Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

MicroRNAs Profiling in HIV, HCV, and HIV/HCV Co-Infected Patients

Author(s): Mohsen Moghoofei, Sohrab Najafipour, Shayan Mostafaei , Ahmad Tavakoli , Farah Bokharaei-Salim , Saied Ghorbani, Davod Javanmard, Hadi Ghaffari and Seyed Hamidreza Monavari*

Volume 19, Issue 1, 2021

Published on: 08 September, 2020

Page: [27 - 34] Pages: 8

DOI: 10.2174/1570162X18666200908112113

Price: $65

Abstract

Background: Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections are important public health issues.

Objective: This study aimed to assess the association between microRNAs expression leveland immunological and viral markers in HIV, HCV, and HIV/HCV co-infected patients.

Methods: The expression level of miR-29, miR-149, miR-199, miR-let7, miR-223, miR-155, miR-122, and miR-150 was evaluated in 20 HIV, 20 HCV, 20 co-infected patients, and 20 healthy controls using real-time PCR assay. HIV and HCVviral loads were measuredby real-time PCR, and also, CD4+ T-lymphocyte count was measuredby the PIMA CD4 analyzer.

Results: The miRNA expression pattern in each mentioned group showed significantly different expression profiles, but some miRNA species were shared between the groups. MiR-122 and miR-155 were upregulated, while miR-29 and miR-223 were downregulated in three patients groups compared to healthy controls. A significant positive correlation was observed between the expression of miR-122 and HIV/HCV loads. But, miR-29 and let-7 were negatively correlated with HIV load, and miR-149 and let-7 were negatively correlated with HCV load. Also, miR-155 was positively correlated with HCV load. MiR-122 and miR-199 were negative while others were positively correlated with CD4+ T cell count.

Conclusion: These miRNAs are probably involved in the clinical progression and pathogenesis of HIV and HCV infections. Therefore, determining and manipulating these miRNAs can lead to opening a new gate to control these important infections.

Keywords: HIV, HCV, coinfection, microRNA, PBMC, AIDS.

Graphical Abstract
[1]
Bihl MP, Tornillo L, Kind AB, et al. Human Papillomavirus (HPV) detection in cytologic specimens: similarities and differences of available methodology. Appl Immunohistochem Mol Morphol 2017; 25(3): 184-9.
[http://dx.doi.org/10.1097/PAI.0000000000000290]
[2]
Maracy MR, et al. Impact of HIV risk factors on survival in Iranian HIV-infected patients: A Bayesian approach to retrospective cohort. HIV AIDS Rev 2017; 16(2): 100-6.
[http://dx.doi.org/10.5114/hivar.2017.68117]
[3]
Tavakoli A, Esghaei M, Ataei-Pirkooh A, Moghoofei M, Ghaffari H, Bokharaei-Salim F. Current antiretroviral drugs for human immunodeficiency virus infection. Tehran Univ Med J 2019; 77(5): 273-81.
[4]
Gunda DW, Nkandala I, Kilonzo SB, Kilangi BB, Mpondo BC. Prevalence and risk factors of mortality among adult HIV patients initiating ART in rural setting of HIV care and treatment services in north western Tanzania: A retrospective cohort study. J Sex Transm Dis 2017; 2017: 7075601.
[http://dx.doi.org/10.1155/2017/7075601]
[5]
Nouri M, Kamakifar P, Khodabandehlou N, et al. Association between Parvovirus B19 and anemia in HIV-infected patients. Med J Islam Repub Iran 2019; 33(1): 137.
[PMID: 32280643]
[6]
Tajik Z, Bokharaei-Salim F, Ghorbani S, et al. Detection of HBV genome in the plasma and peripheral blood mononuclear cells of Iranian HBsAg negative patients with HIV infection: occult HBV infection. Arch Virol 2018; 163(6): 1559-66.
[http://dx.doi.org/10.1007/s00705-018-3740-y]
[7]
Pietschmann T, Brown RJP, Hepatitis C. Virus. Trends Microbiol 2019; 27(4): 379-80.
[http://dx.doi.org/10.1016/j.tim.2019.01.001]
[8]
Fateh A, Aghasadeghi MR, Keyvani H, et al. High resolution melting curve assay for detecting rs12979860 IL28B polymorphisms involved in response of Iranian patients to chronic hepatitis C treatment. Asian Pac J Cancer Prev 2015; 16(5): 1873-80.
[http://dx.doi.org/10.7314/APJCP.2015.16.5.1873]
[9]
Bokharaei-Salim F, Keyvani H, Monavari SH, Alavian SM, Fakhim S, Nasseri S. Distribution of hepatitis C virus genotypes among azerbaijani patients in capital city of iran-tehran. Hepat Mon 2013; 13(9): e13699.
[http://dx.doi.org/10.5812/hepatmon.13699]
[10]
Saha D, Pal A, Biswas A, et al. Characterization of treatment-naive HIV/HBV co-infected patients attending ART clinic of a tertiary healthcare centre in eastern India. PLoS One 2013; 8(8): e73613.
[http://dx.doi.org/10.1371/journal.pone.0073613]
[11]
Fateh A, Aghasadeghi M, Siadat SD, et al. Comparison of three different methods for detection of IL28 rs12979860 polymorphisms as a predictor of treatment outcome in patients with hepatitis C virus. Osong Public Health Res Perspect 2016; 7(2): 83-9.
[http://dx.doi.org/10.1016/j.phrp.2015.11.004]
[12]
Bokharaei-Salim F, Keyvani H, Salehi-Vaziri M, et al. Mutations in the NS5A gene of hepatitis C virus subtype 1b and response to peg-IFNa-2a/RBV combination therapy in Azerbaijani patients. Arch Virol 2014; 159(11): 2893-9.
[13]
Balagopal A, Stuart C. Kupffer Cells are Depleted with HIV Immunodeficiency and Partially Recovered with Antiretroviral Immunereconstitution: HIV, Kupffer Cells and Antiretroviral Therapy. AIDS 2009; 23(18): 2397.
[http://dx.doi.org/10.1097/QAD.0b013e3283324344]
[14]
Gadalla SM, Preiss LR, Eyster ME, Goedert JJ. Correlates of high hepatitis C virus RNA load in a cohort of HIV-negative and HIV-positive individuals with haemophilia. J Viral Hepat 2011; 18(3): 161-9.
[http://dx.doi.org/10.1111/j.1365-2893.2010.01289.x]
[15]
Sadeghi F, Bokharaei-Salim F, Salehi-Vaziri M, et al. Associations between human TRIM22 gene expression and the response to combination therapy with Peg-IFNα-2a and ribavirin in Iranian patients with chronic hepatitis C. J Med Virol 2014; 86(9): 1499-506.
[http://dx.doi.org/10.1002/jmv.23985]
[16]
Sulkowski M, Hezode C, Gerstoft J, et al. Efficacy and safety of 8 weeks versus 12 weeks of treatment with grazoprevir (MK-5172) and elbasvir (MK-8742) with or without ribavirin in patients with hepatitis C virus genotype 1 mono-infection and HIV/hepatitis C virus co-infection (C-WORTHY): a randomised, open-label phase 2 trial. Lancet 2015; 385(9973): 1087-97.
[http://dx.doi.org/10.1016/S0140-6736(14)61793-1]
[17]
Gupta A, Swaminathan G, Martin-Garcia J, Navas-Martin S. MicroRNAs, hepatitis C virus, and HCV/HIV-1 co-infection: new insights in pathogenesis and therapy. Viruses 2012; 4(11): 2485-513.
[http://dx.doi.org/10.3390/v4112485]
[18]
Tatro ET, Scott ER, Nguyen TB, et al. Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-infected brain: novel analysis of retrospective cases. PLoS One 2010; 5(4): e10337.
[http://dx.doi.org/10.1371/journal.pone.0010337]
[19]
Wang J, Meng F, Dai E, et al. Identification of associations between small molecule drugs and miRNAs based on functional similarity. Oncotarget 2016; 7(25): 38658-69.
[http://dx.doi.org/10.18632/oncotarget.9577]
[20]
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, et al. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234(10): 17064-99.
[http://dx.doi.org/10.1002/jcp.28457]
[21]
Sadri Nahand J, Bokharaei-Salim F, Karimzadeh M, et al. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21(4): 246-78.
[http://dx.doi.org/10.1111/hiv.12822]
[22]
Li N, Liu X, Han L, et al. Expression of miRNA-146b-5p in patients with thyroid cancer in combination with Hashimoto’s disease and its clinical significance. Oncol Lett 2019; 17(6): 4871-6.
[23]
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, et al. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2019; 234(8): 12188-225.
[http://dx.doi.org/10.1002/jcp.27956]
[24]
Nahand JS, Karimzadeh MR, Nezamnia M, et al. The role of miR-146a in viral infection. IUBMB Life 2020; 72(3): 343-60.
[http://dx.doi.org/10.1002/iub.2222]
[25]
Nahand JS, Mahjoubin-Tehran M, Moghoofei M, et al. Exosomal miRNAs: novel players in viral infection. Epigenomics 2020; 12(4): 353-70.
[http://dx.doi.org/10.2217/epi-2019-0192]
[26]
Bandiera S, Pernot S, El Saghire H, et al. Hepatitis C virus-induced upregulation of microRNA miR-146a-5p in hepatocytes promotes viral infection and deregulates metabolic pathways associated with liver disease pathogenesis. J Virol 2016; 90(14): 6387-400.
[http://dx.doi.org/10.1128/JVI.00619-16]
[27]
Lin J, Xia J, Chen YT, Zhang KY, Zeng Y, Yang Q. H9N2 avian influenza virus enhances the immune responses of BMDCs by down-regulating miR29c. Vaccine 2017; 35(5): 729-37.
[http://dx.doi.org/10.1016/j.vaccine.2016.12.054]
[28]
Sullivan CS, Ganem D. MicroRNAs and viral infection. Mol Cell 2005; 20(1): 3-7.
[http://dx.doi.org/10.1016/j.molcel.2005.09.012]
[29]
Conrad KD, Giering F, Erfurth C, et al. MicroRNA-122 dependent binding of Ago2 protein to hepatitis C virus RNA is associated with enhanced RNA stability and translation stimulation. PLoS One 2013; 8(2): e56272.
[http://dx.doi.org/10.1371/journal.pone.0056272]
[30]
Zheng Z, Ke X, Wang M, et al. Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J Virol 2013; 87(10): 5645-56.
[http://dx.doi.org/10.1128/JVI.02655-12]
[31]
Ingle H, Kumar S, Raut AA, et al. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci Signal 2015; 8(406): ra126-6.
[http://dx.doi.org/10.1126/scisignal.aab3183]
[32]
Thibault PA, Huys A, Amador-Cañizares Y, Gailius JE, Pinel DE, Wilson JA. Regulation of hepatitis C virus genome replication by Xrn1 and microRNA-122 binding to individual sites in the 5′ untranslated region. J Virol 2015; 89(12): 6294-311.
[http://dx.doi.org/10.1128/JVI.03631-14]
[33]
Moghoofei M, et al. microRNAs 29, 150, 155, 223 level and their relation to viral and immunological markers in HIV-1 infected naive patients. Future Virol 2018; 13(09): 637-45.
[http://dx.doi.org/10.2217/fvl-2018-0055]
[34]
Nunnari G, Schnell MJ. MicroRNA-122: A therapeutic target for hepatitis C virus (HCV) infection. Front Biosci (Schol Ed) 2011; 3: 1032-7.
[35]
Fukuhara T, Kambara H, Shiokawa M, et al. Expression of microRNA miR-122 facilitates an efficient replication in nonhepatic cells upon infection with hepatitis C virus. J Virol 2012; 86(15): 7918-33.
[http://dx.doi.org/10.1128/JVI.00567-12]
[36]
Chen Y, Shen A, Rider PJ, et al. A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J 2011; 25(12): 4511-21.
[http://dx.doi.org/10.1096/fj.11-187781]
[37]
Qiu L, Fan H, Jin W, et al. miR-122-induced down-regulation of HO-1 negatively affects miR-122-mediated suppression of HBV. Biochem Biophys Res Commun 2010; 398(4): 771-7.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.021]
[38]
Nathans R, Chu CY, Serquina AK, Lu CC, Cao H, Rana TM. Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 2009; 34(6): 696-709.
[http://dx.doi.org/10.1016/j.molcel.2009.06.003]
[39]
Moghoofei M, Mostafaei S, Ashraf-Ganjouei A, Kavosi H, Mahmoudi M. HBV reactivation in rheumatic diseases patients under therapy: A meta-analysis. Microb Pathog 2018; 114: 436-43.
[http://dx.doi.org/10.1016/j.micpath.2017.12.014]
[40]
Bastani M-N, Bokharaei-Salim F, Keyvani H, et al. Prevalence of occult hepatitis C virus infection in Iranian patients with beta thalassemia major. Arch Virol 2016; 161(7): 1899-906.
[http://dx.doi.org/10.1007/s00705-016-2862-3]
[41]
Huang F, Bai J, Zhang J, et al. Identification of potential diagnostic biomarkers for pneumonia caused by adenovirus infection in children by screening serum exosomal microRNAs. Mol Med Rep 2019; 19(5): 4306-14.
[http://dx.doi.org/10.3892/mmr.2019.10107]
[42]
Li L-M, Hu ZB, Zhou ZX, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res 2010; 70(23): 9798-807.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1001]
[43]
Sadri Nahand J, Moghoofei M, Salmaninejad A, et al. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. Int J Cancer 2020; 146(2): 305-20.
[http://dx.doi.org/10.1002/ijc.32688]
[44]
Peng M, Xiao X, He Y, et al. HIV Vpr protein upregulates microRNA-122 expression and stimulates hepatitis C virus replication. J Gen Virol 2015; 96(8): 2453-63.
[http://dx.doi.org/10.1099/vir.0.000169]
[45]
Jangra RK, Yi M, Lemon SM. Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J Virol 2010; 84(13): 6615-25.
[http://dx.doi.org/10.1128/JVI.00417-10]
[46]
Gupta P, Liu B, Wu JQ, et al. Genome-wide mRNA and miRNA analysis of peripheral blood mononuclear cells (PBMC) reveals different miRNAs regulating HIV/HCV co-infection. Virology 2014; 450-451: 336-49.
[http://dx.doi.org/10.1016/j.virol.2013.12.026]
[47]
Triboulet R, Mari B, Lin YL, et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007; 315(5818): 1579-82.
[http://dx.doi.org/10.1126/science.1136319]
[48]
Murray DD, Suzuki K, Law M, et al. Circulating miR-122 and miR-200a as biomarkers for fatal liver disease in ART-treated, HIV-1-infected individuals. Sci Rep 2017; 7(1): 10934.
[http://dx.doi.org/10.1038/s41598-017-11405-8]
[49]
Jamalidoust M, Namayandeh M, Moghadami M, Ziyaeyan M. Comparison of HCV viral load and its genotype distributions in HCV mono- and HIV/HCV co-infected illicit drug users. Virol J 2017; 14(1): 127.
[http://dx.doi.org/10.1186/s12985-017-0797-2]
[50]
Arends JE, Stuart JC, Baak LC, et al. Plasma HCV-RNA decline in the first 48 h identifies hepatitis C virus mono-infected but not HCV/HIV-coinfected patients with an undetectable HCV viral load at week 4 of peginterferon-alfa-2a/ribavirin therapy. J Viral Hepat 2009; 16(12): 867-75.
[http://dx.doi.org/10.1111/j.1365-2893.2009.01143.x]
[51]
Chen JY, Feeney ER, Chung RT. HCV and HIV co-infection: mechanisms and management. Nat Rev Gastroenterol Hepatol 2014; 11(6): 362-71.
[http://dx.doi.org/10.1038/nrgastro.2014.17]
[52]
Kong L, Cardona Maya W, Moreno-Fernandez ME, et al. Low-level HIV infection of hepatocytes. Virol J 2012; 9(1): 157.
[http://dx.doi.org/10.1186/1743-422X-9-157]
[53]
Moradi M, Tabibzadeh A, Javanmard D, et al. Assessment of key elements in the innate immunity system among patients with HIV, HCV, and coinfections of HIV/HCV. Curr HIV Res 2020; 18(3): 194-200.
[http://dx.doi.org/10.2174/1570162X18999200325162533]
[54]
Ahluwalia JK, Khan SZ, Soni K, et al. Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 2008; 5(1): 117.
[http://dx.doi.org/10.1186/1742-4690-5-117]
[55]
Ortega PAS, Saulle I, Mercurio V, et al. Interleukin 21 (IL-21)/microRNA-29 (miR-29) axis is associated with natural resistance to HIV-1 infection. AIDS 2018; 32(17): 2453-61.
[http://dx.doi.org/10.1097/QAD.0000000000001938]
[56]
Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 2009; 182(5): 2578-82.
[http://dx.doi.org/10.4049/jimmunol.0803162]
[57]
Lu L-F, Thai TH, Calado DP, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 2009; 30(1): 80-91.
[http://dx.doi.org/10.1016/j.immuni.2008.11.010]
[58]
O’Connell RM, Rao DS, Baltimore D. MicroRNA regulation of inflammatory responses. Annu Rev Immunol 2012; 30: 295-312.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075013]
[59]
Blackard JT, Sherman KE. HCV/ HIV co-infection: time to re-evaluate the role of HIV in the liver? J Viral Hepat 2008; 15(5): 323-30.
[http://dx.doi.org/10.1111/j.1365-2893.2008.00970.x]
[60]
Piedade D, Azevedo-Pereira JM. MicroRNAs, HIV and HCV: a complex relation towards pathology. Rev Med Virol 2016; 26(3): 197-215.
[http://dx.doi.org/10.1002/rmv.1881]
[61]
Witwer KW, Watson AK, Blankson JN, Clements JE. Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients. Retrovirology 2012; 9(1): 5.
[http://dx.doi.org/10.1186/1742-4690-9-5]
[62]
Hariharan M, Scaria V, Pillai B, Brahmachari SK. Targets for human encoded microRNAs in HIV genes. Biochem Biophys Res Commun 2005; 337(4): 1214-8.
[http://dx.doi.org/10.1016/j.bbrc.2005.09.183]
[63]
Kaul D, Ahlawat A, Gupta SD. HIV-1 genome-encoded hiv1-mir-H1 impairs cellular responses to infection. Mol Cell Biochem 2009; 323(1-2): 143-8.
[http://dx.doi.org/10.1007/s11010-008-9973-4]
[64]
Murakami Y, Aly HH, Tajima A, Inoue I, Shimotohno K. Regulation of the hepatitis C virus genome replication by miR-199a. J Hepatol 2009; 50(3): 453-60.
[http://dx.doi.org/10.1016/j.jhep.2008.06.010]
[65]
Cheng J-C, Yeh YJ, Tseng CP, et al. Let-7b is a novel regulator of hepatitis C virus replication. Cell Mol Life Sci 2012; 69(15): 2621-33.
[http://dx.doi.org/10.1007/s00018-012-0940-6]
[66]
Qi Y, Hu H, Guo H, et al. MicroRNA profiling in plasma of HIV-1 infected patients: potential markers of infection and immune status. J Public Health Emerg 2017; 1 (7).
[http://dx.doi.org/10.21037/jphe.2017.05.11]
[67]
Houzet L, Yeung ML, de Lame V, Desai D, Smith SM, Jeang KT. MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 2008; 5(1): 118.
[http://dx.doi.org/10.1186/1742-4690-5-118]
[68]
Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 2007; 23: 175-205.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406]
[69]
Wang W-X, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28(5): 1213-23.
[http://dx.doi.org/10.1523/JNEUROSCI.5065-07.2008]
[70]
Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F. microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther 2010; 125(1): 92-104.
[http://dx.doi.org/10.1016/j.pharmthera.2009.10.003]
[71]
Hydbring P, Badalian-Very G. Clinical applications of microRNAs. F1000 Res 2013; 2: 136.
[http://dx.doi.org/10.12688/f1000research.2-136.v1]
[72]
Munshi SU, Panda H, Holla P, Rewari BB, Jameel S. MicroRNA-150 is a potential biomarker of HIV/AIDS disease progression and therapy. PLoS One 2014; 9(5): e95920.
[http://dx.doi.org/10.1371/journal.pone.0095920]
[73]
Wu Y-H, Hu TF, Chen YC, et al. The manipulation of miRNA-gene regulatory networks by KSHV induces endothelial cell motility. Blood 2011; 118(10): 2896-905.
[http://dx.doi.org/10.1182/blood-2011-01-330589]
[74]
Mariner PD, Johannesen E, Anseth KS. Manipulation of miRNA activity accelerates osteogenic differentiation of hMSCs in engineered 3D scaffolds. J Tissue Eng Regen Med 2012; 6(4): 314-24.
[http://dx.doi.org/10.1002/term.435]
[75]
Liu Z, Sall A, Yang D. MicroRNA: An emerging therapeutic target and intervention tool. Int J Mol Sci 2008; 9(6): 978-99.
[http://dx.doi.org/10.3390/ijms9060978]
[76]
Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 2011; 717(1-2): 1-8.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.03.009]
[77]
Keshavarz M, Dianat-Moghadam H, Sofiani VH, et al. miRNA-based strategy for modulation of influenza A virus infection. Epigenomics 2018; 10(6): 829-44.
[http://dx.doi.org/10.2217/epi-2017-0170]
[78]
Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327(5962): 198-201.
[http://dx.doi.org/10.1126/science.1178178]
[79]
Adoro S, Cubillos-Ruiz JR, Chen X, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun 2015; 6: 7562.
[http://dx.doi.org/10.1038/ncomms8562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy