Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Synthesis of Pharmacological Relevant 1,2,3-Triazole and its Analogues-A Review

Author(s): Ravi Varala*, Hari Babu Bollikolla and Chandra Mohan Kurmarayuni

Volume 18, Issue 2, 2021

Published on: 14 September, 2020

Page: [101 - 124] Pages: 24

DOI: 10.2174/1570179417666200914142229

Price: $65

Abstract

In this review, authors focus mostly on the various synthetic strategies developed so far for 1,2,3- triazole scaffold and its derivatives via different approaches such as metal-free, metal assisted or bimetallic. A brief overview of applications of the very important 1,2,3-triazole scaffold along with pharmacological activity is also discussed. Synthetic strategies are updated until June 2020.

Keywords: 1, 2, 3-triazoles, click chemistry, applications, synthesis, pharmacologically active compounds, scaffold.

Next »
Graphical Abstract
[1]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[2]
Lee, S.; Hua, Y.; Park, H.; Flood, A.H. Intramolecular hydrogen bonds preorganize an aryl-triazole receptor into a crescent for chloride binding. Org. Lett., 2010, 12(9), 2100-2102.
[http://dx.doi.org/10.1021/ol1005856]
[3]
Schulze, B.; Schubert, U.S. Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles. Chem. Soc. Rev., 2014, 43(8), 2522-2571.
[http://dx.doi.org/10.1039/c3cs60386e] [PMID: 24492745]
[4]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[5]
Malani, A.L.; Makawana, A.H.; Makwana, H.R. A brief review article: Various synthesis and therapeutic importance of 1, 2,4-triazole and its derivatives. Mor. J. Chem., 2017, 5(1), 41-59.
[6]
Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[7]
Mantoani, S.P.; de Andrade, P.; Chierrito, T.P.C.; Figueredo, A.S.; Carvalho, I. Potential triazole-based molecules for the treatment of neglected diseases. Curr. Med. Chem., 2019, 26(23), 4403-4434.
[http://dx.doi.org/10.2174/0929867324666170727103901] [PMID: 28748757]
[8]
Jain, A.; Piplani, P. Exploring the chemistry and therapeutic potential of triazoles: A comprehensive literature review. Mini Rev. Med. Chem., 2019, 19(16), 1298-1368.
[http://dx.doi.org/10.2174/1389557519666190312162601] [PMID: 30864516]
[9]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[10]
Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAACensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: review , 2020, 10, 5610-5635. RSC Adv, 2020, 10, 5610-5635.
[11]
Wojaczynska, E.; Wojaczynska, J. Synthesis and Applications of 1,2,3-Triazoles. Adv. Org. Synth., 2018, 11(77), 156-232.
[http://dx.doi.org/10.2174/9781681087474118110006]
[12]
Klix, M.B.; Verreet, J. -. A.; Beyer, M. Comparison of the declining triazole sensitivity of Gibberella zeae and increased sensitivity achieved by advances in triazole fungicide development. Crop Prot., 2007, 26, 683-690.
[http://dx.doi.org/10.1016/j.cropro.2006.06.006]
[13]
Isobe, H.; Tomoko, F.N.Y. Marine guillot-nieckowski, eiichi nakamura. triazole-linked analogue of deoxyribonucleic acid (DNA): Design, synthesis, and double-strand formation with natural DNA. Org. Lett., 2008, 10(17), 3729-3732.
[http://dx.doi.org/10.1021/ol801230k] [PMID: 18656947]
[14]
Brunel, D.; Dumur, F. Recent advances in organic dyes and fluorophores comprising a 1,2,3-triazole moiety. New J. Chem., 2020, 44, 3546-3561.
[http://dx.doi.org/10.1039/C9NJ06330G]
[15]
Resende, G.O.; Teixeira, S.F.; Figueiredo, I.F.; Godoy, A.A.; Lougon, D.J.F.; Cotrim, B.A.; de Souza, F.C. Synthesis of 1,2,3-triazole derivatives and its evaluation as corrosion inhibitors for carbon steel. Int. J. Electrochem., 2019, 196759478
[16]
Kantheti, S.; Narayan, R.; Raju, K.V.S.N. The impact of 1,2,3-triazoles in the design of functional coatings. RSC Advances, 2015, 5(5), 3687-3708.
[http://dx.doi.org/10.1039/C4RA12739K]
[17]
Shao, C.; Zhu, R.; Luo, S.; Zhang, Q.; Wang, X.; Hu, Y. Copper(I) oxide and benzoic acid ‘on water’: A highly practical and efficient catalytic system for copper(I)-catalyzed azide–alkyne cycloaddition. Tetrahedron Lett., 2011, 52, 3782-3785.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.061]
[18]
Zheng, J.; Li, G.; Xingfa, M.; Wang, Y.; Wu, G.; Cheng, Y. Polyaniline-TiO2 nano composite-based trimethylamine QCM sensor and its thermal behavior studies. Sens. Actuators B Chem., 2008, 133, 374-380.
[http://dx.doi.org/10.1016/j.snb.2008.02.037]]
[19]
Mark, J.E. Some novel polymeric nanocomposites. Acc. Chem. Res., 2006, 39(12), 881-888.
[http://dx.doi.org/10.1021/ar040062k]]
[20]
Li, L.; Ding, S.; Yang, Y.; Zhu, A.; Fan, X.; Cui, M.; Chen, C.; Zhang, G. Multicomponent aqueous synthesis of Iodo‐1,2,3‐triazoles: Single‐step models for dual modification of free peptide and radioactive iodo labeling. Chem, 2017, 23(5), 1166-1172.
[http://dx.doi.org/10.1002/chem.201605034] [PMID: 27862485]
[21]
Li, L.; Zhang, Z.; Development, Z. Development and applications of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) as a bioorthogonal reaction. Molecules, 2016, 21(10), 1393-1414.
[http://dx.doi.org/10.3390/molecules21101393] [PMID: 27783053]
[22]
Zou, Y.; Zhang, L.; Yang, L.; Zhu, F.; Ding, M.; Lin, F.; Li, Y. “Click” chemistry in polymeric scaffolds: Bioactive materials for tis-sue engineering J. Contr. Rel., 2018, 273(10), 160-179.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.023]]
[23]
Huo, J.; Hu, H.; Zhang, M.; Hu, X.; Chen, M.; Chen, D.; Liu, J.; Xiao, G.; Wang, Y.; Wen, Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Advances, 2017, 7, 2281-2287.
[http://dx.doi.org/10.1039/C6RA27012C]
[24]
Xue, L.; Li, G.; Liu, Q.; Wang, H.; Liu, C.; Ding, X.; He, S.; Jiang, H. Ratiometric fluorescent sensor based on inhibition of reso-nance for detection of cadmium in aqueous solution and living cells. Inorg. Chem., 2011, 50(8), 3680-3690.
[http://dx.doi.org/10.1021/ic200032e] [PMID: 21395248]
[25]
Ardizzone, A.; Blasi, D.; Vona, D.; Rosspeintner, A.; Punzi, A.; Altamura, E.; Grimaldi, N.; Sala, S.; Vauthey, E.; Farinola, G.M.; Ratera, I.; Ventosa, N.; Veciana, J. Highly stable and red-emitting nanovesicles incorporating lipophilic diketopyrrolopyrroles for cell imaging. Chemistry, 2018, 24(44), 11386-11392.
[http://dx.doi.org/10.1002/chem.201801444] [PMID: 29869811]
[26]
Haas, K.L.; Franz, K.J. Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev., 2009, 109(10), 4921-4960.
[http://dx.doi.org/10.1021/cr900134a] [PMID: 19715312]
[27]
Wenzel, M.; Hiscock, J.R.; Gale, P.A. Anion receptor chemistry: Highlights from 2010. Chem. Soc. Rev., 2012, 41(1), 480-520.
[http://dx.doi.org/10.1039/C1CS15257B] [PMID: 22080279]
[28]
Webb, T.H.; Wilcox, C.S. Enantioselective and diastereoselective molecular recognition of neutral molecules. Chem. Soc. Rev., 1993, 6, 383-395.
[http://dx.doi.org/10.1039/cs9932200383]
[29]
Haridas, V.; Sahu, S.; Kumar, P.P.P.; Sapala, A.R. Triazole: A new motif for anion recognition. RSC Advances, 2012, 2, 12594-12605.
[http://dx.doi.org/10.1039/c2ra21497k]
[30]
Liu, D.; Gao, W.; Dai, Q.; Zhang, X. Triazole-based monophosphines for Suzuki-Miyaura coupling and amination reactions of aryl chlorides. Org. Lett., 2005, 7(22), 4907-4910.
[http://dx.doi.org/10.1021/ol051844w] [PMID: 16235919]
[31]
Punzi, A.; Zappimbulso, N.; Farinola, G.M. Direct arylations via C–H bond functionalization of 1,2,3‐triazoles by a reusable pd/c cat-alyst under solvent‐free conditions. Eur. J. Org. Chem., 2020, 22, 3229-3234.
[http://dx.doi.org/10.1002/ejoc.201901305]
[32]
Arslan, M.; Acik, G.; Tasdelen, M.A. The emerging applications of click chemistry reactions in the modification of industrial poly-mers. Polym. Chem., 2019, 10, 3806-3821.
[http://dx.doi.org/10.1039/C9PY00510B]]
[33]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22(10), 1572-1581.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[34]
Oliveri-Mandala, E.; Coppla, A. Gazz. Chim. Ital., 1910, 40, 436.
[35]
Pechmann, B.; Pechmann, V. Ann., 1891, 262, 317-320.
[36]
Zincke, T. Ann., 1900, 311, 310.
[37]
Dimroth, O. Ber., 1902, 35, 1045.
[38]
Bladin, Ber., 1893, 26(545), 2737.
[39]
Dimroth, O. K. Pfister. Ber., 1910, 43, 2760-2761.
[40]
Pechmann, V.; Bauer, V. Ber., 1909, 42, 673.
[41]
Wiley, R.H.; Hussung, K.F.; Moffat, J. The preparation of 1,2,3-triazole. J. Org. Chem., 1956, 21, 190-192.
[http://dx.doi.org/10.1021/jo01108a010]
[42]
Meza-Aviña, M.E.; Patel, M.K.; Lee, C.B.; Dietz, T.J.; Croatt, M.P. Selective formation of 1,5-substituted sulfonyl triazoles using acetylides and sulfonyl azides. Org. Lett., 2011, 13(12), 2984-2987.
[http://dx.doi.org/10.1021/ol200696q] [PMID: 21612194]
[43]
Krasiński, A.; Fokin, V.V.; Sharpless, K.B. Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3-triazoles, revisited. Org. Lett., 2004, 6(8), 1237-1240.
[http://dx.doi.org/10.1021/ol0499203] [PMID: 15070306]
[44]
Akimova, G.S.; Chistokletov, V.N.; Petrov, A.A. Zh. Org. Khim., 1968, 4, 389.
[45]
Shafi, S.; Banday, A.H.; Ismail, T.; Kumar, H.M.S. Domino Addition/N-C Heterocyclization of azides with allenyl magnesium bro-mide: Rapid synthesis of 5-butynyl-1,2,3-triazoles. Synlett, 2007, 7, 1109-1111.
[http://dx.doi.org/10.1055/s-2007-977435]
[46]
Banday, A.H.; Hruby, V.J. Regioselective N/C-heterocyclization of allenylindium bromide across aryl azides: One-pot synthesis of 5-methyl-1,2,3-triazoles. Synlett, 2014, 25, 1859-1862.
[http://dx.doi.org/10.1055/s-0034-1378327]
[47]
Meng, Xu.; Xu, X.; Gao, T.; Chen, B. Zn/C-Catalyzed cycloaddition of azides and aryl alkynes. Eur. J. Org. Chem., 2010, 5409-5414.
[http://dx.doi.org/10.1002/ejoc.201000610]
[48]
Smith, C.D.; Greaney, M.F. Zinc mediated azide-alkyne ligation to 1,5- and 1,4,5-substituted 1,2,3-triazoles. Org. Lett., 2013, 15(18), 4826-4829.
[http://dx.doi.org/10.1021/ol402225d] [PMID: 24001177]
[49]
Morozova, M.A.; Yusubov, M.S.; Kratochvil, B.; Eigner, V.; Bondarev, A.A.; Yoshimura, A.; Saito, A.; Zhdankin, V.V.; Trusova, M.E.; Postnikov, P.S. Regioselective Zn(OAc)2-catalyzed azide-alkyne cycloaddition in water: the green click- chemistry. Org. Chem. Front., 2017, 6(4), 978-985.
[http://dx.doi.org/10.1039/C6QO00787B]
[50]
Phukan, P.; Agarwal, S.; Deori, K.; Sarma, D. Zinc oxide nanoparticles catalysed one-pot three-component reaction: A facile synthe-sis of 4-aryl-nh-1,2,3-triazoles. Catal. Lett., 2020, 150, 2208-2219.
[http://dx.doi.org/10.1007/s10562-020-03143-w]
[51]
Barluenga, J.; Valdés, C.; Beltrán, G.; Escribano, M.; Aznar, F. Developments in Pd catalysis: synthesis of 1H-1,2,3-triazoles from sodium azide and alkenyl bromides. Angew. Chem. Int. Ed. Engl., 2006, 45(41), 6893-6896.
[http://dx.doi.org/10.1002/anie.200601045] [PMID: 17001730]
[52]
Zhang, W.; Kuang, C.; Yang, Q. Palladium-catalyzed one-pot synthesis of 4-aryl-1H-1,2,3-triazoles from anti-3-aryl-2,3-dibromopropanoic acids and sodium azide. Synthesis, 2010, 2, 283-287.
[http://dx.doi.org/10.1055/s-0029-1217097]]
[53]
Rao, H.S.P.; Chakibanda, G. Raney Ni catalyzed azide-alkyne cycloaddition reaction. RSC Advances, 2014, 4, 46040-46048.
[http://dx.doi.org/10.1039/C4RA07057G]
[54]
Kim, W.G.; Kang, M.E.; Lee, J.B.; Jeon, M.H.; Lee, S.; Lee, J.; Choi, B.; Cal, P.M.S.D.; Kang, S.; Kee, J-M.; Bernardes, G.J.L.; Rohde, J-U.; Choe, W.; Hong, S.Y. Nickel-catalyzed azide-alkyne cycloaddition to access 1,5-disubstituted 1,2,3-triazoles in air and water. J. Am. Chem. Soc., 2017, 139(35), 12121-12124.
[http://dx.doi.org/10.1021/jacs.7b06338] [PMID: 28814075]
[55]
De Nino, A.; Merino, P.; Algieri, V.; Nardi, M.; Gioia, M.L.D.; Russo, B.; Tallarida, M.A.; Loredana Maiuolo, L. Synthesis of 1,5-functionalized 1,2,3-triazoles using ionic liquid/iron(iii) chloride as an efficient and reusable homogeneous catalyst. Catalysts, 2018, 8, 364-376.
[http://dx.doi.org/10.3390/catal8090364]
[56]
Rasolofonjatovo, E.; Theeramunkong, S.; Bouriaud, A.; Kolodych, S.; Chaumontet, M.; Taran, F. Iridium-catalyzed cycloaddition of azides and 1-bromoalkynes at room temperature. Org. Lett., 2013, 15(18), 4698-4701.
[http://dx.doi.org/10.1021/ol402008u] [PMID: 24011015]
[57]
Luo, Q.; Jia, G.; Sun, J.; Lin, Z. Theoretical studies on the regioselectivity of iridium-catalyzed 1,3-dipolar azide-alkyne cycloaddition reactions. J. Org. Chem., 2014, 79(24), 11970-11980.
[http://dx.doi.org/10.1021/jo5018348] [PMID: 25222638]
[58]
Ding, S.; Jia, G.; Sun, J. Iridium-catalyzed intermolecular azide-alkyne cycloaddition of internal thioalkynes under mild conditions. Angew. Chem. Int. Ed. Engl., 2014, 53(7), 1877-1880.
[http://dx.doi.org/10.1002/anie.201309855] [PMID: 24474668]
[59]
Rej, S.; Chanda, K.; Chiu, C-Y.; Huang, M.H. Control of regioselectivity over gold nanocrystals of different surfaces for the synthe-sis of 1,4-disubstituted triazole through the click reaction. Chemistry, 2014, 20(48), 15991-15997.
[http://dx.doi.org/10.1002/chem.201403958] [PMID: 25283297]
[60]
McNulty, J.; Keskar, K.; Vemula, R. The first well-defined silver(I)-complex-catalyzed cycloaddition of azides onto terminal alkynes at room temperature. Chemistry, 2011, 17(52), 14727-14730.
[http://dx.doi.org/10.1002/chem.201103244] [PMID: 22125272]
[61]
McNulty, J.; Keskar, K. Discovery of a robust and efficient homogeneous silver(I) catalyst for the cycloaddition of azides onto termi-nal alkynes. Eur. J. Org. Chem., 2012, 28, 5462-5470.
[http://dx.doi.org/10.1002/ejoc.201200930]
[62]
Ortega-Arizmendi, A.; Aldeco-Pérez, E.; Cuevas-Yañez, E. Alkyne-azide cycloaddition catalyzed by silver chloride and “abnormal” silver n-heterocyclic carbene complex Sci; World J., 2013.
[63]
Ferretti, A.M.; Ponti, A.; Molteni, G. Silver(I) oxide nanoparticles as a catalyst in the azide-alkyne cycloaddition. Tet. Lett., 2015, 56, 5227-5230.
[http://dx.doi.org/10.1016/j.tetlet.2015.08.083]
[64]
Ali, A.A.; Chetia, M.; Saikia, B.; Saikia, P.J.; Sarma, D. AgN(CN)2/DIPEA/H2O-EG: A highly efficient catalytic system for synthe-sis of 1,4-disubstituted-1,2,3-triazoles at room temperature. Tetrahedron Lett., 2015, 56, 5892-5895.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.025]
[65]
Banerji, B.; Chandrasekhar, K.; Killi, S.K.; Pramanik, S.K.; Uttam, P.; Sen, S.; Maiti, N.C. Silver-catalysed azide-alkyne cycloaddition (AgAAC): assessing the mechanism by density functional theory calculations. R. Soc. Open Sci., 2016, 3(9)160090
[http://dx.doi.org/10.1098/rsos.160090] [PMID: 27703683]
[66]
Sultana, J.; Sarma, D. Ag-catalyzed azide-alkyne cycloaddition: copper free approaches for synthesis of 1,4-disubstituted 1,2,3- tria-zoles. Catal. Rev., 2019, 62, 96-117.
[http://dx.doi.org/10.1080/01614940.2019.1673443]
[67]
Johansson, J.R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: Scope, mechanism, and applications. Chem. Rev., 2016, 116(23), 14726-14768.
[http://dx.doi.org/10.1021/acs.chemrev.6b00466] [PMID: 27960271]
[68]
Engholm, E.; Stuhr-Hansen, N.; Blixt, O. Facile solid-phase ruthenium assisted azide-alkyne cycloaddition (RuAAC) utilizing the Cp*RuCl(COD)-catalyst. Tetrahedron Lett., 2017, 58, 2272-2275.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.095]
[69]
Destito, P.; Couceiro, J.R.; Faustino, H.; López, F.; Mascareñas, J.L. Ruthenium-catalyzed azide-thioalkyne cycloadditions in aqueous media: a mild, orthogonal, and biocompatible chemical ligation. Angew. Chem. Int. Ed. Engl., 2017, 56(36), 10766-10770.
[http://dx.doi.org/10.1002/anie.201705006] [PMID: 28685950]
[70]
Song, W.; Zheng, N.; Li, M.; Dong, K.; Li, J.; Ullah, K.; Zheng, Y. Regiodivergent rhodium(i)-catalyzed azide-alkyne cycloaddition (rhaac) to access either fully substituted sulfonyl-1,2,3-triazoles under mild conditions. Org. Lett., 2018, 20(21), 6705-6709.
[http://dx.doi.org/10.1021/acs.orglett.8b02794] [PMID: 30346176]
[71]
Neumann, S.; Biewend, M.; Rana, S.; Binder, W.H. The CuAAC: Principles, homogeneous and heterogeneous catalysts, and novel developments and applications. Macromol. Rapid Commun., 2019, 41(1), 1900359-1900390.
[http://dx.doi.org/10.1002/marc.201900359] [PMID: 31631449]
[72]
Aflak, N.; Ben El Ayouchia, H.; Bahsis, L.; El Mouchtari, E.M.; Julve, M.; Rafqah, S.; Anane, H.; Stiriba, S.E. Sustainable construc-tion of heterocyclic 1,2,3-triazoles by strict click [3+2] cycloaddition reactions between azides and alkynes on copper/carbon in water. Front Chem., 2019, 7, 81.
[http://dx.doi.org/10.3389/fchem.2019.00081] [PMID: 30838201]
[73]
Shiri, P.; Aboonajmi, J. A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient hetero-geneous nanocatalysts in “click” reactions. Beilstein J. Org. Chem., 2020, 16, 551-586.
[http://dx.doi.org/10.3762/bjoc.16.52] [PMID: 32280385]
[74]
de Souza, M.V.N.; da Costa, C.F.; Facchinetti, V.; Gomes, C.R.B.; Pacheco, P.M. Advances in triazole synthesis from copper-catalyzed azide-alkyne cycloadditions (cuaac) based on eco-friendly procedures. Curr. Org. Synth., 2019, 16(2), 244-257.
[http://dx.doi.org/10.2174/1570179416666190104141454] [PMID: 31975674]
[75]
Devi, C.H.B.P.; Vijay, K.K.; Hari, Babu B.; Adil, S. F.; Alam, M. M.; Vijjulatha, M.; Ansari, M. B. CuSO4/sodium ascorbate cata-lyzed synthesis of benzosuberone and 1,2,3-triazole conjugates: Design, synthesis and in vitro anti-proliferative activity. J. Saudi Chem. Soc., 2019, 23(7), 980-991.
[http://dx.doi.org/10.1016/j.jscs.2019.05.002]
[76]
Bollikolla, H.B.; Kumar, G.R.; Murthy, S.N.; Kumari, M.S. Synthesis of new (±)-1-(4-(3-fluorobenzyloxy)pyrrolidin-3-yl)-4- phe-nyl-1H-1,2,3-triazole derivatives via click reaction and study of anti-cancer activity against hct 116, mda-mb231, mia- paca2 cell lines. Egypt. J. Chem., in press
[http://dx.doi.org/10.21608/ejchem.2019.16652.2014]
[77]
Wang, Y-C.; Xie, Y-Y.; Qu, H-E.; Wang, H-S.; Pan, Y-M.; Huang, F-P.; Ce, F-P. Ce(OTf)3-catalyzed [3 + 2] cycloaddition of az-ides with nitroolefins: Regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles. J. Org. Chem., 2014, 79(10), 4463-4469.
[http://dx.doi.org/10.1021/jo5004339] [PMID: 24742349]
[78]
Hong, L.; Lin, W.; Zhang, F.; Liu, R.; Zhou, X. Ln[N(SiMe3)2]3-catalyzed cycloaddition of terminal alkynes to azides leading to 1,5-disubstituted 1,2,3-triazoles: new mechanistic features. Chem. Commun. (Camb.), 2013, 49(49), 5589-5591.
[http://dx.doi.org/10.1039/c3cc42534g] [PMID: 23676902]
[79]
Proietti Silvestri, I.; Andemarian, F.; Khairallah, G.N.; Yap, S.W.; Quach, T.; Tsegay, S.; Williams, C.M.; O’Hair, R.A.J.; Donnelly, P.S.; Williams, S.J. Copper(I)-catalyzed cycloaddition of silver acetylides and azides: Incorporation of volatile acetylenes into the triazole core. Org. Biomol. Chem., 2011, 9(17), 6082-6088.
[http://dx.doi.org/10.1039/c1ob05360d] [PMID: 21748192]
[80]
Aucagne, V.; Leigh, D.A. Chemoselective formation of successive triazole linkages in one pot: “click-click” chemistry. Org. Lett., 2006, 8(20), 4505-4507.
[http://dx.doi.org/10.1021/ol061657d] [PMID: 16986936]
[81]
Wei, F.; Li, H.; Song, C.; Ma, Y.; Zhou, L.; Tung, C.H.; Xu, Z. Cu/Pd-catalyzed, three-component click reaction of azide, Alkyne, and aryl halide: one-pot strategy toward trisubstituted triazoles. Org. Lett., 2015, 17(11), 2860-2863.
[http://dx.doi.org/10.1021/acs.orglett.5b01342] [PMID: 26000564]
[82]
Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. Synthesis of triazoles from nonactivated terminal alkynes via the three-component cou-pling reaction using a Pd(0)-Cu(I) bimetallic catalyst. J. Am. Chem. Soc., 2003, 125(26), 7786-7787.
[http://dx.doi.org/10.1021/ja034191s] [PMID: 12822981]
[83]
Li, J.; Wang, D.; Zhang, Y.; Li, J.; Chen, B. Facile one-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles through Sonogashira coupling/1,3-dipolar cycloaddition of acid chlorides, terminal acetylenes, and sodium azide. Org. Lett., 2009, 11(14), 3024-3027.
[http://dx.doi.org/10.1021/ol901040d] [PMID: 19537825]
[84]
Zhou, Y.; Lecourt, T.; Micouin, L. Direct synthesis of 1,4-disubstituted-5-alumino-1,2,3-triazoles: copper-catalyzed cycloaddition of organic azides and mixed aluminum acetylides. Angew. Chem. Int. Ed. Engl., 2010, 49(14), 2607-2610.
[http://dx.doi.org/10.1002/anie.200907016] [PMID: 20198674]
[85]
Mukherjee, N.; Ahammed, S.; Bhadra, S.; Ranu, B.C. Solvent-free one-pot synthesis of 1,2,3-triazole derivatives by the ‘Click’ reac-tion of alkyl halides or aryl boronic acids, sodium azide and terminal alkynes over a Cu/Al2O3 surface under ball-milling. Green Chem., 2013, 15, 389-397.
[http://dx.doi.org/10.1039/C2GC36521A]
[86]
Partyka, D.V.; Gao, L.; Teets, T.S.; Updegraff, J.B.; Deligonul, N.; Gray, T.G. Copper-catalyzed huisgen [3+2] cycloaddition of gold(i) alkynyls with benzyl azide. syntheses, structures, and optical properties. Organometallics, 2009, 28, 6171-6182.
[http://dx.doi.org/10.1021/om9005774]
[87]
Jiang, Y.; Zhang, P.; Li, W.; Li, X.; Xu, G. An efficient synthesis of 1,4-disubstituted triazoles in water via cucl2/zn-catalyzed huis-gen cycloaddition. Z. Naturforsch., 2012, 67b, 226-230.
[http://dx.doi.org/10.1515/znb-2012-0308]
[88]
Yamaguchi, K.; Oishi, T.; Katayama, T.; Mizuno, N. A Supported copper hydroxide on titanium oxide as an efficient reusable hetero-geneous catalyst for 1,3‐dipolar cycloaddition of organic azides to terminal alkynes. Chemistry, 2009, 15, 10464-10472.
[http://dx.doi.org/10.1002/chem.200901444] [PMID: 19718725]
[89]
Roque, D.R.; Neill, J.L.; Antoon, J.W.; Stevens, E.P. synthesis of 1,2,3-triazoles by cycloadditions of azides with enol ethers. Synthesis, 2005, 15, 2497-2502.
[http://dx.doi.org/10.1055/s-2005-872116]
[90]
Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. Synthesis of 4-aryl-1H-1,2,3-triazoles through TBAF-catalyzed [3 + 2] cycloaddition of 2-aryl-1-nitroethenes with TMSN3 under solvent-free conditions. J. Org. Chem., 2005, 70(16), 6526-6529.
[http://dx.doi.org/10.1021/jo0507845] [PMID: 16050724]
[91]
Kwok, S.W.; Fotsing, J.R.; Fraser, R.J.; Rodionov, V.O.; Fokin, V.V. Transition-metal-free catalytic synthesis of 1,5-diaryl-1,2,3-triazoles. Org. Lett., 2010, 12(19), 4217-4219.
[http://dx.doi.org/10.1021/ol101568d] [PMID: 20825167]
[92]
Wang, T.; Hu, X-C.; Huang, X-J.; Li, X-S.; Xie, J-W. Efficient synthesis of functionalized 1,2,3-triazoles by catalyst-free 1,3- dipolar cycloaddition of nitroalkenes with sodium azide. J. Braz. Chem. Soc., 2012, 23(6), 1119-1123.
[http://dx.doi.org/10.1590/S0103-50532012000600017]
[93]
Cai, Z-J.; Lu, X-M.; Zi, Y.; Yang, C.; Shen, L-J.; Li, J.; Wang, S-Y.; Ji, S-J. I2/TBPB mediated oxidative reaction of N-tosylhydrazones with anilines: practical construction of 1,4-disubstituted 1,2,3-triazoles under metal-free and azide-free conditions. Org. Lett., 2014, 16(19), 5108-5111.
[http://dx.doi.org/10.1021/ol502431b] [PMID: 25250817]
[94]
Quan, X-J.; Ren, Z-H.; Wang, Y-Y.; Guan, Z-H. p-Toluenesulfonic acid mediated 1,3-dipolar cycloaddition of nitroolefins with NaN3 for synthesis of 4-aryl-NH-1,2,3-triazoles. Org. Lett., 2014, 16(21), 5728-5731.
[http://dx.doi.org/10.1021/ol5027975] [PMID: 25343314]
[95]
Li, W.; Wang, J. Lewis base catalyzed aerobic oxidative intermolecular azide-zwitterion cycloaddition. Angew. Chem. Int. Ed. Engl., 2014, 53(51), 14186-14190.
[http://dx.doi.org/10.1002/anie.201408265] [PMID: 25319520]
[96]
Wan, J-P.; Cao, S.; Liu, Y. A metal- and azide-free multicomponent assembly toward regioselective construction of 1,5-disubstituted 1,2,3-triazoles. J. Org. Chem., 2015, 80(18), 9028-9033.
[http://dx.doi.org/10.1021/acs.joc.5b01121] [PMID: 26292022]
[97]
Wan, J-P.; Cao, S.; Liu, Y. Base-promoted synthesis of n-substituted 1,2,3-triazoles via enaminone-azide cycloaddition involving re-gitz diazo transfer. Org. Lett., 2016, 18(23), 6034-6037.
[http://dx.doi.org/10.1021/acs.orglett.6b02975] [PMID: 27934360]
[98]
Taylor, S.D.; Lohani, C.R. A fresh look at the staudinger reaction on azido esters: Formation of 2h-1,2,3-triazol-4-ols from α-azido esters using trialkyl phosphines. Org. Lett., 2016, 18, 4412-4415.
[http://dx.doi.org/10.1021/acs.orglett.6b02204] [PMID: 27532326]
[99]
Zhang, H.; Dong, D-Q.; Wang, Z-L. Direct synthesis of n-unsubstituted 4-aryl-1,2,3-triazoles mediated by amberlyst-15. Synthesis, 2016, 48, 131-135.
[http://dx.doi.org/10.1055/s-0035-1560488]
[100]
Yang, L.; Wu, Y.; Yang, Y.; Wen, C.; Wan, J-P. Catalyst-free synthesis of 4-acyl-NH-1,2,3-triazoles by water-mediated cycloaddi-tion reactions of enaminones and tosyl azide. Beilstein J. Org. Chem., 2018, 14, 2348-2353.
[http://dx.doi.org/10.3762/bjoc.14.210] [PMID: 30254699]
[101]
Thomas, J.; Fokin, V.V. Regioselective synthesis of fluorosulfonyl 1,2,3-triazoles from bromovinylsulfonyl fluoride. Org. Lett., 2018, 20(13), 3749-3752.
[http://dx.doi.org/10.1021/acs.orglett.8b01309] [PMID: 29906123]
[102]
Wu, G-L.; Wu, Q-P. A mild multi-component reaction for the synthesis of 4,5-disubstituted 1h-1,2,3-triazoles from phosphonium salts, aldehydes, and sodium azide. Synthesis, 2018, 50, 2768-2774.
[http://dx.doi.org/10.1055/s-0037-1609720]
[103]
Ahsanullah, S.P.; Kuhne, R.; Rademann, J. Metal-free, regioselective triazole ligations that deliver locked cis peptide mimetics. Angew. Chem. Int. Ed., 2009, 48, 5042-5045.
[http://dx.doi.org/10.1002/anie.200806390]
[104]
Ahsanullah, R.; Rademann, J. Cyclative cleavage through dipolar cycloaddition: polymer-bound azidopeptidylphosphoranes deliver locked cis-triazolylcyclopeptides as privileged protein binders. Angew. Chem. Int. Ed. Engl., 2010, 49(31), 5378-5382.
[http://dx.doi.org/10.1002/anie.200904980] [PMID: 20583012]
[105]
van Berkel, S.S.; Brauch, S.; Gabriel, L.; Henze, M.; Stark, S.; Vasilev, D.; Wessjohann, L.A.; Abbas, M.; Westermann, B. Trace-less tosylhydrazone-based triazole formation: A metal-free alternative to strain-promoted azide-alkyne cycloaddition. Angew. Chem. Int. Ed. Engl., 2012, 51(22), 5343-5346.
[http://dx.doi.org/10.1002/anie.201108850] [PMID: 22514135]
[106]
Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. A metal-free multicomponent cascade reaction for the regiospecific synthesis of 1,5-disubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed. Engl., 2013, 52(50), 13265-13268.
[http://dx.doi.org/10.1002/anie.201307499] [PMID: 24227395]
[107]
Ali, A.; Corrêa, A.G.; Alves, D.; Zukerman-Schpector, J.; Westermann, B.; Ferreira, M.A.; Paixão, M.W. An efficient one-pot strat-egy for the highly regioselective metal-free synthesis of 1,4-disubstituted-1,2,3-triazoles. Chem. Commun. (Camb.), 2014, 50(80), 11926-11929.
[http://dx.doi.org/10.1039/C4CC04678A] [PMID: 25157576]
[108]
Belkheira, M.; El Abed, D.; Pons, J-M.; Bressy, C. Organocatalytic synthesis of 1,2,3-triazoles from unactivated ketones and ar-ylazides. Chemistry, 2011, 17(46), 12917-12921.
[http://dx.doi.org/10.1002/chem.201102046] [PMID: 21984230]
[109]
Ramachary, D.B.; Ramakumar, K.; Narayana, V.V. Amino acid-catalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles. Chemistry, 2008, 14(30), 9143-9147.
[http://dx.doi.org/10.1002/chem.200801325] [PMID: 18767077]
[110]
Seus, N.; Goncalves, L.C.; Deobald, A.M.; Savegnago, L.; Alves, D.; Paixao, M.W. Synthesis of arylselanyl-1H-1,2,3- triazole-4-carboxylates by organocatalytic cycloaddition of azidophenyl arylselenides with β-keto-esters. Tetrahedron, 2012, 68, 10456-10463.
[http://dx.doi.org/10.1016/j.tet.2012.10.007]
[111]
Wu, L.; Chen, Y.; Luo, J.; Sun, Q.; Peng, M.; Lin, Q. Base-mediated reaction of vinyl bromides with aryl azides: One-pot synthesis of 1,5-disubstituted 1,2,3-triazoles. Tetrahedron Lett., 2014, 55, 3847-3850.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.029]
[112]
Wang, L.; Peng, S.; Danence, L.J.T.; Gao, Y.; Wang, J. Amine-catalyzed [3+2] Huisgen cycloaddition strategy for the efficient as-sembly of highly substituted 1,2,3-triazoles. Chemistry, 2012, 18(19), 6088-6093.
[http://dx.doi.org/10.1002/chem.201103393] [PMID: 22461307]
[113]
Danence, L.J.T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Organocatalytic enamide-azide cycloaddition reactions: Regiospecific synthe-sis of 1,4,5-trisubstituted-1,2,3-triazoles. Chemistry, 2011, 17(13), 3584-3587.
[http://dx.doi.org/10.1002/chem.201002775] [PMID: 21341323]
[114]
Seus, N.; Goldani, B.; Lenardão, E.J.; Savegnago, L.; Paixão, M.W.; Alves, D. Organocatalytic synthesis of (arylselanyl)phenyl‐1h‐1,2,3‐triazole4‐carboxamides by cycloaddition between azidophenyl arylselenides and β‐oxo‐amides. Eur. J. Org. Chem., 2014, 5, 1059-1065.
[http://dx.doi.org/10.1002/ejoc.201301547]
[115]
Sahu, D.; Dey, S.; Pathak, T.; Ganguly, B. Regioselectivity of vinyl sulfone based 1,3-dipolar cycloaddition reactions with sugar az-ides by computational and experimental studies. Org. Lett., 2014, 16(8), 2100-2103.
[http://dx.doi.org/10.1021/ol500461s] [PMID: 24697165]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy