Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Stem Cell Based Preclinical Drug Development and Toxicity Prediction

Author(s): Dhruv Kumar*, Prakash Baligar, Rajpal Srivastav, Priyanka Narad, Sibi Raj, Chanderdeep Tandon and Simran Tandon*

Volume 27, Issue 19, 2021

Published on: 19 October, 2020

Page: [2237 - 2251] Pages: 15

DOI: 10.2174/1381612826666201019104712

Price: $65

Abstract

Stem cell based toxicity prediction plays a very important role in the development of the drug. Unexpected adverse effects of the drugs during clinical trials are a major reason for the termination or withdrawal of drugs. Methods for predicting toxicity employ in vitro as well as in vivo models; however, the major drawback seen in the data derived from these animal models is the lack of extrapolation, owing to interspecies variations. Due to these limitations, researchers have been striving to develop more robust drug screening platforms based on stem cells. The application of stem cells based toxicity testing has opened up robust methods to study the impact of new chemical entities on not only specific cell types, but also organs. Pluripotent stem cells, as well as cells derived from them, can be evaluated for modulation of cell function in response to drugs. Moreover, the combination of state-of-the -art techniques such as tissue engineering and microfluidics to fabricate organ- on-a-chip, has led to assays which are amenable to high throughput screening to understand the adverse and toxic effects of chemicals and drugs. This review summarizes the important aspects of the establishment of the embryonic stem cell test (EST), use of stem cells, pluripotent, induced pluripotent stem cells and organoids for toxicity prediction and drug development.

Keywords: Stem cell, high throughput screening, induced pluripotent stem cell, organoids, toxicity prediction, drug development.

[1]
De Coster S, van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health 2012; 2012: 713696.
[http://dx.doi.org/10.1155/2012/713696] [PMID: 22991565]
[2]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7.
[http://dx.doi.org/10.1126/science.282.5391.1145] [PMID: 9804556]
[3]
Force IIHESCRT. Guidelines for the Conduct of Human Embryonic Stem Cell Research. Curr Protoc Stem Cell Biol 2006; 1: 1-12.
[4]
Wang Q, Lin JL, Chan SY, Lin JJ. The Xin repeat-containing protein, mXinβ, initiates the maturation of the intercalated discs during postnatal heart development. Dev Biol 2013; 374(2): 264-80.
[http://dx.doi.org/10.1016/j.ydbio.2012.12.007] [PMID: 23261932]
[5]
Bremer S, Hartung T. The use of embryonic stem cells for regulatory developmental toxicity testing in vitro--the current status of test development. Curr Pharm Des 2004; 10(22): 2733-47.
[http://dx.doi.org/10.2174/1381612043383700] [PMID: 15320739]
[6]
Mori H, Hara M. Cultured stem cells as tools for toxicological assays. J Biosci Bioeng 2013; 116(6): 647-52.
[http://dx.doi.org/10.1016/j.jbiosc.2013.05.028] [PMID: 23827858]
[7]
Spielmann H, Pohl I, Döring B, et al. The embryonic stem cell test (EST), an in vitro embryotoxicity test using two permanent mouse cell lines: 3T3 fibroblasts and embryonic stem cells. In Vitro Toxicol 1997; 10: 119-27.
[8]
Genschow E, Spielmann H. The ECVAM international validation study on in vitro embryotoxicity tests: Results of the definitive phase and evaluation of prediction models. ATLA 2002; 30: 151-76.
[9]
Jyoti S, Tandon S. Genetic basis for developmental toxicity due to statin intake using embryonic stem cell differentiation model. Hum Exp Toxicol 2015; 34(10): 965-84.
[http://dx.doi.org/10.1177/0960327114564795] [PMID: 25712412]
[10]
Jyoti S, Tandon S. Impact of homeopathic remedies on the expression of lineage differentiation genes: an in vitro approach using embryonic stem cells. Homeopathy 2016; 105(2): 148-59.
[http://dx.doi.org/10.1016/j.homp.2015.11.002] [PMID: 27211322]
[11]
Rezvanfar MA, Hodjat M, Abdollahi M. Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sci 2016; 158: 137-60.
[http://dx.doi.org/10.1016/j.lfs.2016.05.027] [PMID: 27208651]
[12]
Adler S, Pellizzer C, Hareng L, Hartung T, Bremer S. First steps in establishing a developmental toxicity test method based on human embryonic stem cells. Toxicol In Vitro 2008; 22(1): 200-11.
[http://dx.doi.org/10.1016/j.tiv.2007.07.013] [PMID: 17961973]
[13]
Zur Nieden NI, Kempka G, Ahr HJ. Molecular multiple endpoint embryonic stem cell test - A possible approach to test for the teratogenic potential of compounds. Toxicol Appl Pharmacol 2004; 194: 257-69.
[14]
Pal R, Khanna A. Similar pattern in cardiac differentiation of human embryonic stem cell lines, BG01V and ReliCell®hES1, under low serum concentration supplemented with bone morphogenetic protein-2. Differentiation 2007; 112-22.
[15]
Xu X, Carpenter MK. Differentiation and characterization, Human embryonic stem cells. Cloning Stem Cells 2003; 181-99.
[16]
Sepac A, Si-Tayeb K, Sedlic F, et al. Comparison of cardiomyogenic potential among human ESC and iPSC lines. Cell Transplant 2012; 21(11): 2523-30.
[http://dx.doi.org/10.3727/096368912X653165] [PMID: 22863088]
[17]
Fang H, Zhi Y, Yu Z, et al. The embryonic toxicity evaluation of deoxynivalenol (DON) by murine embryonic stem cell test and human embryonic stem cell test models. Food Control 2018; 86: 234-40.
[http://dx.doi.org/10.1016/j.foodcont.2017.10.018]
[18]
Liang S, Liang S, Yin N, Faiola F. Establishment of a human embryonic stem cell-based liver differentiation model for hepatotoxicity evaluations. Ecotoxicol Environ Saf 2019; 174: 353-62.
[http://dx.doi.org/10.1016/j.ecoenv.2019.02.091] [PMID: 30849655]
[19]
Watanabe K, Ueno M. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 2007; 25: 681-6.
[20]
Wobus A, Rohwedel J, Maltsev V, et al. In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid. Rouxs Arch Dev Biol 1994; 204: 36-45.
[http://dx.doi.org/10.1007/BF00744871]
[21]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[22]
Pei Y, Peng J, Behl M, et al. Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res 2016; 1638(Pt A): 57-73.
[http://dx.doi.org/10.1016/j.brainres.2015.07.048] [PMID: 26254731]
[23]
Guo L, Coyle L, Abrams RM, Kemper R, Chiao ET, Kolaja KL. Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicol Sci 2013; 136(2): 581-94.
[http://dx.doi.org/10.1093/toxsci/kft205] [PMID: 24052561]
[24]
Malan D, Zhang M, Stallmeyer B, et al. Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction. Basic Res Cardiol 2016; 111(2): 14.
[http://dx.doi.org/10.1007/s00395-016-0530-0] [PMID: 26803770]
[25]
Burridge PW, Li YF, Matsa E, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 2016; 22(5): 547-56.
[http://dx.doi.org/10.1038/nm.4087] [PMID: 27089514]
[26]
Abassi YA, Xi B, Li N, et al. Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment. Br J Pharmacol 2012; 165(5): 1424-41.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01623.x] [PMID: 21838757]
[27]
Lamore SD, Kamendi HW, Scott CW, Dragan YP, Peters MF. Cellular impedance assays for predictive preclinical drug screening of kinase inhibitor cardiovascular toxicity. Toxicol Sci 2013; 135(2): 402-13.
[http://dx.doi.org/10.1093/toxsci/kft167] [PMID: 23897988]
[28]
Yonemizu S, Masuda K, Kurata Y, et al. Inhibitory effects of class I antiarrhythmic agents on Na+ and Ca2+ currents of human iPS cell-derived cardiomyocytes. Regen Ther 2019; 10: 104-11.
[http://dx.doi.org/10.1016/j.reth.2018.12.002] [PMID: 30766898]
[29]
Cheng H, Kari G, Dicker AP, Rodeck U, Koch WJ, Force T. A novel preclinical strategy for identifying cardiotoxic kinase inhibitors and mechanisms of cardiotoxicity. Circ Res 2011; 109(12): 1401-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.255695] [PMID: 21998323]
[30]
Sharma A, Burridge PW, McKeithan WL, et al. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci Transl Med 2017; 9(377): eaaf2584.
[http://dx.doi.org/10.1126/scitranslmed.aaf2584] [PMID: 28202772]
[31]
Colatsky T, Fermini B, Gintant G, et al. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative - Update on progress. J Pharmacol Toxicol Methods 2016; 81: 15-20.
[http://dx.doi.org/10.1016/j.vascn.2016.06.002] [PMID: 27282641]
[32]
Chen L, El-Sherif N, Boutjdir M. Unitary current analysis of L-type Ca2+ channels in human fetal ventricular myocytes. J Cardiovasc Electrophysiol 1999; 10(5): 692-700.
[http://dx.doi.org/10.1111/j.1540-8167.1999.tb00246.x] [PMID: 10355925]
[33]
Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 2014; 114(3): 511-23.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300558] [PMID: 24481842]
[34]
Smutný T, Harjumäki R, Kanninen L, Yliperttula M, Pávek P, Lou YR. A feasibility study of the toxic responses of human induced pluripotent stem cell-derived hepatocytes to phytochemicals. Toxicol In Vitro 2018; 52: 94-105.
[http://dx.doi.org/10.1016/j.tiv.2018.06.012] [PMID: 29902661]
[35]
Grosberg A, Alford PW, McCain ML, Parker KK. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 2011; 11(24): 4165-73.
[http://dx.doi.org/10.1039/c1lc20557a] [PMID: 22072288]
[36]
Suzuki N, Ando S, Yamashita N, Horie N, Saito K. Evaluation of novel high-throughput embryonic stem cell tests with new molecular markers for screening embryotoxic chemicals in vitro. Toxicol Sci 2011; 124(2): 460-71.
[http://dx.doi.org/10.1093/toxsci/kfr250] [PMID: 21964422]
[37]
Rohwedel J, Sehlmeyer U, Shan J, Meister A, Wobus AM. Primordial germ cell-derived mouse embryonic germ (EG) cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biol Int 1996; 20(8): 579-87.
[http://dx.doi.org/10.1006/cbir.1996.0076] [PMID: 8938992]
[38]
Kang HY, Choi YK, Jo NR, et al. Advanced developmental toxicity test method based on embryoid body’s area. Reprod Toxicol 2017; 72: 74-85.
[http://dx.doi.org/10.1016/j.reprotox.2017.06.185] [PMID: 28673813]
[39]
Lee JH, Park SY, Ahn C, et al. Pre-validation study of alternative developmental toxicity test using mouse embryonic stem cell-derived embryoid bodies. Food Chem Toxicol 2019; 123: 50-6.
[http://dx.doi.org/10.1016/j.fct.2018.10.044] [PMID: 30339957]
[40]
Gao X, Yourick JJ, Sprando RL. Transcriptomic characterization of C57BL/6 mouse embryonic stem cell differentiation and its modulation by developmental toxicants. PLoS One 2014; 9(9): e108510.
[http://dx.doi.org/10.1371/journal.pone.0108510] [PMID: 25247782]
[41]
van Dartel DA, Pennings JL, de la Fonteyne LJ, et al. Evaluation of developmental toxicant identification using gene expression profiling in embryonic stem cell differentiation cultures. Toxicol Sci 2011; 119(1): 126-34.
[http://dx.doi.org/10.1093/toxsci/kfq291] [PMID: 20935163]
[42]
van Dartel DA, Pennings JL, de la Fonteyne LJ, et al. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures. Toxicol Appl Pharmacol 2011; 251(2): 110-8.
[http://dx.doi.org/10.1016/j.taap.2010.12.008] [PMID: 21192963]
[43]
Chen X, Han T, Fisher JE, et al. Transcriptomics analysis of early embryonic stem cell differentiation under osteoblast culture conditions: Applications for detection of developmental toxicity. Reprod Toxicol 2017; 69: 75-83.
[http://dx.doi.org/10.1016/j.reprotox.2017.02.001] [PMID: 28189605]
[44]
Gao X, Sprando RL, Yourick JJ. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells. Toxicol Appl Pharmacol 2015; 287(1): 43-51.
[http://dx.doi.org/10.1016/j.taap.2015.05.009] [PMID: 26006729]
[45]
Rempel E, Hoelting L, Waldmann T, et al. A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol 2015; 89(9): 1599-618.
[http://dx.doi.org/10.1007/s00204-015-1573-y] [PMID: 26272509]
[46]
Osman AM, van Dartel DA, Zwart E, Blokland M, Pennings JL, Piersma AH. Proteome profiling of mouse embryonic stem cells to define markers for cell differentiation and embryotoxicity. Reprod Toxicol 2010; 30(2): 322-32.
[http://dx.doi.org/10.1016/j.reprotox.2010.05.084] [PMID: 20553848]
[47]
Shiraki N, Shiraki Y, Tsuyama T, et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 2014; 19(5): 780-94.
[http://dx.doi.org/10.1016/j.cmet.2014.03.017] [PMID: 24746804]
[48]
Bhute VJ, Bao X, Palecek SP. Advances in applications of metabolomics in pluripotent stem cell research. Curr Opin Chem Eng 2017; 15: 36-43.
[http://dx.doi.org/10.1016/j.coche.2016.11.007] [PMID: 28729963]
[49]
Sperber H, Mathieu J, Wang Y, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 2015; 17(12): 1523-35.
[http://dx.doi.org/10.1038/ncb3264] [PMID: 26571212]
[50]
Daskalaki E, Pillon NJ, Krook A, Wheelock CE, Checa A. The influence of culture media upon observed cell secretome metabolite profiles: The balance between cell viability and data interpretability. Anal Chim Acta 2018; 1037: 338-50.
[http://dx.doi.org/10.1016/j.aca.2018.04.034] [PMID: 30292310]
[51]
West FD, Henderson WM, Yu P, Yang JY, Stice SL, Smith MA. Metabolomic response of human embryonic stem cell-derived germ-like cells after exposure to steroid hormones. Toxicol Sci 2012; 129(1): 9-20.
[http://dx.doi.org/10.1093/toxsci/kfs185] [PMID: 22649186]
[52]
Kleinstreuer NC, Smith AM, West PR, et al. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 2011; 257(1): 111-21.
[http://dx.doi.org/10.1016/j.taap.2011.08.025] [PMID: 21925528]
[53]
West PR, Weir AM, Smith AM, Donley ELR, Cezar GG. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 2010; 247(1): 18-27.
[http://dx.doi.org/10.1016/j.taap.2010.05.007] [PMID: 20493898]
[54]
Palmer JA, Smith AM, Egnash LA, et al. A human induced pluripotent stem cell-based in vitro assay predicts developmental toxicity through a retinoic acid receptor-mediated pathway for a series of related retinoid analogues. Reprod Toxicol 2017; 73: 350-61.
[http://dx.doi.org/10.1016/j.reprotox.2017.07.011] [PMID: 28746836]
[55]
Sufrin JR, Spiess AJ, Kramer DL, Libby PR, Porter CW. Synthesis and antiproliferative effects of novel 5′-fluorinated analogues of 5′-deoxy-5′-(methylthio)adenosine. J Med Chem 1989; 32(5): 997-1001.
[http://dx.doi.org/10.1021/jm00125a012] [PMID: 2496231]
[56]
Avila MA, García-Trevijano ER, Lu SC, Corrales FJ, Mato JM. Methylthioadenosine. Int J Biochem Cell Biol 2004; 36(11): 2125-30.
[http://dx.doi.org/10.1016/j.biocel.2003.11.016] [PMID: 15313459]
[57]
Muzikova E, Clark DA. Polyamines may increase the percentage of in-vitro fertilized murine oocytes that develop into blastocysts. Hum Reprod 1995; 10(5): 1172-7.
[http://dx.doi.org/10.1093/oxfordjournals.humrep.a136113] [PMID: 7657760]
[58]
Walcher BN, Miller RR Jr. Ethanol-induced increased endogenous homocysteine levels and decreased ratios of SAM/SAH are only partially attenuated by exogenous glycine in developing chick brains. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147(1): 11-6.
[http://dx.doi.org/10.1016/j.cbpc.2007.03.006] [PMID: 17962082]
[59]
Palmer JA, Poenitzsch AM, Smith SM, Conard KR, West PR, Cezar GG. Metabolic biomarkers of prenatal alcohol exposure in human embryonic stem cell-derived neural lineages. Alcohol Clin Exp Res 2012; 36(8): 1314-24.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01732.x] [PMID: 22324771]
[60]
Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Impact Assess Rev 1994; 14: 469-89.
[http://dx.doi.org/10.1016/0195-9255(94)90014-0]
[61]
Fernandez MF, Olmos B, Granada A, et al. Human exposure to endocrine-disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: a nested case-control study. Environ Health Perspect 2007; 115(Suppl. 1): 8-14.
[http://dx.doi.org/10.1289/ehp.9351] [PMID: 18174944]
[62]
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 2014; 345(6194): 1247125.
[http://dx.doi.org/10.1126/science.1247125] [PMID: 25035496]
[63]
El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006; 442(7101): 403-11.
[http://dx.doi.org/10.1038/nature05063] [PMID: 16871208]
[64]
Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. Microfluidic scaffolds for tissue engineering. Nat Mater 2007; 6(11): 908-15.
[http://dx.doi.org/10.1038/nmat2022] [PMID: 17906630]
[65]
Yoon No D, Lee KH, Lee J, Lee SH. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 2015; 15(19): 3822-37.
[http://dx.doi.org/10.1039/C5LC00611B] [PMID: 26279012]
[66]
Pereira JFS, Awatade NT, Loureiro CA, Matos P, Amaral MD, Jordan P. The third dimension: new developments in cell culture models for colorectal research. Cell Mol Life Sci 2016; 73(21): 3971-89.
[http://dx.doi.org/10.1007/s00018-016-2258-2] [PMID: 27147463]
[67]
Seidi A, Kaji H, Annabi N, Ostrovidov S, Ramalingam M, Khademhosseini A. A microfluidic-based neurotoxin concentration gradient for the generation of an in vitro model of Parkinson’s disease. Biomicrofluidics 2011; 5(2): 22214.
[http://dx.doi.org/10.1063/1.3580756] [PMID: 21799720]
[68]
Stummann TC, Hareng L, Bremer S. Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells. Toxicology 2009; 257(3): 117-26.
[http://dx.doi.org/10.1016/j.tox.2008.12.018] [PMID: 19150642]
[69]
Hogberg HT, Kinsner-Ovaskainen A, Coecke S, Hartung T, Bal-Price AK. mRNA expression is a relevant tool to identify developmental neurotoxicants using an in vitro approach. Toxicol Sci 2010; 113(1): 95-115.
[http://dx.doi.org/10.1093/toxsci/kfp175] [PMID: 19651682]
[70]
Hogberg HT, Sobanski T, Novellino A, Whelan M, Weiss DG, Bal-Price AK. Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology 2011; 32(1): 158-68.
[http://dx.doi.org/10.1016/j.neuro.2010.10.007] [PMID: 21056592]
[71]
Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S, Terasaki T. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci 2013; 102(9): 3343-55.
[http://dx.doi.org/10.1002/jps.23575] [PMID: 23650139]
[72]
Uchida Y, Ohtsuki S, Katsukura Y, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 2011; 117(2): 333-45.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07208.x] [PMID: 21291474]
[73]
Achyuta AKH, Conway AJ, Crouse RB, et al. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 2013; 13(4): 542-53.
[http://dx.doi.org/10.1039/C2LC41033H] [PMID: 23108480]
[74]
Deosarkar SP, Prabhakarpandian B, Wang B, Sheffield JB, Krynska B, Kiani MF. A novel dynamic neonatal blood-brain barrier on a chip. PLoS One 2015; 10(11): e0142725.
[http://dx.doi.org/10.1371/journal.pone.0142725] [PMID: 26555149]
[75]
van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 2016; 4(1): e1142493.
[http://dx.doi.org/10.1080/21688370.2016.1142493] [PMID: 27141422]
[76]
Brown JA, Pensabene V, Markov DA, et al. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor. Biomicrofluidics 2015; 9(5): 054124.
[http://dx.doi.org/10.1063/1.4934713] [PMID: 26576206]
[77]
Brown CDA, Sayer R, Windass AS, et al. Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling. Toxicol Appl Pharmacol 2008; 233(3): 428-38.
[http://dx.doi.org/10.1016/j.taap.2008.09.018] [PMID: 18930752]
[78]
Adler M, Ramm S, Hafner M, et al. A Quantitative Approach to Screen for Nephrotoxic Compounds In Vitro. J Am Soc Nephrol 2016; 27(4): 1015-28.
[http://dx.doi.org/10.1681/ASN.2015010060] [PMID: 26260164]
[79]
Crean D, Bellwon P, Aschauer L, et al. Development of an in vitro renal epithelial disease state model for xenobiotic toxicity testing. Toxicol In Vitro 2015; 30(1 Pt A): 128-37.
[http://dx.doi.org/10.1016/j.tiv.2014.11.015] [PMID: 25536518]
[80]
Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2015; 526(7574): 564-8.
[http://dx.doi.org/10.1038/nature15695] [PMID: 26444236]
[81]
Takasato M, Er PX, Becroft M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 2014; 16(1): 118-26.
[http://dx.doi.org/10.1038/ncb2894] [PMID: 24335651]
[82]
Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 2015; 33(11): 1193-200.
[http://dx.doi.org/10.1038/nbt.3392] [PMID: 26458176]
[83]
Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 2010; 10(1): 36-42.
[http://dx.doi.org/10.1039/B907515A] [PMID: 20024048]
[84]
Sudo R, Chung S, Zervantonakis IK, et al. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J 2009; 23(7): 2155-64.
[http://dx.doi.org/10.1096/fj.08-122820] [PMID: 19246488]
[85]
Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 2009; 9(2): 269-75.
[http://dx.doi.org/10.1039/B807585A] [PMID: 19107284]
[86]
Boreström C, Jonebring A, Guo J, et al. A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell-derived kidney model for drug discovery. Kidney Int 2018; 94(6): 1099-110.
[http://dx.doi.org/10.1016/j.kint.2018.05.003] [PMID: 30072040]
[87]
Malarkey DE, Johnson K, Ryan L, Boorman G, Maronpot RR. New insights into functional aspects of liver morphology. Toxicol Pathol 2005; 33(1): 27-34.
[http://dx.doi.org/10.1080/01926230590881826] [PMID: 15805053]
[88]
Underhill GH, Khetani SR. Bioengineered liver models for drug testing and cell differentiation studies. Cell Mol Gastroenterol Hepatol 2017; 5(3): 426-39.e1.
[http://dx.doi.org/10.1016/j.jcmgh.2017.11.012] [PMID: 29675458]
[89]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[90]
Varshitha A. Prevalence of oral cancer in India. J Pharm Sci Res 2015; 22: 18-26.
[91]
Caponigro G, Sellers WR. Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov 2011; 10(3): 179-87.
[http://dx.doi.org/10.1038/nrd3385] [PMID: 21358737]
[92]
Tentler JJ, Tan AC, Weekes CD, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 2012; 9(6): 338-50.
[http://dx.doi.org/10.1038/nrclinonc.2012.61] [PMID: 22508028]
[93]
Tanaka N, Osman AA, Takahashi Y, et al. Head and neck cancer organoids established by modification of the CTOS method can be used to predict in vivo drug sensitivity. Oral Oncol 2018; 87: 49-57.
[http://dx.doi.org/10.1016/j.oraloncology.2018.10.018] [PMID: 30527243]
[94]
Kondo J, Endo H, Okuyama H, et al. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci USA 2011; 108(15): 6235-40.
[http://dx.doi.org/10.1073/pnas.1015938108] [PMID: 21444794]
[95]
Endo H, Okami J, Okuyama H, et al. Spheroid culture of primary lung cancer cells with neuregulin 1/HER3 pathway activation. J Thorac Oncol 2013; 8(2): 131-9.
[http://dx.doi.org/10.1097/JTO.0b013e3182779ccf] [PMID: 23328545]
[96]
Yoshida T, Okuyama H, Endo H, Inoue M. Spheroid cultures of primary urothelial cancer cells: Cancer tissue-originated spheroid (CTOS) method. Methods Mol Biol 2018; 1655: 145-53.
[http://dx.doi.org/10.1007/978-1-4939-7234-0_12] [PMID: 28889384]
[97]
Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 2004; 110(8): 962-8.
[http://dx.doi.org/10.1161/01.CIR.0000140667.37070.07] [PMID: 15302801]
[98]
Kaneko T, Kojima K, Yasuda K. An on-chip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size. Analyst (Lond) 2007; 132(9): 892-8.
[http://dx.doi.org/10.1039/b704961g] [PMID: 17710264]
[99]
Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res (Amst) 2010; 4(2): 107-16.
[http://dx.doi.org/10.1016/j.scr.2009.11.004] [PMID: 20034863]
[100]
Vunjak-Novakovic G, Bhatia S, Chen C, Hirschi K. HeLiVa platform: integrated heart-liver-vascular systems for drug testing in human health and disease. Stem Cell Res Ther 2013; 4(Suppl. 1): S8.
[http://dx.doi.org/10.1186/scrt369] [PMID: 24565063]
[101]
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32(8): 760-72.
[http://dx.doi.org/10.1038/nbt.2989] [PMID: 25093883]
[102]
Maschmeyer I, Lorenz AK, Schimek K, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 2015; 32: 760-72.
[103]
Lee SH, Jun BH. Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application. J Ind Eng Chem 2019; 71: 65-77.
[http://dx.doi.org/10.1016/j.jiec.2018.11.041]
[104]
Dearden JC. In silico prediction of drug toxicity. J Comput Aided Mol Des 2003; 17(2-4): 119-27.
[http://dx.doi.org/10.1023/A:1025361621494] [PMID: 13677480]
[105]
Vedani A, Dobler M, Lill MA. The challenge of predicting drug toxicity in silico. Basic Clin Pharmacol Toxicol 2006; 99(3): 195-208.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_471.x] [PMID: 16930291]
[106]
Zhu H. From QSAR to QSIIR: searching for enhanced computational toxicology models. Methods Mol Biol 2013; 930: 53-65.
[http://dx.doi.org/10.1007/978-1-62703-059-5_3] [PMID: 23086837]
[107]
Toropov AA, Toropova AP, Raska I Jr, Leszczynska D, Leszczynski J. Comprehension of drug toxicity: software and databases. Comput Biol Med 2014; 45: 20-5.
[http://dx.doi.org/10.1016/j.compbiomed.2013.11.013] [PMID: 24480159]
[108]
Low Y, Uehara T, Minowa Y, et al. Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem Res Toxicol 2011; 24(8): 1251-62.
[http://dx.doi.org/10.1021/tx200148a] [PMID: 21699217]
[109]
Hirai T, Kiyosawa N. Developing a practical toxicogenomics data analysis system utilizing open-source software. Methods Mol Biol 2013; 930: 357-74.
[http://dx.doi.org/10.1007/978-1-62703-059-5_16] [PMID: 23086850]
[110]
Yamane J, Aburatani S, Imanishi S, et al. Prediction of developmental chemical toxicity based on gene networks of human embryonic stem cells. Nucleic Acids Res 2016; 44(12): 5515-28.
[http://dx.doi.org/10.1093/nar/gkw450] [PMID: 27207879]
[111]
Benfenati E, Pardoe S, Martin T, et al. Using toxicological evidence from QSAR models in practice. ALTEX 2013; 30(1): 19-40.
[http://dx.doi.org/10.14573/altex.2013.1.019] [PMID: 23338804]
[112]
Schwartz MP, Hou Z, Propson NE, et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc Natl Acad Sci USA 2015; 112(40): 12516-21.
[http://dx.doi.org/10.1073/pnas.1516645112] [PMID: 26392547]
[113]
Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell 2009; 4(6): 487-92.
[http://dx.doi.org/10.1016/j.stem.2009.05.015] [PMID: 19497275]
[114]
Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 2008; 9(1): 105-27.
[http://dx.doi.org/10.2217/14622416.9.1.105] [PMID: 18154452]
[115]
Caswell JM, O’Neill M, Taylor SJC, Moody TS. Engineering and application of P450 monooxygenases in pharmaceutical and metabolite synthesis. Curr Opin Chem Biol 2013; 17(2): 271-5.
[http://dx.doi.org/10.1016/j.cbpa.2013.01.028] [PMID: 23453938]
[116]
Wang Y, Cheng L, Gerecht S. Efficient and scalable expansion of human pluripotent stem cells under clinically compliant settings: a view in 2013. Ann Biomed Eng 2014; 42(7): 1357-72.
[http://dx.doi.org/10.1007/s10439-013-0921-4] [PMID: 24132657]
[117]
Rodrigues CAV, Fernandes TG, Diogo MM, da Silva CL, Cabral JMS. Stem cell cultivation in bioreactors. Biotechnol Adv 2011; 29(6): 815-29.
[http://dx.doi.org/10.1016/j.biotechadv.2011.06.009] [PMID: 21726624]
[118]
Jenkins MJ, Farid SS. Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnol J 2015; 10(1): 83-95.
[http://dx.doi.org/10.1002/biot.201400348] [PMID: 25524780]
[119]
Aranibar N, Borys M, Mackin NA, et al. NMR-based metabolomics of mammalian cell and tissue cultures. J Biomol NMR 2011; 49(3-4): 195-206.
[http://dx.doi.org/10.1007/s10858-011-9490-8] [PMID: 21373840]
[120]
Ilin Y, Kraft ML. Secondary ion mass spectrometry and Raman spectroscopy for tissue engineering applications. Curr Opin Biotechnol 2015; 31: 108-16.
[http://dx.doi.org/10.1016/j.copbio.2014.10.011] [PMID: 25462628]
[121]
Brauchle E, Knopf A, Bauer H, et al. Non-invasive chamber-specific identification of cardiomyocytes in differentiating pluripotent stem cells. Stem Cell Reports 2016; 6(2): 188-99.
[http://dx.doi.org/10.1016/j.stemcr.2015.12.007] [PMID: 26777059]
[122]
Xu Z, Li E, Guo Z, et al. Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl Mater Interfaces 2016; 8(39): 25840-7.
[http://dx.doi.org/10.1021/acsami.6b08746] [PMID: 27606718]
[123]
van Meer BJ, de Vries H, Firth KSA, et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophys Res Commun 2017; 482(2): 323-8.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.062] [PMID: 27856254]
[124]
Shirure VS, George SC. Design considerations to minimize the impact of drug absorption in polymer-based organ-on-a-chip platforms. Lab Chip 2017; 17(4): 681-90.
[http://dx.doi.org/10.1039/C6LC01401A] [PMID: 28102869]
[125]
Liu S, Yin N, Faiola F. Prospects and Frontiers of Stem Cell Toxicology. Stem Cells Dev 2017; 26(21): 1528-39.
[http://dx.doi.org/10.1089/scd.2017.0150] [PMID: 28874109]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy