Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Hypolipidemic, Antioxidant and Cardioprotective Effects of the Aqueous Extract from Scorzanera Undulata Tubers in Streptozotocin-Induced Diabetic Rats

Author(s): Mohammed Ajebli, Ayoub Amssayef and Mohamed Eddouks*

Volume 19 , Issue 1 , 2021

Published on: 13 October, 2020

Page: [17 - 23] Pages: 7

DOI: 10.2174/1871525718666201013152449

Price: $65

Abstract

Aims: This study aimed to assess the effect of Scorzanera undulata on plasma lipid profile.

Background: Scorzanera undulata (S. undulata) is a medicinal plant popularly used in the Moroccan pharmacopeia as traditional medicine, particularly to treat diabetes mellitus.

Objective: The purpose of this study was to explore the effects of aqueous extract of Scorzanera undulata tubers (AERSU) on lipid profile and atherogenic indices in Wistar rats. Biochemical parameters such as Total Cholesterol (TC), triglycerides (TG), and low-and high-density lipoproteins-cholesterol (LDL and HDL) were assessed. Furthermore, the in vitro antioxidant activity of AERSU was also evaluated.

Methods: The effect of tubers aqueous extract (AERSU) of S. undulata (20 mg/kg) on plasma lipid profile was investigated in normal and streptozotocin (STZ)-induced diabetic rats. The aqueous extract was tested for its in vitro antioxidant activity. Besides, cardiovascular parameters were estimated.

Results: Treatment with AERSU significantly improved the weight in diabetic rats and decreased plasma cholesterol, triglycerides, and LDL lipoproteins levels. Furthermore, the extract had a favorable impact on the Atherogenic Index (AI) and Coronary Risk Index (CRI). In addition, AERSU seems to possess a potent in vitro antioxidant activity.

Conclusion: The study demonstrates that aqueous Scorzanera undulate extract exhibits antidyslipidemic and antioxidant activities.

Keywords: Scorzanera undulate, dyslipidemia, antioxidant activity, cardiovascular parameters, medicinal plant, streptozotocin, diabetes mellitus.

Graphical Abstract
[1]
Danesh, J.; Collins, R.; Peto, R. Lipoprotein(a) and coronary heart disease, Meta-analysis of prospective studies. Circulation, 2000, 102(10), 1082-1085.
[http://dx.doi.org/10.1161/01.CIR.102.10.1082] [PMID: 10973834]
[2]
van Duijnhoven, F.J.; Bueno-De-Mesquita, H.B.; Calligaro, M.; Jenab, M.; Pischon, T.; Jansen, E.H.; Frohlich, J.; Ayyobi, A.; Overvad, K.; Toft-Petersen, A.P.; Tjønneland, A.; Hansen, L.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Cottet, V.; Palli, D.; Tagliabue, G.; Panico, S.; Tumino, R.; Vineis, P.; Kaaks, R.; Teucher, B.; Boeing, H.; Drogan, D.; Trichopoulou, A.; Lagiou, P.; Dilis, V.; Peeters, P.H.; Siersema, P.D.; Rodríguez, L.; González, C.A.; Molina-Montes, E.; Dorronsoro, M.; Tormo, M.J.; Barricarte, A.; Palmqvist, R.; Hallmans, G.; Khaw, K.T.; Tsilidis, K.K.; Crowe, F.L.; Chajes, V.; Fedirko, V.; Rinaldi, S.; Norat, T.; Riboli, E. Blood lipid and lipoprotein concentrations and colorectal cancer risk in the European prospective investigation into cancer and nutrition. Gut, 2011, 60(8), 1094-1102.
[http://dx.doi.org/10.1136/gut.2010.225011] [PMID: 21383385]
[3]
Yan, Z.; Lu, Q. Handbook of Lipids in Human Function: Fatty Acids; Ross, W.R.; De Meester, F. Eds.; Academic Press and AOCS Press, 2016, p. 2.
[5]
Wilson Peter, W.F. Dyslipidemias: Pathophysiology, Evaluation and Management; Garg, A., Ed.; Humana press, 2015, pp. 13-24.
[http://dx.doi.org/10.1007/978-1-60761-424-1_2]
[6]
Boussaada, O.; Saidana, D.; Chriaa, J.; Chraif, I.; Ammar, M.A.M.; Mighri, Z.; Daami, M.; Helal, A.N. Chemical composition and antimicrobial activity of volatile components of scorzonera undulate. J. Essent. Oil Res., 2008, 20(4), 358-362.
[http://dx.doi.org/10.1080/10412905.2008.9700030]
[7]
Barkaoui, M.; Katiri, A.; Boubaker, H.; Msanda, F. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. J. Ethnopharmacol., 2017, 198, 338-350.
[http://dx.doi.org/10.1016/j.jep.2017.01.023] [PMID: 28109915]
[8]
Ajebli, M.; Eddouks, M. Buxus sempervirens L improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[9]
Ajebli, M.; Eddouks, M. Flavonoid-enriched extract from desert plant Warionia saharae improves glucose and cholesterol levels in diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 28-39.
[http://dx.doi.org/10.2174/1871525717666190121143934] [PMID: 30666919]
[10]
Ajebli, M.; Eddouks, M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019, 242, 112039. a
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[11]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of mentha suaveolens EHRH in normal and streptozotocin-induced diabetic rats. Nat. Prod. J., 2018, 8(3), 213-227.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[12]
Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18(6), 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[13]
Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour. Technol., 2004, 92(2), 201-208.
[http://dx.doi.org/10.1016/j.biortech.2003.06.002] [PMID: 14693454]
[14]
Tan, M.H.; Johns, D.; Glazer, N.B. Pioglitazone reduces atherogenic index of plasma in patients with type 2 diabetes. Clin. Chem., 2004, 50(7), 1184-1188.
[http://dx.doi.org/10.1373/clinchem.2004.031757] [PMID: 15117857]
[15]
SEKI. Evaluation of the efficacy of coronary risk index, a new scoring system for predicting morbidity and severity of coronary stenosis in patients undergoing coronary angiography. J. Jpn. Soci. Clinic. Anesth., 1998, 18(3), 271-276.
[http://dx.doi.org/10.2199/jjsca.18.271]
[16]
Ajebli, M.; El Ouady, F.; Eddouks, M. Study of antihyperglycemic, antihyperlipidemic and antioxidant activities of tannins extracted from Warionia saharae Benth. & Coss. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 189-198.
[http://dx.doi.org/10.2174/1871530318666181029160539] [PMID: 30370866]
[17]
Stamler, J.; Vaccaro, O.; Neaton, J.D.; Wentworth, D. Multiple risk factor intervention trial research group. Diabetes, other risk factors, and 12-Yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care, 1993, 16(2), 434-444.
[http://dx.doi.org/10.2337/diacare.16.2.434] [PMID: 8432214]
[18]
Bopanna, K.N.; Kannan, J.; Sushma, G.; Balaraman, R.; Rathod, S.P. Antidiabetic and antihyperlipaemic effects of neem seed kernel powder on alloxan diabetic rabbits. Indian J. Pharmacol., 1997, 29(3), 162.
[19]
Luc, G.; Fruchart, J.C. Oxidation of lipoproteins and atherosclerosis. Am. J. Clin. Nutr., 1991, 53(1)(Suppl.), 206S-209S.
[http://dx.doi.org/10.1093/ajcn/53.1.206S] [PMID: 1985389]
[20]
Ri, H.I.; Kim, C.S.; Pak, U.H.; Kang, M.S.; Kim, T.M. Purification of total flavonoids from aurea helianthus flowers and in vitro hypolipidemic effect arXiv preprint arXi, 1906.12007, 2019.
[21]
Geetha, B.S.; Mathew, B.C.; Augusti, K.T. Hypoglycemic effects of leucodelphinidin derivative isolated from Ficus bengalensis (Linn). Indian J. Physiol. Pharmacol., 1994, 38(3), 220-222.
[PMID: 7814088]
[22]
Chen, Z.; Wang, C.; Pan, Y.; Gao, X.; Chen, H. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food Funct., 2018, 9(1), 426-439.
[http://dx.doi.org/10.1039/C7FO00983F] [PMID: 29220052]
[23]
Martirosyan, D.M.; Miroshnichenko, L.A.; Kulakova, S.N.; Pogojeva, A.V.; Zoloedov, V.I. Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis., 2007, 6(1), 1.
[http://dx.doi.org/10.1186/1476-511X-6-1] [PMID: 17207282]
[24]
Brehm, A.; Pfeiler, G.; Pacini, G.; Vierhapper, H.; Roden, M. Relationship between serum lipoprotein ratios and insulin resistance in obesity. Clin. Chem., 2004, 50(12), 2316-2322.
[http://dx.doi.org/10.1373/clinchem.2004.037556] [PMID: 15459091]
[25]
Takasaki, Y. Serum lipid levels and factors affecting atherogenic index in Japanese children. J. Physiol. Anthropol. Appl. Human Sci., 2005, 24(4), 511-515.
[http://dx.doi.org/10.2114/jpa.24.511] [PMID: 16079609]
[26]
Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of oxidative damage in human disease. Clin. Chem., 2006, 52(4), 601-623.
[http://dx.doi.org/10.1373/clinchem.2005.061408] [PMID: 16484333]
[27]
Rizzo, M.; Kotur-Stevuljevic, J.; Berneis, K.; Spinas, G.; Rini, G.B.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V.; Vekic, J. Atherogenic dyslipidemia and oxidative stress: A new look. Transl. Res., 2009, 153(5), 217-223.
[http://dx.doi.org/10.1016/j.trsl.2009.01.008] [PMID: 19375682]
[28]
Albertini, R.; Moratti, R.; De Luca, G. Oxidation of low-density lipoprotein in atherosclerosis from basic biochemistry to clinical studies. Curr. Mol. Med., 2002, 2(6), 579-592.
[http://dx.doi.org/10.2174/1566524023362177] [PMID: 12243250]
[29]
Wilson, P.W.F.; O’Donnell, C.J. Epidemiology of chronic coronary artery disease. De Lemos, J., & Omland, T. Chronic coronary artery disease: A companion to Braunwald’s heart disease E-book; Elsevier Health Sciences, 2017, pp. 1-15.
[30]
Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; Simes, J.; Collins, R. Cholesterol Treatment Trialists’ (CTT) collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta- analysis of data from 170,000 participants in 26 randomised trials. Lancet, 2010, 376(9753), 1670-1681.
[http://dx.doi.org/10.1016/S0140-6736(10)61350-5] [PMID: 21067804]
[31]
Rizzo, M.; Berneis, K. Low-density lipoprotein size and cardiovascular risk assessment. QJM, 2006, 99(1), 1-14.
[http://dx.doi.org/10.1093/qjmed/hci154] [PMID: 16371404]
[32]
Austin, M.A.; King, M.C.; Vranizan, K.M.; Krauss, R.M. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation, 1990, 82(2), 495-506.
[http://dx.doi.org/10.1161/01.CIR.82.2.495] [PMID: 2372896]
[33]
Adaramoye, O.A.; Akanni, O.O. Effects of methanol extract of breadfruit (Artocarpus altilis) on atherogenic indices and redox status of cellular system of hypercholesterolemic male rats. Adv. Pharmacol. Sci., 2014, 2014, 605425.
[http://dx.doi.org/10.1155/2014/605425] [PMID: 24592277]
[34]
Jemil, I.; Abdelhedi, O.; Nasri, R.; Mora, L.; Marrekchi, R.; Jamoussi, K.; ElFeki, A.; Hajji, M.; Toldrá, F.; Nasri, M. Hypolipidemic, antiobesity and cardioprotective effects of sardinelle meat flour and its hydrolysates in high-fat and fructose diet fed Wistar rats. Life Sci., 2017, 176, 54-66.
[http://dx.doi.org/10.1016/j.lfs.2016.07.012] [PMID: 27460865]
[35]
Ikewuchi, C.C. Hypocholesterolemic effect of an aqueous extract of the leaves of Sansevieria senegambica Baker on plasma lipid profile and atherogenic indices of rats fed egg yolk supplemented diet. EXCLI J., 2012, 11, 346-356.
[PMID: 27418909]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy