastewater using chitosan-PPI dendrimer hybrid as a biopolymer: Optimization, kinetic, and isotherm studies. J. Appl. Polym. Sci., 2013, 127, 2607-2619.
[http://dx.doi.org/10.1002/app.37615]
[228]
McCarthy, A.A. Dendritic nanotechnologies. Inc. Chem. Biol., 2005, 12(5), 499-501.
[http://dx.doi.org/10.1016/j.chembiol.2005.05.006] [PMID: 15911366]
[229]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[230]
Petrik, L.; Missengue, R.; Fatoba, M.; Tuffin, M. Silver/zeolite nano composite-based clay filters for water disinfection. Report to the Water Research Commission. No KV 297/12.. http://www.ircwash.org/resources/silver-zeolite-nano-composite-based-clay-filters-water-disinfection
[231]
Tiwari, D.K.; Behari, J.; Sen, P. Application of nanoparticles in waste water treatment. World Appl. Sci. J., 2008, 3, 417-433.
[232]
Jung, J.Y.; Chung, Y.C.; Shin, H.S.; Son, D.H. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process. Water Res., 2004, 38(2), 347-354.
[http://dx.doi.org/10.1016/j.watres.2003.09.025] [PMID: 14675646]
[233]
Aredes, S.; Klein, B.; Pawlik, M. The removal of arsenic from water using natural iron oxide minerals. J. Clean. Prod., 2012, 29-30, 208-213.
[http://dx.doi.org/10.1016/j.jclepro.2012.01.029]
[234]
Sushma, D.; Richa, S. Use of nanoparticles in water treatment: A review. Int. Res. J. Environ. Sci., 2015, 4, 103-106.
[235]
Tabasideh, S.; Maleki, A.; Shahmoradi, B.; Ghahremani, E.; McKay, G. Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles. Separ. Purif. Tech., 2017, 189, 186-192.
[http://dx.doi.org/10.1016/j.seppur.2017.07.065]
[236]
Sangami, S.; Manu, B. Catalytic efficiency of laterite-based FeNPs for the mineralization of mixture of herbicides in water. Environ. Technol., 2019, 40, 2671-2683.https://www.tandfonline.com/doi/abs/10.1080/09593330.2018.1449899?journalCode=tent20
[PMID: 29513095]
[237]
Abdullahi, M.A.; Amir, M.; Asiri, S.M.; Korkmaz, A.D.; Baykal, A.; Soylu, G.S.P.; Karakuş, S.; Kilislioğlu, S. Photocatalytic degradation of azo dyes and organic contaminants in wastewater using magnetically recyclable Fe3O4@UA-cu nano-catalyst. Catal. Lett., 2018, 148, 1130-1141.
[http://dx.doi.org/10.1007/s10562-018-2322-7]
[238]
Zhang, M.; Feng, R.Q.; Liu, H.; Wang, L.; Wang, Z. Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs. Chem. Eng. J., 2016, 301, 1-11.
[http://dx.doi.org/10.1016/j.cej.2016.04.096]
[239]
Chaturvedi, S.; Dave, P.N.; Shah, N.K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc., 2012, 16(3), 307-325.
[http://dx.doi.org/10.1016/j.jscs.2011.01.015]
[240]
Zhang, K.; Kemp, K.C.; Chandra, V. Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater. Lett., 2012, 81, 127-130.
[http://dx.doi.org/10.1016/j.matlet.2012.05.002]
[241]
Wua, Z.C.; Zhanga, Y.; Taoa, T.X.; Zhangb, L.; Fongb, H. Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water. Appl. Surf. Sci., 2010, 257, 1092-1097.
[http://dx.doi.org/10.1016/j.apsusc.2010.08.022]
[242]
Khalil, A.; Gondal, M.A.; Dastageer, M.A. Augmented photocatalytic activity of palladium incorporated ZnO nanoparticles in the disinfection of Escherichia coli microorganism from water. Appl. Catal. A Gen., 2011, 402, 162-167.
[http://dx.doi.org/10.1016/j.apcata.2011.05.041]
[243]
Hildebrand, H.; Mackenzie, K.; Kopinke, F.D. Novel nano-catalysts for wastewater treatment. Glob. NEST J., 2008, 10, 47-53.
[244]
Shon, H.K.; Phuntsho, S.; Chaudhary, D.S.; Vigneswaran, S.; Cho, J. Nanofiltration for water and wastewater treatment - a mini review. Drink. Water Eng. Sci., 2013, 6, 47-53.
[http://dx.doi.org/10.5194/dwes-6-47-2013]
[245]
Nqombolo, A.; Mpupa, A.; Moutloali, R.M.; Nomngongo, P.N. Wastewater treatment using. Membr. Technol., 2018.
[http://dx.doi.org/10.5772/intechopen.76624]
[246]
Abdel-Fatah, M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain. Shams. Eng. J., 2018, 9, 3077-3092.
[http://dx.doi.org/10.1016/j.asej.2018.08.001]
[247]
Mulyanti, R.; Susanto, H. In:. Wastewater treatment by nanofiltration membranes,, IOP Conf. Series: Earth. Environ. Sci. (Ruse),, 2018, 142, 012017
[248]
Shahmansouri, A.; Bellona, C. Nanofiltration technology in water treatment and reuse: Applications and costs. Water Sci. Technol., 2015, 71, 309-19.
[249]
Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl., 2015, 8, 1-17.
[http://dx.doi.org/10.2147/NSA.S43773] [PMID: 25609931]
[250]
Yang, M.; Zhao, C.; Zhang, S.; Li, P.; Hou, D. Preparation of graphene oxide modified poly (m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property. Appl. Surf. Sci., 2017, 394, 149-159.
[http://dx.doi.org/10.1016/j.apsusc.2016.10.069]
[251]
Xu, Y.C.; Wang, Z.X.; Cheng, X.Q.; Xiao, Y.C.; Shao, L. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment. Chem. Eng. J., 2016, 303, 555-564.
[http://dx.doi.org/10.1016/j.cej.2016.06.024]
[252]
Lind, M.L.; Ghosh, A.K.; Jawor, A.; Huang, X.; Hou, W.; Yang, Y.; Hoek, E.M. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. Langmuir, 2009, 25(17), 10139-10145.
[http://dx.doi.org/10.1021/la900938x] [PMID: 19527039]
[253]
Peyravi, M.; Jahanshahi, M.; Rahimpour, A.; Javadi, A.; Hajavi, S. Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration. Chem. Eng. J., 2014, 241, 155-166.
[http://dx.doi.org/10.1016/j.cej.2013.12.024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy