Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

In Silico Docking of Anti Cancerous Drugs with β-Cyclodextrin polymer as a Prominent Approach to Improve the Bioavailability

Author(s): Akhlesh K. Jain*, Keerti Mishra and Suresh Thareja

Volume 21, Issue 10, 2021

Published on: 13 October, 2020

Page: [1275 - 1283] Pages: 9

DOI: 10.2174/1871520620666201013145725

Price: $65

Abstract

Background: β-Cyclodextrin, a cyclic oligosaccharides having 7 macrocyclic rings of glucose subunits usually linked together by α-1,4 glycosidic bond, bears characteristic chemical structure, with an exterior portion as hydrophilic to impart water solubility and interior cavity as hydrophobic, for hosting the hydrophobic molecules.

Objective: In the present work binding affinities and interactions between various anti-cancerous drugs and β- cyclodextrin using molecular docking simulations was examined for the bioavailability enhancement of cytotoxic drugs through improved solubility for the treatment of breast cancer.

Methods: Molegro Virtual Docker, an integrated software was used for the prediction and estimation of interaction between β-cyclodextrin and anti cancerous drugs.

Results: Out of tested anti cancerous drug, Olaparib having pyridopyridazione scaffold possess highest MolDock (-130.045) and Re-ranks score (-100.717), ensuring strong binding affinity. However, 5-Fluoro Uracil exhibited the lowest MolDock score (-61.0045), indicating weak or no binding affinity, while few drugs showed no H-bond interaction with the β-cyclodextrin.

Conclusion: The binding conformations of anti cancerous drugs obtained from the present study can be selected for the development of improved formulation having superior solubility which will lead to attain better pharmacological profile with negligible toxicity.

Keywords: Breast cancer, anti-cancerous drugs, β-cyclodextrin, molecular docking, docking scores, novel drug delivery systems.

Graphical Abstract
[1]
Cooper, G.M. The Cell: A Molecular Approach, 2nd ed; Sinauer Associates: Sunderland, MA, 2000.
[2]
Sariego, J. Breast cancer in the young patient. Am. Surg., 2010, 76(12), 1397-1400.
[http://dx.doi.org/10.1177/000313481007601226] [PMID: 21265355]
[3]
Khuwaja, G.A.; Abu-Rezq, A.N. Bimodal breast cancer classification system. Pattern Anal. Appl., 2004, 7, 235-242.
[4]
Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11), 1387-1397.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[5]
Neng, Q.; Xuebing, L.; Junda, L. Application of cyclodextrins in cancer treatment. J. Incl. Phenom. Macrocycl. Chem., 2017, 89, 226-249.
[6]
Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev., 2013, 65(5), 703-718.
[http://dx.doi.org/10.1016/j.addr.2012.09.036] [PMID: 23000745]
[7]
Wang, Y.; Chen, L. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine (Lond.), 2011, 7(4), 385-402.
[http://dx.doi.org/10.1016/j.nano.2010.12.006] [PMID: 21215327]
[8]
Leuner, C.; Dressman, J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm., 2000, 50(1), 47-60.
[http://dx.doi.org/10.1016/S0939-6411(00)00076-X] [PMID: 10840192]
[9]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Pharm. Pharmacol., 2010, 62(11), 1607-1621.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01030.x] [PMID: 21039545]
[10]
Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin drug carrier systems. Chem. Rev., 1998, 98(5), 2045-2076.
[http://dx.doi.org/10.1021/cr970025p] [PMID: 11848959]
[11]
Molegro Virtual Docker Evaluation Version 6.0.0, 2013. Molegro- A CLC Bio Company, 8200 Aarhus N, Denmark 2013.. http://www.molegro.com/mvd-product.php
[12]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[14]
Verma, S.K.; Jain, A.K. Molecular docking simulations as a prominent tool to envisage the preformulation perspectives of oral hypoglycaemic agents with β-cyclodextrin. Lett. Drug Des. Discovery, 2017, 14, 1283-1290.
[http://dx.doi.org/10.2174/1570180814666170420125907]
[15]
Verma, S.K.; Rajpoot, T.; Gautam, M.K.; Jain, A.K.; Thareja, S. Design of novel biphenyl-2-thioxothiazolidin-4-one derivatives as potential protein tyrosine phosphatase (PTP)-1B inhibitors using molecular docking study. Lett. Drug Des. Discov., 2016, 13(4), 295-300.
[http://dx.doi.org/10.2174/1570180812666150819002954]
[16]
Mallick, S.; Pattnaik, S.; Swain, K.; De, P.K. Current perspectives of solubilization: potential for improved bioavailability. Drug Dev. Ind. Pharm., 2007, 33(8), 865-873.
[http://dx.doi.org/10.1080/03639040701429333] [PMID: 17729104]
[17]
Illapakurthy, A.C.; Sabnis, Y.A.; Avery, B.A.; Avery, M.A.; Wyandt, C.M. Interaction of artemisinin and its related compounds with hydroxypropyl-β-cyclodextrin in solution state: Experimental and molecular-modeling studies. J. Pharm. Sci., 2003, 92(3), 649-655.
[http://dx.doi.org/10.1002/jps.10319] [PMID: 12587126]
[18]
Devasari, N.; Dora, C.P.; Singh, C.; Paidi, S.R.; Kumar, V.; Sobhia, M.E.; Suresh, S. Inclusion complex of erlotinib with sulfobutyl ether-β-cyclodextrin: Preparation, characterization, in silico, in vitro and in vivo evaluation. Carbohydr. Polym., 2015, 134, 547-556.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.012] [PMID: 26428157]
[19]
Perdomo-López, I.; Rodríguez-Pérez, A.I.; Yzquierdo-Peiró, J.M.; White, A.; Estrada, E.G.; Villa, T.G.; Torres-Labandeira, J.J. Effect of cyclodextrins on the solubility and antimycotic activity of sertaconazole: Experimental and computational studies. J. Pharm. Sci., 2002, 91(11), 2408-2415.
[http://dx.doi.org/10.1002/jps.10237] [PMID: 12379926]
[20]
Nanda, A.; Sahoo, R.N.; Pramanik, A.; Mohapatra, R.; Pradhan, S.K.; Thirumurugan, A.; Das, D.; Mallick, S. Drug-in-mucoadhesive type film for ocular anti-inflammatory potential of amlodipine: Effect of sulphobutyl-ether-beta-cyclodextrin on permeation and molecular docking characterization. Colloids Surf. B Biointerfaces, 2018, 172, 555-564.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.011] [PMID: 30218981]
[21]
Azad, I.; Jafri, A.; Khan, T.; Akhter, Y.; Arshad, M.; Hassan, F.; Ahmad, N.; Kan, A.R.; Nasibullah, M.; Nasibullah, M. Evaluation of pyrrole-2,3-dicarboxylate derivatives: Synthesis, DFT analysis, molecular docking, virtual screening and in vitro anti-hepatic cancer study. J. Mol. Struct., 2019, 1176, 314-334.
[22]
Al-Salahi, R.; Alswaidan, I.; Ghabbour, H.A.; Ezzeldin, E.; Elaasser, M.; Marzouk, M. Docking and antiherpetic activity of 2-aminobenzo[de]-isoquinoline-1,3-diones. Molecules, 2015, 20(3), 5099-5111.
[http://dx.doi.org/10.3390/molecules20035099] [PMID: 25808153]
[23]
Kaushik, P.; Lal Khokra, S.; Rana, A.C.; Kaushik, D. Pharmacophore modeling and molecular docking studies on Pinus roxburghii as a target for Diabetes Mellitus. Adv. Bioinforma., 2014, 2014, 903246.
[http://dx.doi.org/10.1155/2014/903246] [PMID: 25114678]
[24]
5-Fluorouracil. PubChem. National Library of Medicine, National Centre for Biotechnology Information. . https://pubchem.ncbi.nlm. nih.gov/compound/3385 [Accessed February 23, 2021].
[25]
Walko, C.M.; Lindley, C. Capecitabine: A review. Clin. Ther., 2005, 27(1), 23-44.
[http://dx.doi.org/10.1016/j.clinthera.2005.01.005] [PMID: 15763604]
[26]
Dei Cas, M.; Ghidoni, R. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients, 2019, 11(9), 2147.
[http://dx.doi.org/10.3390/nu11092147] [PMID: 31500361]
[27]
Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: Problems and advancements. J. Drug Target., 2016, 24(8), 694-702.
[http://dx.doi.org/10.3109/1061186X.2016.1157883] [PMID: 26942997]
[28]
Cyclophosphamide for Injection, USP Cyclophosphamide Tablets, USP.. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/012141s089lbl.pdf [Accessed February 23, 2021].
[29]
Cyclophosphamide. Medscape.. https://reference.medscape.com/drug/cytoxan-cyclophosphamide-342214 [Accessed February 23, 2021].
[30]
Kim, J.E.; Cho, H.J.; Kim, J.S.; Shim, C.K.; Chung, S.J.; Oak, M.H.; Yoon, I.S.; Kim, D.D. The limited intestinal absorption via paracellular pathway is responsible for the low oral bioavailability of doxorubicin. Xenobiotica, 2013, 43(7), 579-591.
[http://dx.doi.org/10.3109/00498254.2012.751140] [PMID: 23252722]
[31]
Taur, J.S.; DesJardins, C.S.; Schuck, E.L.; Wong, Y.N. Interactions between the chemotherapeutic agent eribulin mesylate (E7389) and P-glycoprotein in CF-1 abcb1a-deficient mice and Caco-2 cells. Xenobiotica, 2011, 41(4), 320-326.
[http://dx.doi.org/10.3109/00498254.2010.542256] [PMID: 21162698]
[32]
Eribulin. PubChem. National Library of Medicine, National Centre for Biotechnology Information. . https://pubchem.ncbi.nlm.nih.gov/compound/Eribulin [Accessed February 23, 2021].
[33]
Exemestane. PubChem. National Library of Medicine, National Centre for Biotechnology Information.. https://pubchem.ncbi.nlm. nih.gov/compound/60198 [Accessed February 23, 2021].
[34]
Thomas, L.L.; David, A.W. Foye’s Principles of Medicinal Chemistry; Lippincott Williams & Wilkins: USA, 2012.
[35]
Formestane. PubChem. National Library of Medicine, National Centre for Biotechnology Information. . https://pubchem.ncbi.nlm. nih.gov/compound/11273 [Accessed February 23, 2021].
[36]
Zhang, C.; Guo, S.; Yang, L.; Liu, J.; Zheng, S.; Zhong, Q.; Zhang, Q.; Wang, G. Metabolism, pharmacokinetics, and bioavailability of ZB716, a Steroidal selective Estrogen Receptor Downregulator (SERD). Oncotarget, 2017, 8(61), 103874-103889.
[http://dx.doi.org/10.18632/oncotarget.21808] [PMID: 29262607]
[37]
Thompson, B.R.; Hu, Y.; Smith, D.E. Mechanisms of gemcitabine oral absorption as determined by in situ intestinal perfusions in mice. Biochem. Pharmacol., 2019, 168, 57-64.
[http://dx.doi.org/10.1016/j.bcp.2019.06.013] [PMID: 31207211]
[38]
Veltkamp, S.A.; Jansen, R.S.; Callies, S.; Pluim, D.; Visseren-Grul, C.M.; Rosing, H.; Kloeker-Rhoades, S.; Andre, V.A.; Beijnen, J.H.; Slapak, C.A.; Schellens, J.H. Oral administration of gemcitabine in patients with refractory tumors: A clinical and pharmacologic study. Clin. Cancer Res., 2008, 14(11), 3477-3486.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4521] [PMID: 18519780]
[39]
Gosereline. PubChem. National Library of Medicine, National Centre for Biotechnology Information.. https://pubchem.ncbi.nlm. nih.gov/compound/5311128 [Accessed February 23, 2021].
[40]
Kunz, P.L.; He, A.R.; Colevas, A.D.; Pishvaian, M.J.; Hwang, J.J.; Clemens, P.L.; Messina, M.; Kaleta, R.; Abrahao, F.; Sikic, B.I.; Marshall, J.L. Phase I trial of ixabepilone administered as three oral doses each separated by 6 hours every 3 weeks in patients with advanced solid tumors. Invest. New Drugs, 2012, 30(6), 2364-2370.
[http://dx.doi.org/10.1007/s10637-012-9800-3] [PMID: 22331549]
[41]
Lapatinib. PubChem. National Library of Medicine, National Centre for Biotechnology Information. . https://pubchem.ncbi.nlm.nih. gov/compound/208908 [Accessed February 23, 2021].
[42]
Koch, K.M.; Reddy, N.J.; Cohen, R.B.; Lewis, N.L.; Whitehead, B.; Mackay, K.; Stead, A.; Beelen, A.P.; Lewis, L.D. Effects of food on the relative bioavailability of lapatinib in cancer patients. J. Clin. Oncol., 2009, 27(8), 1191-1196.
[http://dx.doi.org/10.1200/JCO.2008.18.3285] [PMID: 19188677]
[43]
Letrozole. PubChem. National Library of Medicine, National Centre for Biotechnology Information. (. https://www.drugbank.ca/drugs/DB01006 ) [Accessed February 23, 2021].
[44]
Sioufi, A.; Gauducheau, N.; Pineau, V.; Marfil, F.; Jaouen, A.; Cardot, J.M.; Godbillon, J.; Czendlik, C.; Howald, H.; Pfister, C.; Vreeland, F. Absolute bioavailability of letrozole in healthy postmenopausal women. Biopharm. Drug Dispos., 1997, 18(9), 779-789.
[http://dx.doi.org/10.1002/(SICI)1099-081X(199712)18:9<779:AID-BDD64>3.0.CO;2-5] [PMID: 9429742]
[45]
Kuhl, H. Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric, 2005, 8(1)(Suppl. 1), 3-63.
[http://dx.doi.org/10.1080/13697130500148875] [PMID: 16112947]
[46]
Methotrexate. PubChem. National Library of Medicine, National Centre for Biotechnology Information.. https://pubchem.ncbi.nlm. nih.gov/compound/126941 [Accessed February 23, 2021].
[47]
Campbell, M.A.; Perrier, D.G.; Dorr, R.T.; Alberts, D.S.; Finley, P.R. Methotrexate: Bioavailability and pharmacokinetics. Cancer Treat. Rep., 1985, 69(7-8), 833-838.
[PMID: 3893694]
[48]
van de Ven, A.L.; Tangutoori, S.; Baldwin, P.; Qiao, J.; Gharagouzloo, C.; Seitzer, N.; Clohessy, J.G.; Makrigiorgos, G.M.; Cormack, R.; Pandolfi, P.P.; Sridhar, S.; Srinivas, S. Nanoformulation of olaparib amplifies PARP inhibition and sensitizes PTEN/TP53-deficient prostate cancer to radiation. Mol. Cancer Ther., 2017, 16(7), 1279-1289.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0740] [PMID: 28500233]
[49]
Palbociclib, New Drug Application, CENTER FOR DRUG EVALUATION AND RESEARCH Application number 20,7103, Review: Palbociclib, Reference ID: 3686997.. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207103Orig1s000ClinPharmR.pdf [Accessed February 23, 2021].
[50]
Palbociclib. PubChem. National Library of Medicine, National Centre for Biotechnology Information.. https://pubchem.ncbi.nlm. nih.gov/compound/5330286 [Accessed February 23, 2021].
[51]
Morello, K.C.; Wurz, G.T.; DeGregorio, M.W. Pharmacokinetics of selective estrogen receptor modulators. Clin. Pharmacokinet., 2003, 42(4), 361-372.
[http://dx.doi.org/10.2165/00003088-200342040-00004] [PMID: 12648026]
[52]
Hochner-Celnikier, D. Pharmacokinetics of raloxifene and its clinical application. Eur. J. Obstet. Gynecol. Reprod. Biol., 1999, 85(1), 23-29.
[http://dx.doi.org/10.1016/S0301-2115(98)00278-4] [PMID: 10428318]
[53]
Shah, N.; Seth, A.; Balaraman, R.; Sailor, G.; Javia, A.; Gohil, D. Oral bioavailability enhancement of raloxifene by developing microemulsion using D-optimal mixture design: Optimization and in vivo pharmacokinetic study. Drug Dev. Ind. Pharm., 2018, 44(4), 687-696.
[http://dx.doi.org/10.1080/03639045.2017.1408643] [PMID: 29168671]
[54]
Taras, T.L.; Wurz, G.T.; Linares, G.R.; DeGregorio, M.W. Clinical pharmacokinetics of toremifene. Clin. Pharmacokinet., 2000, 39(5), 327-334.
[http://dx.doi.org/10.2165/00003088-200039050-00002] [PMID: 11108432]
[55]
Wouters, W.; Snoeck, E.; De Coster, R. Vorozole, a specific non-steroidal aromatase inhibitor. Breast Cancer Res. Treat., 1994, 30(1), 89-94.
[http://dx.doi.org/10.1007/BF00682743] [PMID: 7726994]
[56]
Goss, P.E. Pre-clinical and clinical review of vorozole, a new third generation aromatase inhibitor. Breast Cancer Res. Treat., 1998, 49(1)(Suppl. 1), S59-S65.
[http://dx.doi.org/10.1023/A:1006052923468] [PMID: 9797019]
[57]
Singh, U.V.; Aithal, K.S.; Udupa, N. Physicochemical and biological studies of inclusion complex of methotrexate with β-cyclodextrin. J. Pharm. Pharmacol., 1997, 3(12), 573-577.
[58]
Peng, M.; Liu, Y.; Zhang, H.; Cui, Y.; Zhai, G.; Chen, C. Photostability study of doxorubicin aqueous solution enhanced by inclusion interaction between doxorubicin and hydroxypropyl-β-cyclodextrin. Chin. J. Chem., 2010, 28(7), 1291-1295.
[http://dx.doi.org/10.1002/cjoc.201090223]
[59]
Bilensoy, E.; Cirpanli, Y.; Sen, M.; Dogan, A.L.; Cahs, S. Thermosensitive mucoadhesive gel formulation loaded with 5-FU: Cyclodextrin complex for HPV-induced cervical cancer. J. Inclusion Phenom. Mol. Recognit. Chem., 2007, 57(1-4), 363-370.
[http://dx.doi.org/10.1007/s10847-006-9259-y]
[60]
Oommen, E.; Tiwari, S.B.; Udupa, N.; Ravindra, K.; Uma, D.P. Niosome entrapped β-cyclodextrin methotrexate complex as a drug delivery system. Int. J. Pharmacol., 1999, 31(4), 279-284.
[61]
Gergo, T.; Adam, J.; Gergely, V. Physicochemical characterization and cyclodextrin complexation of the anticancer drug lapatinib. J. Chem., 2017, 2017,Article ID 4537632.
[http://dx.doi.org/10.1155/2017/4537]
[62]
Swaminathan, S.; Pastero, L.; Serpe, L.; Trotta, F.; Vavia, P.; Aquilano, D.; Trotta, M.; Zara, G.; Cavalli, R. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm., 2010, 74(2), 193-201.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.003] [PMID: 19900544]
[63]
Jiang, Y.; Jiang, X.; Law, K.; Chen, Y.; Gu, J.; Zhang, W.; Xin, H.; Sha, X.; Fang, X. Enhanced anti-tumor effect of 9-nitro-camptothecin complexed by hydroxypropyl-β-cyclodextrin and safety evaluation. Int. J. Pharm., 2011, 415(1-2), 252-258.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.056] [PMID: 21645594]
[64]
Cai, Y.Y.; Yap, C.W.; Wang, Z. Solubilization of vorinostat by cyclodextrins. Clin. Pharmacol. Ther., 2009, 34, 1-6.
[65]
Yavuz, B.; Bilensoy, E.; Vural, I.; Sumnu, M. Alternative oral exemestane formulation: Improved dissolution and permeation. Int. J. Pharm., 2010, 398(1-2), 137-145.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.046] [PMID: 20678561]
[66]
Zhang, J.; Ma, P.X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Deliv. Rev., 2013, 65(9), 1215-1233.
[http://dx.doi.org/10.1016/j.addr.2013.05.001] [PMID: 23673149]
[67]
Balajia, A.; Pandey, V.P.; Srinath, M.S.; Manavalan, R. Synthesis and characterization studies of cisplatin/hydroxypropyl-βcyclodextrin complex. Pharmacologyonline, 2009, 1, 1135-1143.
[68]
Sridevi, S.; Chauhan, A.S.; Chalasani, K.B.; Jain, A.K.; Diwan, P.V. Enhancement of dissolution and oral bioavailability of gliquidone with hydroxy propyl-beta-cyclodextrin. Pharmazie, 2003, 58(11), 807-810.
[PMID: 14664337]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy