Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Role of Inflammation in the Development of Colorectal Cancer

Author(s): Sridhar Muthusami, Ileng Kumaran Ramachandran*, Kokelavani Nampalli Babu, Sneha Krishnamoorthy, Akash Guruswamy, Lurdes Queimado, Gautam Chaudhuri and Ilangovan Ramachandran*

Volume 21, Issue 1, 2021

Published on: 09 September, 2020

Page: [77 - 90] Pages: 14

DOI: 10.2174/1871530320666200909092908

Price: $65

Abstract

Chronic inflammation can lead to the development of many diseases, including cancer. Inflammatory bowel disease (IBD) that includes both ulcerative colitis (UC) and Crohn's disease (CD) are risk factors for the development of colorectal cancer (CRC). Many cytokines produced primarily by the gut immune cells either during or in response to localized inflammation in the colon and rectum are known to stimulate the complex interactions between the different cell types in the gut environment resulting in acute inflammation. Subsequently, chronic inflammation, together with genetic and epigenetic changes, have been shown to lead to the development and progression of CRC. Various cell types present in the colon, such as enterocytes, Paneth cells, goblet cells, and macrophages, express receptors for inflammatory cytokines and respond to tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and other cytokines. Among the several cytokines produced, TNF-α and IL-1β are the key pro-inflammatory molecules that play critical roles in the development of CRC. The current review is intended to consolidate the published findings to focus on the role of pro-inflammatory cytokines, namely TNF-α and IL-1β, on inflammation (and the altered immune response) in the gut, to better understand the development of CRC in IBD, using various experimental model systems, preclinical and clinical studies. Moreover, this review also highlights the current therapeutic strategies available (monotherapy and combination therapy) to alleviate the symptoms or treat inflammation-associated CRC by using monoclonal antibodies or aptamers to block pro-inflammatory molecules, inhibitors of tyrosine kinases in the inflammatory signaling cascade, competitive inhibitors of pro-inflammatory molecules, and the nucleic acid drugs like small activating RNAs (saRNAs) or microRNA (miRNA) mimics to activate tumor suppressor or repress oncogene/pro-inflammatory cytokine gene expression.

Keywords: Aptamer, colitis, colorectal cancer (CRC), cytokines, inflammasomes, inflammation, inflammatory bowel disease (IBD), interleukin (IL), microRNA (miRNA/miR), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), small activating RNA (saRNA), tumor necrosis factor-alpha (TNF-α), ulcerative colitis (UC).

« Previous
Graphical Abstract
[1]
Baumgart, D.C.; Carding, S.R. Inflammatory bowel disease: Cause and immunobiology. Lancet, 2007, 369(9573), 1627-1640.
[http://dx.doi.org/10.1016/S0140-6736(07)60750-8] [PMID: 17499605]
[2]
Sikalidis, A.K.; Varamini, B. Roles of hormones and signaling molecules in describing the relationship between obesity and colon cancer. Pathol. Oncol. Res., 2011, 17(4), 785-790.
[http://dx.doi.org/10.1007/s12253-010-9352-9] [PMID: 21221874]
[3]
van der Flier, L.G.; Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol., 2009, 71, 241-260.
[http://dx.doi.org/10.1146/annurev.physiol.010908.163145] [PMID: 18808327]
[4]
Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell, 2013, 154(2), 274-284.
[http://dx.doi.org/10.1016/j.cell.2013.07.004] [PMID: 23870119]
[5]
Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature, 2007, 448(7152), 427-434.
[http://dx.doi.org/10.1038/nature06005] [PMID: 17653185]
[6]
Sikalidis, A.K.; Fitch, M.D.; Fleming, S.E. Diet induced obesity increases the risk of colonic tumorigenesis in mice. Pathol. Oncol. Res., 2013, 19(4), 657-666.
[http://dx.doi.org/10.1007/s12253-013-9626-0] [PMID: 23536280]
[7]
Jana, A.; Krett, N.L.; Guzman, G.; Khalid, A.; Ozden, O.; Staudacher, J.J.; Bauer, J.; Baik, S.H.; Carroll, T.; Yazici, C.; Jung, B. NFkB is essential for activin-induced colorectal cancer migration via upregulation of PI3K-MDM2 pathway. Oncotarget, 2017, 8(23), 37377-37393.
[http://dx.doi.org/10.18632/oncotarget.16343] [PMID: 28418896]
[8]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[9]
Ramachandran, I.; Ganapathy, V.; Gillies, E.; Fonseca, I.; Sureban, S.M.; Houchen, C.W.; Reis, A.; Queimado, L. Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. Cell Death Dis., 2014, 5, , e1246..
[http://dx.doi.org/10.1038/cddis.2014.219] [PMID: 24853424]
[10]
Ramachandran, I.; Thavathiru, E.; Ramalingam, S.; Natarajan, G.; Mills, W.K.; Benbrook, D.M.; Zuna, R.; Lightfoot, S.; Reis, A.; Anant, S.; Queimado, L. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene, 2012, 31(22), 2725-2737.
[http://dx.doi.org/10.1038/onc.2011.455] [PMID: 22002305]
[11]
Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene, 2017, 36(11), 1461-1473.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[12]
Miyamoto, S.; Rosenberg, D.W. Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci., 2011, 102(11), 1938-1942.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02049.x] [PMID: 21801279]
[13]
Grasso, C.S.; Giannakis, M.; Wells, D.K.; Hamada, T.; Mu, X.J.; Quist, M.; Nowak, J.A.; Nishihara, R.; Qian, Z.R.; Inamura, K.; Morikawa, T.; Nosho, K.; Abril-Rodriguez, G.; Connolly, C.; Escuin-Ordinas, H.; Geybels, M.S.; Grady, W.M.; Hsu, L.; Hu-Lieskovan, S.; Huyghe, J.R.; Kim, Y.J.; Krystofinski, P.; Leiserson, M.D.M.; Montoya, D.J.; Nadel, B.B.; Pellegrini, M.; Pritchard, C.C.; Puig-Saus, C.; Quist, E.H.; Raphael, B.J.; Salipante, S.J.; Shin, D.S.; Shinbrot, E.; Shirts, B.; Shukla, S.; Stanford, J.L.; Sun, W.; Tsoi, J.; Upfill-Brown, A.; Wheeler, D.A.; Wu, C.J.; Yu, M.; Zaidi, S.H.; Zaretsky, J.M.; Gabriel, S.B.; Lander, E.S.; Garraway, L.A.; Hudson, T.J.; Fuchs, C.S.; Ribas, A.; Ogino, S.; Peters, U. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov., 2018, 8(6), 730-749.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1327] [PMID: 29510987]
[14]
Wang, S.; Liu, Z.; Wang, L.; Zhang, X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell. Mol. Immunol., 2009, 6(5), 327-334.
[http://dx.doi.org/10.1038/cmi.2009.43] [PMID: 19887045]
[15]
Furuya, H.; Tamashiro, P.M.; Shimizu, Y.; Iino, K.; Peres, R.; Chen, R.; Sun, Y.; Hannun, Y.A.; Obeid, L.M.; Kawamori, T. Sphingosine Kinase 1 expression in peritoneal macrophages is required for colon carcinogenesis. Carcinogenesis, 2017, 38(12), 1218-1227.
[http://dx.doi.org/10.1093/carcin/bgx104] [PMID: 29028945]
[16]
Gazizadeh Darband, S.; Saboory, E.; Sadighparvar, S.; Kaviani, M.; Mobaraki, K.; Jabbari, N.; Majidinia, M. The modulatory effects of exercise on the inflammatory and apoptotic markers in rats with 1,2-Dimethylhydrazine-induced colorectal cancer. Can. J. Physiol. Pharmacol., 2020, 98(3), 147-155.
[http://dx.doi.org/10.1139/cjpp-2019-0329] [PMID: 31614098]
[17]
Epplein, M.; Pawlita, M.; Michel, A.; Peek, R.M., Jr; Cai, Q.; Blot, W.J. Helicobacter pylori protein-specific antibodies and risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev., 2013, 22(11), 1964-1974.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-0702] [PMID: 24045925]
[18]
Butt, J.; Varga, M.G.; Blot, W.J.; Teras, L.; Visvanathan, K.; Le Marchand, L.; Haiman, C.; Chen, Y.; Bao, Y.; Sesso, H.D.; Wassertheil-Smoller, S.; Ho, G.Y.F.; Tinker, L.E.; Peek, R.M.; Potter, J.D.; Cover, T.L.; Hendrix, L.H.; Huang, L.C.; Hyslop, T.; Um, C.; Grodstein, F.; Song, M.; Zeleniuch-Jacquotte, A.; Berndt, S.; Hildesheim, A.; Waterboer, T.; Pawlita, M.; Epplein, M. Serologic response to Helicobacter pylori proteins associated with risk of colorectal cancer among diverse populations in the United States Gastroenterology, 2019, 156(1), 175-186, e2.
[http://dx.doi.org/10.1053/j.gastro.2018.09.054] [PMID: 30296434]
[19]
Parlato, M.; Yeretssian, G. NOD-like receptors in intestinal homeostasis and epithelial tissue repair. Int. J. Mol. Sci., 2014, 15(6), 9594-9627.
[http://dx.doi.org/10.3390/ijms15069594] [PMID: 24886810]
[20]
Hong, J.B.; Zuo, W.; Wang, A.J.; Lu, N.H. Helicobacter pylori infection synergistic with IL-1beta gene polymorphisms potentially contributes to the carcinogenesis of gastric cancer. Int. J. Med. Sci., 2016, 13(4), 298-303.
[http://dx.doi.org/10.7150/ijms.14239] [PMID: 27076787]
[21]
Plewka, D.; Plewka, A.; Miskiewicz, A.; Morek, M.; Bogunia, E. Nuclear factor-kappa B as potential therapeutic target in human colon cancer. J. Cancer Res. Ther., 2018, 14(3), 516-520.
[http://dx.doi.org/10.4103/0973-1482.180607] [PMID: 29893308]
[22]
Goldberg, R.M.; Montagut, C.; Wainberg, Z.A.; Ronga, P.; Audhuy, F.; Taieb, J.; Stintzing, S.; Siena, S.; Santini, D. Optimising the use of cetuximab in the continuum of care for patients with metastatic colorectal cancer. ESMO Open, 2018, 3(4), e000353.
[http://dx.doi.org/10.1136/esmoopen-2018-000353] [PMID: 29765773]
[23]
Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev., 2018, 281(1), 8-27.
[http://dx.doi.org/10.1111/imr.12621] [PMID: 29247995]
[24]
Mitchell, K.; Barreyro, L.; Todorova, T.I.; Taylor, S.J.; Antony-Debré, I.; Narayanagari, S.R.; Carvajal, L.A.; Leite, J.; Piperdi, Z.; Pendurti, G.; Mantzaris, I.; Paietta, E.; Verma, A.; Gritsman, K.; Steidl, U. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J. Exp. Med., 2018, 215(6), 1709-1727.
[http://dx.doi.org/10.1084/jem.20180147] [PMID: 29773641]
[25]
Ali, S.; Huber, M.; Kollewe, C.; Bischoff, S.C.; Falk, W.; Martin, M.U. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18660-18665.
[http://dx.doi.org/10.1073/pnas.0705939104] [PMID: 18003919]
[26]
Wang, M.T.; Honn, K.V.; Nie, D. Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev., 2007, 26(3-4), 525-534.
[http://dx.doi.org/10.1007/s10555-007-9096-5] [PMID: 17763971]
[27]
Natarajan, G.; Ramalingam, S.; Ramachandran, I.; May, R.; Queimado, L.; Houchen, C.W.; Anant, S. CUGBP2 downregulation by prostaglandin E2 protects colon cancer cells from radiation-induced mitotic catastrophe. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 294(5), G1235-G1244.
[http://dx.doi.org/10.1152/ajpgi.00037.2008] [PMID: 18325984]
[28]
Hamoya, T.; Fujii, G.; Miyamoto, S.; Takahashi, M.; Totsuka, Y.; Wakabayashi, K.; Toshima, J.; Mutoh, M. Effects of NSAIDs on the risk factors of colorectal cancer: A mini review. Genes Environ., 2016, 38, 6.
[http://dx.doi.org/10.1186/s41021-016-0033-0] [PMID: 27350826]
[29]
Hosono, K.; Yamada, E.; Endo, H.; Takahashi, H.; Inamori, M.; Hippo, Y.; Nakagama, H.; Nakajima, A. Increased tumor necrosis factor receptor 1 expression in human colorectal adenomas. World J. Gastroenterol., 2012, 18(38), 5360-5368.
[http://dx.doi.org/10.3748/wjg.v18.i38.5360] [PMID: 23082052]
[30]
Mandal, R.K.; Khan, M.A.; Hussain, A.; Akhter, N.; Jawed, A.; Dar, S.A.; Wahid, M.; Panda, A.K.; Lohani, M.; Mishra, B.N.; Haque, S. A trial sequential meta-analysis of TNF-α -308G>A (rs800629) gene polymorphism and susceptibility to colorectal cancer. Biosci. Rep., 2019, 39(1), BSR20181052.
[http://dx.doi.org/10.1042/BSR20181052] [PMID: 30509964]
[31]
de Baey, A.; Mende, I.; Baretton, G.; Greiner, A.; Hartl, W.H.; Baeuerle, P.A.; Diepolder, H.M. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J. Immunol., 2003, 170(10), 5089-5094.
[http://dx.doi.org/10.4049/jimmunol.170.10.5089] [PMID: 12734354]
[32]
Smrekar, N.; Drobne, D.; Smid, L.M.; Ferkolj, I.; Stabuc, B.; Ihan, A.; Kopitar, A.N. Dendritic cell profiles in the inflamed colonic mucosa predict the responses to tumor necrosis factor alpha inhibitors in inflammatory bowel disease. Radiol. Oncol., 2018, 52(4), 443-452.
[http://dx.doi.org/10.2478/raon-2018-0045] [PMID: 30511938]
[33]
Al Obeed, O.A.; Alkhayal, K.A.; Al Sheikh, A.; Zubaidi, A.M.; Vaali-Mohammed, M.A.; Boushey, R.; Mckerrow, J.H.; Abdulla, M.H. Increased expression of tumor necrosis factor-α is associated with advanced colorectal cancer stages. World J. Gastroenterol., 2014, 20(48), 18390-18396.
[http://dx.doi.org/10.3748/wjg.v20.i48.18390] [PMID: 25561807]
[34]
Berkovich, L.; Ghinea, R.; Majdop, S.; Shpitz, B.; White, I.; Mishaeli, M.; Avital, S. Postcolectomy peritoneal environment increases colon cancer cell migration capacity. Gastroenterol. Res. Pract., 2016, 2016, , 2540397..
[http://dx.doi.org/10.1155/2016/2540397] [PMID: 26819599]
[35]
Li, W.; Xu, J.; Zhao, J.; Zhang, R. Oxaliplatin and infliximab combination synergizes in inducing colon cancer regression. Med. Sci. Monit., 2017, 23, 780-789.
[http://dx.doi.org/10.12659/MSM.901880] [PMID: 28190020]
[36]
McConnell, B.B.; Yang, V.W. The role of inflammation in the pathogenesis of colorectal cancer. Curr. Colorectal Cancer Rep., 2009, 5(2), 69-74.
[http://dx.doi.org/10.1007/s11888-009-0011-z] [PMID: 19756239]
[37]
Popivanova, B.K.; Kitamura, K.; Wu, Y.; Kondo, T.; Kagaya, T.; Kaneko, S.; Oshima, M.; Fujii, C.; Mukaida, N. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest., 2008, 118(2), 560-570.
[http://dx.doi.org/10.1172/JCI32453] [PMID: 18219394]
[38]
Mehta, S.J.; Silver, A.R.; Lindsay, J.O. Review article: Strategies for the management of chronic unremitting ulcerative colitis. Aliment. Pharmacol. Ther., 2013, 38(2), 77-97.
[http://dx.doi.org/10.1111/apt.12345] [PMID: 23718288]
[39]
Granofszky, N.; Lang, M.; Khare, V.; Schmid, G.; Scharl, T.; Ferk, F.; Jimenez, K.; Knasmüller, S.; Campregher, C.; Gasche, C. Identification of PMN-released mutagenic factors in a co-culture model for colitis-associated cancer. Carcinogenesis, 2018, 39(2), 146-157.
[http://dx.doi.org/10.1093/carcin/bgx118] [PMID: 29106440]
[40]
Chen, X.; Hu, Z.P.; Yang, X.X.; Huang, M.; Gao, Y.; Tang, W.; Chan, S.Y.; Dai, X.; Ye, J.; Ho, P.C.; Duan, W.; Yang, H.Y.; Zhu, Y.Z.; Zhou, S.F. Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. Int. Immunopharmacol., 2006, 6(3), 499-508.
[http://dx.doi.org/10.1016/j.intimp.2005.08.026] [PMID: 16428086]
[41]
Park, M.H.; Hong, J.T. Roles of NF-kappaB in cancer and inflammatory diseases and their therapeutic approaches. Cells, 2016, 5(2), , 15..
[http://dx.doi.org/10.3390/cells5020015] [PMID: 27043634]
[42]
Shrimali, D.; Shanmugam, M.K.; Kumar, A.P.; Zhang, J.; Tan, B.K.; Ahn, K.S.; Sethi, G. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett., 2013, 341(2), 139-149.
[http://dx.doi.org/10.1016/j.canlet.2013.08.023] [PMID: 23962559]
[43]
Zhou, R.; Qian, S.; Gu, X.; Chen, Z.; Xiang, J. Interleukin-13 and its receptors in colorectal cancer (Review). Biomed. Rep., 2013, 1(5), 687-690.
[http://dx.doi.org/10.3892/br.2013.132] [PMID: 24649010]
[44]
Fang, M.; Li, Y.; Huang, K.; Qi, S.; Zhang, J.; Zgodzinski, W.; Majewski, M.; Wallner, G.; Gozdz, S.; Macek, P.; Kowalik, A.; Pasiarski, M.; Grywalska, E.; Vatan, L.; Nagarsheth, N.; Li, W.; Zhao, L.; Kryczek, I.; Wang, G.; Wang, Z.; Zou, W.; Wang, L. IL33 promotes colon cancer cell stemness via JNK activation and macrophage recruitment. Cancer Res., 2017, 77(10), 2735-2745.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1602] [PMID: 28249897]
[45]
Liew, F.Y.; Pitman, N.I.; McInnes, I.B. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol., 2010, 10(2), 103-110.
[http://dx.doi.org/10.1038/nri2692] [PMID: 20081870]
[46]
Ferrand, A.; Al Nabhani, Z.; Tapias, N.S.; Mas, E.; Hugot, J.P.; Barreau, F. NOD2 expression in intestinal epithelial cells protects toward the development of inflammation and associated carcinogenesis. Cell. Mol. Gastroenterol. Hepatol., 2019, 7(2), 357-369.
[http://dx.doi.org/10.1016/j.jcmgh.2018.10.009] [PMID: 30704984]
[47]
Martinon, F.; Mayor, A.; Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol., 2009, 27, 229-265.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132715] [PMID: 19302040]
[48]
Mailer, R.K.; Joly, A.L.; Liu, S.; Elias, S.; Tegner, J.; Andersson, J. IL-1β promotes Th17 differentiation by inducing alternative splicing of FOXP3. Sci. Rep., 2015, 5, 14674.
[http://dx.doi.org/10.1038/srep14674] [PMID: 26441347]
[49]
Malekpour, H.; Heidari, M.H.; Vafaee, R.; Moravvej Farshi, H.; Khodadoostan, M. Gene expression analysis of colon high-grade dysplasia revealed new molecular mechanism of disease. Gastroenterol. Hepatol. Bed Bench, 2018, 11(Suppl. 1), S111-S117.
[PMID: 30774816]
[50]
Deng, Q.; Geng, Y.; Zhao, L.; Li, R.; Zhang, Z.; Li, K.; Liang, R.; Shao, X.; Huang, M.; Zuo, D.; Wu, Y.; Ma, Q. NLRP3 inflammasomes in macrophages drive colorectal cancer metastasis to the liver. Cancer Lett., 2019, 442, 21-30.
[http://dx.doi.org/10.1016/j.canlet.2018.10.030] [PMID: 30392787]
[51]
Pandey, A.; Shen, C.; Man, S.M. Inflammasomes in colitis and colorectal cancer: Mechanism of action and therapies. Yale J. Biol. Med., 2019, 92(3), 481-498.
[PMID: 31543710]
[52]
Guo, W.; Sun, Y.; Liu, W.; Wu, X.; Guo, L.; Cai, P.; Wu, X.; Wu, X.; Shen, Y.; Shu, Y.; Gu, Y.; Xu, Q. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy, 2014, 10(6), 972-985.
[http://dx.doi.org/10.4161/auto.28374] [PMID: 24879148]
[53]
Liu, T.; Rojas, A.; Ye, Y.; Godzik, A. Homology modeling provides insights into the binding mode of the PAAD/DAPIN/pyrin domain, a fourth member of the CARD/DD/DED domain family. Protein Sci., 2003, 12(9), 1872-1881.
[http://dx.doi.org/10.1110/ps.0359603] [PMID: 12930987]
[54]
Pérez-Figueroa, E.; Torres, J.; Sánchez-Zauco, N.; Contreras-Ramos, A.; Alvarez-Arellano, L.; Maldonado-Bernal, C. Activation of NLRP3 inflammasome in human neutrophils by Helicobacter pylori infection. Innate Immun., 2016, 22(2), 103-112.
[http://dx.doi.org/10.1177/1753425915619475] [PMID: 26610398]
[55]
Zhu, Y.; Zhu, M.; Lance, P. IL1β-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells. Exp. Cell Res., 2012, 318(19), 2520-2530.
[http://dx.doi.org/10.1016/j.yexcr.2012.07.021] [PMID: 22884582]
[56]
Ray, A.L.; Berggren, K.L.; Restrepo Cruz, S.; Gan, G.N.; Beswick, E.J. Inhibition of MK2 suppresses IL-1β, IL-6, and TNF-α-dependent colorectal cancer growth. Int. J. Cancer, 2018, 142(8), 1702-1711.
[http://dx.doi.org/10.1002/ijc.31191] [PMID: 29197088]
[57]
Snider, A.J.; Orr Gandy, K.A.; Obeid, L.M. Sphingosine kinase: Role in regulation of bioactive sphingolipid mediators in inflammation. Biochimie, 2010, 92(6), 707-715.
[http://dx.doi.org/10.1016/j.biochi.2010.02.008] [PMID: 20156522]
[58]
Li, Y.; Wang, L.; Pappan, L.; Galliher-Beckley, A.; Shi, J. IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol. Cancer, 2012, 11, 87.
[http://dx.doi.org/10.1186/1476-4598-11-87] [PMID: 23174018]
[59]
Matsushita, Y.; Kitajima, S.; Goto, M.; Tezuka, Y.; Sagara, M.; Imamura, H.; Tanabe, G.; Tanaka, S.; Aikou, T.; Sato, E. Selectins induced by interleukin-1beta on the human liver endothelial cells act as ligands for sialyl Lewis X-expressing human colon cancer cell metastasis. Cancer Lett., 1998, 133(2), 151-160.
[http://dx.doi.org/10.1016/S0304-3835(98)00220-1] [PMID: 10072164]
[60]
Ye, K.; Chen, Q.W.; Sun, Y.F.; Lin, J.A.; Xu, J.H. Loss of BMI-1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MD-2/MyD88-mediated NF-κB signaling. J. Cell. Biochem., 2018, 119(2), 1922-1930.
[http://dx.doi.org/10.1002/jcb.26353] [PMID: 28815730]
[61]
Villeret, B.; Brault, L.; Couturier-Maillard, A.; Robinet, P.; Vasseur, V.; Secher, T.; Dimier-Poisson, I.; Jacobs, M.; Zheng, S.G.; Quesniaux, V.F.; Ryffel, B. Blockade of IL-1R signaling diminishes Paneth cell depletion and Toxoplasma gondii induced ileitis in mice. Am. J. Clin. Exp. Immunol., 2013, 2(1), 107-116.
[PMID: 23885328]
[62]
Hardbower, D.M.; Coburn, L.A.; Asim, M.; Singh, K.; Sierra, J.C.; Barry, D.P.; Gobert, A.P.; Piazuelo, M.B.; Washington, M.K.; Wilson, K.T. EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis. Oncogene, 2017, 36(27), 3807-3819.
[http://dx.doi.org/10.1038/onc.2017.23] [PMID: 28263971]
[63]
Gelfo, V.; Mazzeschi, M.; Grilli, G.; Lindzen, M.; Santi, S.; D’Uva, G.; Győrffy, B.; Ardizzoni, A.; Yarden, Y.; Lauriola, M. A novel role for the interleukin-1 receptor axis in resistance to anti-EGFR therapy. Cancers (Basel), 2018, 10(10), , 355..
[http://dx.doi.org/10.3390/cancers10100355] [PMID: 30261609]
[64]
Gelfo, V.; Rodia, M.T.; Pucci, M.; Dall’Ora, M.; Santi, S.; Solmi, R.; Roth, L.; Lindzen, M.; Bonafè, M.; Bertotti, A.; Caramelli, E.; Lollini, P.L.; Trusolino, L.; Yarden, Y.; D’Uva, G.; Lauriola, M. A module of inflammatory cytokines defines resistance of colorectal cancer to EGFR inhibitors. Oncotarget, 2016, 7(44), 72167-72183.
[http://dx.doi.org/10.18632/oncotarget.12354] [PMID: 27708224]
[65]
Ning, C.; Li, Y.Y.; Wang, Y.; Han, G.C.; Wang, R.X.; Xiao, H.; Li, X.Y.; Hou, C.M.; Ma, Y.F.; Sheng, D.S.; Shen, B.F.; Feng, J.N.; Guo, R.F.; Li, Y.; Chen, G.J. Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1β/IL-17A axis. Mucosal Immunol., 2015, 8(6), 1275-1284.
[http://dx.doi.org/10.1038/mi.2015.18] [PMID: 25736459]
[66]
Franchi, L.; Kamada, N.; Nakamura, Y.; Burberry, A.; Kuffa, P.; Suzuki, S.; Shaw, M.H.; Kim, Y.G.; Núñez, G. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol., 2012, 13(5), 449-456.
[http://dx.doi.org/10.1038/ni.2263] [PMID: 22484733]
[67]
Liu, W.; Reinmuth, N.; Stoeltzing, O.; Parikh, A.A.; Tellez, C.; Williams, S.; Jung, Y.D.; Fan, F.; Takeda, A.; Akagi, M.; Bar-Eli, M.; Gallick, G.E.; Ellis, L.M. Cyclooxygenase-2 is up-regulated by interleukin-1 beta in human colorectal cancer cells via multiple signaling pathways. Cancer Res., 2003, 63(13), 3632-3636.
[PMID: 12839952]
[68]
Song, K.W.; Talamas, F.X.; Suttmann, R.T.; Olson, P.S.; Barnett, J.W.; Lee, S.W.; Thompson, K.D.; Jin, S.; Hekmat-Nejad, M.; Cai, T.Z.; Manning, A.M.; Hill, R.J.; Wong, B.R. The kinase activities of interleukin-1 receptor associated kinase (IRAK)-1 and 4 are redundant in the control of inflammatory cytokine expression in human cells. Mol. Immunol., 2009, 46(7), 1458-1466.
[http://dx.doi.org/10.1016/j.molimm.2008.12.012] [PMID: 19181383]
[69]
Spalinger, M.R.; Manzini, R.; Hering, L.; Riggs, J.B.; Gottier, C.; Lang, S.; Atrott, K.; Fettelschoss, A.; Olomski, F.; Kündig, T.M.; Fried, M.; McCole, D.F.; Rogler, G.; Scharl, M. PTPN2 regulates inflammasome activation and controls onset of intestinal inflammation and colon cancer. Cell Rep., 2018, 22(7), 1835-1848.
[http://dx.doi.org/10.1016/j.celrep.2018.01.052] [PMID: 29444435]
[70]
Kumar, V.L.; Verma, S.; Das, P. Artesunate suppresses inflammation and oxidative stress in a rat model of colorectal cancer. Drug Dev. Res., 2019, 80(8), 1089-1097.
[http://dx.doi.org/10.1002/ddr.21590] [PMID: 31471932]
[71]
Yao, J.; Zhao, L.; Zhao, Q.; Zhao, Y.; Sun, Y.; Zhang, Y.; Miao, H.; You, Q.D.; Hu, R.; Guo, Q.L. NF-κB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis. Cell Death Dis., 2014, 5(6), , 1283..
[http://dx.doi.org/10.1038/cddis.2014.221] [PMID: 24901054]
[72]
Sun, X.; Ng, T.T.H.; Sham, K.W.Y.; Zhang, L.; Chan, M.T.V.; Wu, W.K.K.; Cheng, C.H.K. Bufalin, a traditional Chinese medicine compound, prevents tumor formation in two murine models of colorectal cancer. Cancer Prev. Res. (Phila.), 2019, 12(10), 653-666.
[http://dx.doi.org/10.1158/1940-6207.CAPR-19-0134] [PMID: 31431500]
[73]
Prabhu, L.; Mundade, R.; Wang, B.; Wei, H.; Hartley, A.V.; Martin, M.; McElyea, K.; Temm, C.J.; Sandusky, G.; Liu, Y.; Lu, T. Critical role of phosphorylation of serine 165 of YBX1 on the activation of NF-κB in colon cancer. Oncotarget, 2015, 6(30), 29396-29412.
[http://dx.doi.org/10.18632/oncotarget.5120] [PMID: 26318844]
[74]
De Simone, V.; Franzè, E.; Ronchetti, G.; Colantoni, A.; Fantini, M.C.; Di Fusco, D.; Sica, G.S.; Sileri, P.; MacDonald, T.T.; Pallone, F.; Monteleone, G.; Stolfi, C. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene, 2015, 34(27), 3493-3503.
[http://dx.doi.org/10.1038/onc.2014.286] [PMID: 25174402]
[75]
Wu, G.S.; Bassing, C.H. The ESCRT protein CHMP5 escorts αβ T cells through positive selection. Cell. Mol. Immunol., 2018, 15(7), 654-656.
[http://dx.doi.org/10.1038/cmi.2017.101] [PMID: 28990583]
[76]
Adoro, S.; Park, K.H.; Bettigole, S.E.; Lis, R.; Shin, H.R.; Seo, H.; Kim, J.H.; Knobeloch, K.P.; Shim, J.H.; Glimcher, L.H. Post-translational control of T cell development by the ESCRT protein CHMP5. Nat. Immunol., 2017, 18(7), 780-790.
[http://dx.doi.org/10.1038/ni.3764] [PMID: 28553951]
[77]
Mo, J.S.; Han, S.H.; Yun, K.J.; Chae, S.C. MicroRNA 429 regulates the expression of CHMP5 in the inflammatory colitis and colorectal cancer cells. Inflamm. Res., 2018, 67(11-12), 985-996.
[http://dx.doi.org/10.1007/s00011-018-1194-z] [PMID: 30334065]
[78]
Femia, A.P.; Luceri, C.; Toti, S.; Giannini, A.; Dolara, P.; Caderni, G. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats. BMC Cancer, 2010, 10, 194.
[http://dx.doi.org/10.1186/1471-2407-10-194] [PMID: 20459814]
[79]
Andersen, V.; Christensen, J.; Overvad, K.; Tjønneland, A.; Vogel, U. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC Cancer, 2010, 10, 484.
[http://dx.doi.org/10.1186/1471-2407-10-484] [PMID: 20836841]
[80]
Aderem, A.; Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature, 2000, 406(6797), 782-787.
[http://dx.doi.org/10.1038/35021228] [PMID: 10963608]
[81]
Wu, Y.; Zhou, B.P. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br. J. Cancer, 2010, 102(4), 639-644.
[http://dx.doi.org/10.1038/sj.bjc.6605530] [PMID: 20087353]
[82]
Ramsay, R.G.; Ciznadija, D.; Vanevski, M.; Mantamadiotis, T. Transcriptional regulation of cyclo-oxygenase expression: three pillars of control. Int. J. Immunopathol. Pharmacol., 2003, 16(2 Suppl.), 59-67.
[PMID: 14552705]
[83]
Batista, W.R.; Santos, G.; Vital, F.M.R.; Matos, D. Immunoexpression of TS, p53, COX2, EGFR, MSH6 and MLH1 biomarkers and its correlation with degree of differentiation, tumor staging and prognostic factors in colorectal adenocarcinoma: A retrospective longitudinal study. Sao Paulo Med. J., 2019, 137(1), 33-38.
[http://dx.doi.org/10.1590/1516-3180.2018.0270071218] [PMID: 31116268]
[84]
Al-Halabi, R.; Bou Chedid, M.; Abou Merhi, R.; El-Hajj, H.; Zahr, H.; Schneider-Stock, R.; Bazarbachi, A.; Gali-Muhtasib, H. Gallotannin inhibits NFĸB signaling and growth of human colon cancer xenografts. Cancer Biol. Ther., 2011, 12(1), 59-68.
[http://dx.doi.org/10.4161/cbt.12.1.15715] [PMID: 21532339]
[85]
Johnson, J.J. Carnosol: A promising anti-cancer and anti-inflammatory agent. Cancer Lett., 2011, 305(1), 1-7.
[http://dx.doi.org/10.1016/j.canlet.2011.02.005] [PMID: 21382660]
[86]
Bushati, N.; Cohen, S.M. microRNA functions. Annu. Rev. Cell Dev. Biol., 2007, 23, 175-205.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406] [PMID: 17506695]
[87]
Li, X.; Nie, J.; Mei, Q.; Han, W.D. MicroRNAs: Novel immunotherapeutic targets in colorectal carcinoma. World J. Gastroenterol., 2016, 22(23), 5317-5331.
[http://dx.doi.org/10.3748/wjg.v22.i23.5317] [PMID: 27340348]
[88]
Zhu, M.; Zhang, W.; Ma, J.; Dai, Y.; Zhang, Q.; Liu, Q.; Yang, B.; Li, G. MicroRNA-139-5p regulates chronic inflammation by suppressing nuclear factor-κB activity to inhibit cell proliferation and invasion in colorectal cancer. Exp. Ther. Med., 2019, 18(5), 4049-4057.
[http://dx.doi.org/10.3892/etm.2019.8032] [PMID: 31616518]
[89]
Lee, Y.S.; Dutta, A. MicroRNAs in cancer. Annu. Rev. Pathol., 2009, 4, 199-227.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092222] [PMID: 18817506]
[90]
Møller, T.; James, J.P.; Holmstrøm, K.; Sørensen, F.B.; Lindebjerg, J.; Nielsen, B.S. Co-detection of miR-21 and TNF-alpha mRNA in budding cancer cells in colorectal cancer. Int. J. Mol. Sci., 2019, 20(8), , 1907..
[http://dx.doi.org/10.3390/ijms20081907] [PMID: 30999696]
[91]
Zhang, J.; Lian, B.; Shang, Y.; Li, C.; Meng, Q. miR-135a protects dextran sodium sulfate-induced inflammation in human colorectal cell lines by activating STAT3 signal. Cell. Physiol. Biochem., 2018, 51(3), 1001-1012.
[http://dx.doi.org/10.1159/000495481] [PMID: 30476915]
[92]
Chen, Y.; Du, J.; Zhang, Z.; Liu, T.; Shi, Y.; Ge, X.; Li, Y.C. MicroRNA-346 mediates tumor necrosis factor α-induced downregulation of gut epithelial vitamin D receptor in inflammatory bowel diseases. Inflamm. Bowel Dis., 2014, 20(11), 1910-1918.
[http://dx.doi.org/10.1097/MIB.0000000000000158] [PMID: 25192497]
[93]
Wang, A.; Deng, S.; Chen, X.; Yu, C.; Du, Q.; Wu, Y.; Chen, G.; Hu, L.; Hu, C.; Li, Y. miR-29a-5p/STAT3 positive feedback loop regulates TETs in colitis-associated colorectal cancer. Inflamm. Bowel Dis., 2020, 26(4), 524-533.
[http://dx.doi.org/10.1093/ibd/izz281] [PMID: 31750910]
[94]
Ge, J.; Li, J.; Na, S.; Wang, P.; Zhao, G.; Zhang, X. miR-548c-5p inhibits colorectal cancer cell proliferation by targeting PGK1. J. Cell. Physiol., 2019, 234(10), 18872-18878.
[http://dx.doi.org/10.1002/jcp.28525] [PMID: 30932211]
[95]
Shen, Z.; Zhou, R.; Liu, C.; Wang, Y.; Zhan, W.; Shao, Z.; Liu, J.; Zhang, F.; Xu, L.; Zhou, X.; Qi, L.; Bo, F.; Ding, Y.; Zhao, L. MicroRNA-105 is involved in TNF-α-related tumor microenvironment enhanced colorectal cancer progression. Cell Death Dis., 2017, 8(12), 3213.
[http://dx.doi.org/10.1038/s41419-017-0048-x] [PMID: 29238068]
[96]
Janowski, B.A.; Younger, S.T.; Hardy, D.B.; Ram, R.; Huffman, K.E.; Corey, D.R. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat. Chem. Biol., 2007, 3(3), 166-173.
[http://dx.doi.org/10.1038/nchembio860] [PMID: 17259978]
[97]
Hannon, G.J.; Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature, 2004, 431(7006), 371-378.
[http://dx.doi.org/10.1038/nature02870] [PMID: 15372045]
[98]
Reebye, V.; Sætrom, P.; Mintz, P.J.; Huang, K.W.; Swiderski, P.; Peng, L.; Liu, C.; Liu, X.; Lindkaer-Jensen, S.; Zacharoulis, D.; Kostomitsopoulos, N.; Kasahara, N.; Nicholls, J.P.; Jiao, L.R.; Pai, M.; Spalding, D.R.; Mizandari, M.; Chikovani, T.; Emara, M.M.; Haoudi, A.; Tomalia, D.A.; Rossi, J.J.; Habib, N.A. Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology, 2014, 59(1), 216-227.
[http://dx.doi.org/10.1002/hep.26669] [PMID: 23929703]
[99]
Sarker, D.; Plummer, R.; Meyer, T.; Sodergren, M.H.; Basu, B.; Chee, C.E.; Huang, K.W.; Palmer, D.H.; Ma, Y.T.; Evans, T.R.J.; Spalding, D.R.C.; Pai, M.; Sharma, R.; Pinato, D.J.; Spicer, J.; Hunter, S.; Kwatra, V.; Nicholls, J.P.; Collin, D.; Nutbrown, R.; Glenny, H.; Fairbairn, S.; Reebye, V.; Voutila, J.; Dorman, S.; Andrikakou, P.; Lloyd, P.; Felstead, S.; Vasara, J.; Habib, R.; Wood, C.; Saetrom, P.; Huber, H.E.; Blakey, D.C.; Rossi, J.J.; Habib, N. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-alpha, in patients with advanced liver cancer: a first-in-human, multi-centre, open-label, phase I trial. Clin. Cancer Res., 2020, 26(15), 3936-3946.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0414] [PMID: 32357963]
[100]
Zhou, J.; Li, H.; Xia, X.; Herrera, A.; Pollock, N.; Reebye, V.; Sodergren, M.H.; Dorman, S.; Littman, B.H.; Doogan, D.; Huang, K.W.; Habib, R.; Blakey, D.; Habib, N.A.; Rossi, J.J. Anti-inflammatory activity of MTL-CEBPA, a small activating RNA drug, in LPS-stimulated monocytes and humanized mice. Mol. Ther., 2019, 27(5), 999-1016.
[http://dx.doi.org/10.1016/j.ymthe.2019.02.018] [PMID: 30852139]
[101]
Wang, L.L.; Guo, H.H.; Zhan, Y.; Feng, C.L.; Huang, S.; Han, Y.X.; Zheng, W.S.; Jiang, J.D. Specific up-regulation of p21 by a small active RNA sequence suppresses human colorectal cancer growth. Oncotarget, 2017, 8(15), 25055-25065.
[http://dx.doi.org/10.18632/oncotarget.15918] [PMID: 28445988]
[102]
Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as Therapeutics. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 61-79.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104558] [PMID: 28061688]
[103]
Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 2018, 8(15), 4016-4032.
[http://dx.doi.org/10.7150/thno.25958] [PMID: 30128033]
[104]
Zhang, G.Q.; Zhong, L.P.; Yang, N.; Zhao, Y.X. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J. Gastroenterol., 2019, 25(26), 3359-3369.
[http://dx.doi.org/10.3748/wjg.v25.i26.3359] [PMID: 31341361]
[105]
Boshtam, M.; Asgary, S.; Kouhpayeh, S.; Shariati, L.; Khanahmad, H. Aptamers against pro- and anti-inflammatory cytokines: A review. Inflammation, 2017, 40(1), 340-349.
[http://dx.doi.org/10.1007/s10753-016-0477-1] [PMID: 27878687]
[106]
Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: problems, solutions and prospects. Acta Naturae, 2013, 5(4), 34-43.
[http://dx.doi.org/10.32607/20758251-2013-5-4-34-43] [PMID: 24455181]
[107]
Mashayekhi, K.; Ganji, A.; Sankian, M. Designing a new dimerized anti human TNF-α aptamer with blocking activity. Biotechnol. Prog., 2020, 36(4), , e2969..
[http://dx.doi.org/10.1002/btpr.2969] [PMID: 31989789]
[108]
Orava, E.W.; Jarvik, N.; Shek, Y.L.; Sidhu, S.S.; Gariépy, J. A short DNA aptamer that recognizes TNFα and blocks its activity in vitro. ACS Chem. Biol., 2013, 8(1), 170-178.
[http://dx.doi.org/10.1021/cb3003557] [PMID: 23046187]
[109]
Liu, Y.; Zhou, Q.; Revzin, A. An aptasensor for electrochemical detection of tumor necrosis factor in human blood. Analyst (Lond.), 2013, 138(15), 4321-4326.
[http://dx.doi.org/10.1039/c3an00818e] [PMID: 23745180]
[110]
Ghosh, S.; Datta, D.; Chaudhry, S.; Dutta, M.; Stroscio, M.A. Rapid detection of tumor necrosis factor-alpha using quantum dot-based optical aptasensor. IEEE Trans. Nanobioscience, 2018, 17(4), 417-423.
[http://dx.doi.org/10.1109/TNB.2018.2852261] [PMID: 29994717]
[111]
Simmons, A.J.; Scurrah, C.R.; McKinley, E.T.; Herring, C.A.; Irish, J.M.; Washington, M.K.; Coffey, R.J.; Lau, K.S. Impaired coordination between signaling pathways is revealed in human colorectal cancer using single-cell mass cytometry of archival tissue blocks. Sci. Signal., 2016, 9(449), rs11.
[http://dx.doi.org/10.1126/scisignal.aah4413] [PMID: 27729552]
[112]
Daniels, I.; Cavill, D.; Murray, I.A.; Long, R.G. Elevated expression of iNOS mRNA and protein in coeliac disease. Clin. Chim. Acta, 2005, 356(1-2), 134-142.
[http://dx.doi.org/10.1016/j.cccn.2005.01.029] [PMID: 15936309]
[113]
Xuan, Q.; Zhou, Y.; Tan, B.; Xiao, Z.; Dong, S.; Dai, F.; Gao, L.; Guo, T.; Chen, P.; Sun, J.; Feng, D.; Jin, J.; Chu, F.F.; Gao, Q. Mice deficient in Cyp4a14 have an increased number of goblet cells and attenuated dextran sulfate sodium-induced colitis. Cell. Physiol. Biochem., 2018, 50(6), 2272-2282.
[http://dx.doi.org/10.1159/000495087] [PMID: 30423565]
[114]
Lala, S.; Ogura, Y.; Osborne, C.; Hor, S.Y.; Bromfield, A.; Davies, S.; Ogunbiyi, O.; Nuñez, G.; Keshav, S. Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology, 2003, 125(1), 47-57.
[http://dx.doi.org/10.1016/S0016-5085(03)00661-9] [PMID: 12851870]
[115]
Pêgo, B.; Martinusso, C.A.; Bernardazzi, C.; Ribeiro, B.E.; de Araujo Cunha, A.F.; de Souza Mesquita, J.; Nanini, H.F.; Machado, M.P.; Castelo-Branco, M.T.L.; Cavalcanti, M.G.; de Souza, H.S.P. Schistosoma mansoni coinfection attenuates murine Toxoplasma gondii-induced Crohn’s-like ileitis by preserving the epithelial barrier and downregulating the inflammatory response. Front. Immunol., 2019, 10, 442.
[http://dx.doi.org/10.3389/fimmu.2019.00442] [PMID: 30936867]
[116]
Coccia, M.; Harrison, O.J.; Schiering, C.; Asquith, M.J.; Becher, B.; Powrie, F.; Maloy, K.J. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J. Exp. Med., 2012, 209(9), 1595-1609.
[http://dx.doi.org/10.1084/jem.20111453] [PMID: 22891275]
[117]
Yi, J.; Bergstrom, K.; Fu, J.; Shan, X.; McDaniel, J.M.; McGee, S.; Qu, D.; Houchen, C.W.; Liu, X.; Xia, L. Dclk1 in tuft cells promotes inflammation-driven epithelial restitution and mitigates chronic colitis. Cell Death Differ., 2019, 26(9), 1656-1669.
[http://dx.doi.org/10.1038/s41418-018-0237-x] [PMID: 30478383]
[118]
Westphalen, C.B.; Asfaha, S.; Hayakawa, Y.; Takemoto, Y.; Lukin, D.J.; Nuber, A.H.; Brandtner, A.; Setlik, W.; Remotti, H.; Muley, A.; Chen, X.; May, R.; Houchen, C.W.; Fox, J.G.; Gershon, M.D.; Quante, M.; Wang, T.C. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J. Clin. Invest., 2014, 124(3), 1283-1295.
[http://dx.doi.org/10.1172/JCI73434] [PMID: 24487592]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy