Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Chemoresistance in Ovarian Cancer: Prospects for New Drugs

Author(s): Shivani Tendulkar* and Suneel Dodamani*

Volume 21 , Issue 6 , 2021

Published on: 08 September, 2020

Page: [668 - 678] Pages: 11

DOI: 10.2174/1871520620666200908104835

Price: $65

Abstract

This review focuses on the conventional treatment, signaling pathways and various reasons for drug resistance with an understanding of novel methods that can lead to effective therapies. Ovarian cancer is amongst the most common gynecological and lethal cancers in women affecting different age groups (20-60). The survival rate is limited to 5 years due to diagnosis in subsequent stages with a reoccurrence of tumor and resistance to chemotherapeutic therapy. The recent clinical trials use the combinatorial treatment of carboplatin and paclitaxel on ovarian cancer after the cytoreduction of the tumor. Predominantly, patients are responsive initially to therapy and later develop metastases due to drug resistance. Chemotherapy also leads to drug resistance causing enormous variations at the cellular level. Multifaceted mechanisms like drug resistance are associated with a number of genes and signaling pathways that process the proliferation of cells. Reasons for resistance include epithelial-mesenchyme, DNA repair activation, autophagy, drug efflux, pathway activation, and so on. Determining the routes on the molecular mechanism that target chemoresistance pathways are necessary for controlling the treatment and understanding efficient drug targets can open light on improving therapeutic outcomes. The most common drug used for ovarian cancer is Cisplatin that activates various chemoresistance pathways, ultimately causing drug resistance. There have been substantial improvements in understanding the mechanisms of cisplatin resistance or chemo sensitizing cisplatin for effective treatment. Therefore, using therapies that involve a combination of phytochemical or novel drug delivery system would be a novel treatment for cancer. Phytochemicals are plant-derived compounds that exhibit anti-cancer, anti-oxidative, anti-inflammatory properties and reduce side effects exerted by chemotherapeutics.

Keywords: Chemoresistance, cisplatin, ovary, phytochemicals, cancer, drug resistance.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Maru, Y.; Hippo, Y. Current status of patient-derived ovarian cancer models. Cells, 2019, 8(5), 505.
[http://dx.doi.org/10.3390/cells8050505] [PMID: 31130643]
[3]
Pokhriyal, R.; Hariprasad, R.; Kumar, L.; Hariprasad, G. Chemotherapy resistance in advanced ovarian cancer patients. Biomark. Cancer, 2019, 11X19860815
[http://dx.doi.org/10.1177/1179299X19860815] [PMID: 31308780]
[4]
Kim, S.; Han, Y.; Kim, S.I.; Kim, H-S.; Kim, S.J.; Song, Y.S. Tumor evolution and chemoresistance in ovarian cancer. NPJ Precis Oncol, 2018, 2(1), 20.
[http://dx.doi.org/10.1038/s41698-018-0063-0] [PMID: 30246154]
[5]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2, 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10]
[6]
Mokhtari, R.B.; Homayouni, T.S.; Baluch, N. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[7]
Farrand, L.; Oh, S.W.; Song, Y.S.; Tsang, B.K. Phytochemicals: A multitargeted approach to gynecologic cancer therapy. BioMed Res. Int., 2014, 2014890141
[http://dx.doi.org/10.1155/2014/890141] [PMID: 25093186]
[8]
Ottevanger, P.B. Ovarian cancer stem cells more questions than answers. Semin. Cancer Biol., 2017, 44, 67-71.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.009] [PMID: 28450177]
[9]
Doubeni, C.A.; Doubeni, A.R.; Myers, A.E. Diagnosis and management of ovarian cancer. Am. Fam. Physician, 2016, 93(11), 937-944.
[PMID: 27281838]
[10]
Bast, R.C., Jr; Hennessy, B.; Mills, G.B. The biology of ovarian cancer: New opportunities for translation. Nat. Rev. Cancer, 2009, 9(6), 415-428.
[http://dx.doi.org/10.1038/nrc2644] [PMID: 19461667]
[11]
Orsulic, S. Ovarian cancer; Wiley: USA, 2004, pp. 171-187.
[12]
Berek, J.S.; Kehoe, S.T.; Kumar, L.; Friedlander, M. Cancer of the ovary, fallopian tube, and peritoneum. Int. J. Gynaecol. Obstet., 2018, 143(Suppl. 2), 59-78.
[http://dx.doi.org/10.1002/ijgo.12614] [PMID: 30306591]
[13]
Casey, L.; Singh, N.; Casey, L.; Singh, N. Metastases to the ovary arising from endometrial, cervical and fallopian tube cancer: Recent advances. Histopathology, 2020, 76(1), 37-51.
[http://dx.doi.org/10.1111/his.13985] [PMID: 31846521]
[14]
Ferlay, J. Estimating the global cancer incidence and mortality in 2018 : GLOBOCAN sources and methods. Int. J. Cancer, 2018, 144(8), 1941-1953.
[15]
Flaum, N.; Crosbie, E.J.; Edmondson, R.J.; Smith, M.J.; Evans, D.G. Epithelial ovarian cancer risk: A review of the current genetic landscape. Clin. Genet., 2020, 97(1), 54-63.
[http://dx.doi.org/10.1111/cge.13566] [PMID: 31099061]
[16]
Helm, C.W.; States, J.C. Enhancing the efficacy of cisplatin in ovarian cancer treatment - could arsenic have a role. J. Ovarian Res., 2009, 2(1), 2.
[http://dx.doi.org/10.1186/1757-2215-2-2] [PMID: 19144189]
[17]
Madariaga, A.; Lheureux, S.; Oza, A.M. Tailoring ovarian cancer treatment: Implications of BRCA1/2 mutations. Cancers (Basel), 2019, 11(3), 416-432.
[http://dx.doi.org/10.3390/cancers11030416] [PMID: 30909618]
[18]
Hasegawa, K.; Shimada, M.; Takeuchi, S.; Fujiwara, H.; Imai, Y.; Iwasa, N.; Wada, S.; Eguchi, H.; Oishi, T.; Sugiyama, T.; Suzuki, M.; Nishiyama, M.; Fujiwara, K. A phase 2 study of intraperitoneal carboplatin plus intravenous dose-dense paclitaxel in front-line treatment of suboptimal residual ovarian cancer. Br. J. Cancer, 2020, 122(6), 766-770.
[http://dx.doi.org/10.1038/s41416-020-0734-9] [PMID: 32001833]
[19]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[20]
Rosenberg, B. Some biological effects of platinum compounds. Platin. Met. Rev., 1971, 15(2), 42-51.
[21]
Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698), 665-667.
[http://dx.doi.org/10.1038/277665a0] [PMID: 423966]
[22]
Rosenberg, B. Fundamental studies with cisplatin. Cancer, 1985, 55(10), 2303-l6.
[http://dx.doi.org/10.1002/1097-0142(19850515)55:10<2303:AID-CNCR2820551002>3.0.CO;2-L] [PMID: 3886121]
[23]
Canetta, R.; Rozencweig, M.; Carter, S.K. Carboplatin: The clinical spectrum to date. Cancer Treat. Rev., 1985, 12(Suppl. A), 125-136.
[http://dx.doi.org/10.1016/0305-7372(85)90027-1] [PMID: 3002623]
[24]
Eastman, A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol. Ther., 1987, 34(2), 155-166.
[http://dx.doi.org/10.1016/0163-7258(87)90009-X] [PMID: 3317449]
[25]
McGuire, W.P.; Rowinsky, E.K.; Rosenshein, N.B.; Grumbine, F.C.; Ettinger, D.S.; Armstrong, D.K.; Donehower, R.C. Taxol: A unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann. Intern. Med., 1989, 111(4), 273-279.
[http://dx.doi.org/10.7326/0003-4819-111-4-273] [PMID: 2569287]
[26]
Godwin, A.K.; Meister, A.; O’Dwyer, P.J.; Huang, C.S.; Hamilton, T.C.; Anderson, M.E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc. Natl. Acad. Sci. USA, 1992, 89(7), 3070-3074.
[http://dx.doi.org/10.1073/pnas.89.7.3070] [PMID: 1348364]
[27]
Sarosy, G.; Kohn, E.; Stone, D.A.; Rothenberg, M.; Jacob, J.; Adamo, D.O.; Ognibene, F.P.; Cunnion, R.E.; Reed, E. Phase I study of taxol and granulocyte colony-stimulating factor in patients with refractory ovarian cancer. J. Clin. Oncol., 1992, 10(7), 1165-1170.
[http://dx.doi.org/10.1200/JCO.1992.10.7.1165] [PMID: 1376773]
[28]
Eisenhauer, E.A.; ten Bokkel Huinink, W.W.; Swenerton, K.D.; Gianni, L.; Myles, J.; van der Burg, M.E.; Kerr, I.; Vermorken, J.B.; Buser, K.; Colombo, N. European-Canadian randomized trial of paclitaxel in relapsed ovarian cancer: High-dose versus low-dose and long versus short infusion. J. Clin. Oncol., 1994, 12(12), 2654-2666.
[http://dx.doi.org/10.1200/JCO.1994.12.12.2654] [PMID: 7989941]
[29]
Goldberg, J.M.; Piver, M.S.; Hempling, R.E.; Recio, F.O. Paclitaxel and cisplatin combination chemotherapy in recurrent epithelial ovarian cancer. Gynecol. Oncol., 1996, 63(3), 312-317.
[http://dx.doi.org/10.1006/gyno.1996.0328] [PMID: 8946864]
[30]
Kurbachera, C.M.; Wagnera, U.; Kolsterb, B.; Andreottic, P.E.; Krebsa, D.; Brucknerd, H.W. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cispiatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett., 1996, 103(2), 182-189.
[31]
Neijt, J.P.; Engelholm, S.A.; Tuxen, M.K.; Sorensen, P.G.; Hansen, M.; Sessa, C.; de Swart, C.A.; Hirsch, F.R.; Lund, B.; van Houwelingen, H.C. Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. J. Clin. Oncol., 2000, 18(17), 3084-3092.
[http://dx.doi.org/10.1200/JCO.2000.18.17.3084] [PMID: 10963636]
[32]
Vasey, P.A.; Jayson, G.C.; Gordon, A.; Gabra, H.; Coleman, R.; Atkinson, R.; Parkin, D.; Paul, J.; Hay, A.; Kaye, S.B. Scottish Gynaecological Cancer Trials Group. Phase III randomized trial of docetaxel-carboplatin versus paclitaxel-carboplatin as first-line chemotherapy for ovarian carcinoma. J. Natl. Cancer Inst., 2004, 96(22), 1682-1691.
[http://dx.doi.org/10.1093/jnci/djh323] [PMID: 15547181]
[33]
Armstrong, D.K.; Bundy, B.; Wenzel, L.; Huang, H.Q.; Baergen, R.; Lele, S.; Copeland, L.J.; Walker, J.L.; Burger, R.A. Gynecologic Oncology Group. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med., 2006, 354(1), 34-43. [Commentary]
[http://dx.doi.org/10.1056/NEJMoa052985] [PMID: 16394300]
[34]
Shi, M.; Cai, Q.; Yao, L.; Mao, Y.; Ming, Y.; Ouyang, G. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol. Int., 2006, 30(3), 221-226.
[http://dx.doi.org/10.1016/j.cellbi.2005.10.024] [PMID: 16376585]
[35]
Shi, R.; Huang, Q.; Zhu, X.; Ong, Y.B.; Zhao, B.; Lu, J.; Ong, C.N.; Shen, H.M. Luteolin sensitizes the anticancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization. Mol. Cancer Ther., 2007, 6(4), 1338-1347.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0638] [PMID: 17431112]
[36]
Luo, H.; Daddysman, M.K.; Rankin, G.O.; Jiang, B.H.; Chen, Y.C. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Int., 2010, 10(1), 16.
[http://dx.doi.org/10.1186/1475-2867-10-16] [PMID: 20459793]
[37]
Wang, Y.; Niu, X.L.; Qu, Y.; Wu, J.; Zhu, Y.Q.; Sun, W.J.; Li, L.Z. Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett., 2010, 295(1), 110-123.
[http://dx.doi.org/10.1016/j.canlet.2010.02.019] [PMID: 20236757]
[38]
Stordal, B.; Hamon, M.; McEneaney, V.; Roche, S.; Gillet, J.P.; O’Leary, J.J.; Gottesman, M.; Clynes, M. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein. PLoS One, 2012, 7(7)e40717
[http://dx.doi.org/10.1371/journal.pone.0040717] [PMID: 22792399]
[39]
Vergara, D.; Simeone, P.; Toraldo, D.; Del Boccio, P.; Vergaro, V.; Leporatti, S.; Pieragostino, D.; Tinelli, A.; De Domenico, S.; Alberti, S.; Urbani, A.; Salzet, M.; Santino, A.; Maffia, M. Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Mol. Biosyst., 2012, 8(4), 1078-1087.
[http://dx.doi.org/10.1039/c2mb05486h] [PMID: 22234583]
[40]
Huang, H.; Chen, A.Y.; Ye, X.; Li, B.; Rojanasakul, Y.; Rankin, G.O.; Chen, Y.C. Myricetin inhibits proliferation of cisplatin-resistant cancer cells through a p53-dependent apoptotic pathway. Int. J. Oncol., 2015, 47(4), 1494-1502.
[http://dx.doi.org/10.3892/ijo.2015.3133] [PMID: 26315556]
[41]
Liu, X.; Dong, J.; Cai, W.; Pan, Y.; Li, R.; Li, B. The effect of thymoquinone on apoptosis of SK-OV-3 ovarian cancer cell by regulation of Bcl-2 and Bax. Int. J. Gynecol. Cancer, 2017, 27(8), 1596-1601.
[http://dx.doi.org/10.1097/IGC.0000000000001064] [PMID: 28692636]
[42]
Teekaraman, D.; Elayapillai, S.P.; Viswanathan, M.P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem. Biol. Interact., 2019, 300, 91-100.
[http://dx.doi.org/10.1016/j.cbi.2019.01.008] [PMID: 30639267]
[43]
Moffitt, L.; Karimnia, N.; Stephens, A.; Bilandzic, M. Therapeutic targeting of collective invasion in ovarian cancer. Int. J. Mol. Sci., 2019, 20(6), 1466-1483.
[http://dx.doi.org/10.3390/ijms20061466] [PMID: 30909510]
[44]
Brewer, M.; Angioli, R.; Scambia, G.; Lorusso, D.; Terranova, C.; Panici, P.B.; Raspagliesi, F.; Scollo, P.; Plotti, F.; Ferrandina, G.; Salutari, V.; Ricci, C.; Braly, P.; Holloway, R.; Method, M.; Madiyalakan, M.; Bayever, E.; Nicodemus, C. Front-line chemo-immunotherapy with carboplatin-paclitaxel using oregovomab indirect immunization in advanced ovarian cancer: A randomized phase II study. Gynecol. Oncol., 2020, 156(3), 523-529.
[http://dx.doi.org/10.1016/j.ygyno.2019.12.024] [PMID: 31916979]
[45]
Kumar, S.; Kushwaha, P.P.; Gupta, S. Emerging targets in cancer drug resistance. Cancer Drug Resist., 2019, 2, 161-177.
[http://dx.doi.org/10.20517/cdr.2018.27]
[46]
Lippert, T.H.; Ruoff, H.J.; Volm, M.; Cancer, G. Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung, 2008, 58(6), 261-264.
[PMID: 18677966]
[47]
Kelderman, S.; Schumacher, T.N.M.; Haanen, J.B.A.G. Acquired and intrinsic resistance in cancer immunotherapy. Mol. Oncol., 2014, 8(6), 1132-1139.
[http://dx.doi.org/10.1016/j.molonc.2014.07.011] [PMID: 25106088]
[48]
Turner, N.C.; Reis-Filho, J.S. Genetic heterogeneity and cancer drug resistance. Lancet Oncol., 2012, 13(4), e178-e185.
[http://dx.doi.org/10.1016/S1470-2045(11)70335-7] [PMID: 22469128]
[49]
Liu, M.X.; Chan, D.W.; Ngan, H.Y.S. Mechanisms of chemoresistance in human ovarian cancer at a glance. Gynecol. Obstet. (Sunnyvale), 2012, 2(3), 3-6.
[http://dx.doi.org/10.4172/2161-0932.1000e104]
[50]
Mor, G.; Alvero, A. The duplicitous origin of ovarian cancer. Rambam Maimonides Med. J., 2013, 4(1)e0006
[http://dx.doi.org/10.5041/RMMJ.10106] [PMID: 23908856]
[51]
Tapia, G.; Diaz-padilla, I. Molecular mechanisms of platinum resistance in ovarian cancer. In:Ovarian Cancer - A Clinical and Transitional Update; InTech Open: UK, 2013, Chapter 1, .
[http://dx.doi.org/10.5772/55562]
[52]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[53]
Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84.
[http://dx.doi.org/10.1038/s41580-018-0080-4] [PMID: 30459476]
[54]
Stemmler, M.P.; Eccles, R.L.; Brabletz, S.; Brabletz, T. Non-redundant functions of EMT transcription factors. Nat. Cell Biol., 2019, 21(1), 102-112.
[http://dx.doi.org/10.1038/s41556-018-0196-y] [PMID: 30602760]
[55]
Roberts, C.M.; Tran, M.A.; Pitruzzello, M.C.; Wen, W.; Loeza, J.; Dellinger, T.H.; Mor, G.; Glackin, C.A. TWIST1 drives cisplatin resistance and cell survival in an ovarian cancer model, via upregulation of GAS6, L1CAM, and Akt signalling. Sci. Rep., 2016, 6(7), 37652.
[http://dx.doi.org/10.1038/srep37652] [PMID: 27876874]
[56]
Alwosaibai, K.; Abedini, A.; Al-Hujaily, E.M.; Tang, Y.; Garson, K.; Collins, O.; Vanderhyden, B.C. PAX2 maintains the differentiation of mouse oviductal epithelium and inhibits the transition to a stem cell-like state. Oncotarget, 2017, 8(44), 76881-76897.
[http://dx.doi.org/10.18632/oncotarget.20173] [PMID: 29100356]
[57]
Klymenko, Y.; Kim, O.; Stack, M.S. Complex determinants of epithelial: Mesenchymal phenotypic plasticity in ovarian cancer. Cancers (Basel), 2017, 9(8), 104.
[http://dx.doi.org/10.3390/cancers9080104] [PMID: 28792442]
[58]
Loret, N.; Denys, H.; Tummers, P.; Berx, G. The role of epithelial-to-mesenchymal plasticity in ovarian cancer progression and therapy resistance. Cancers (Basel), 2019, 11(6), 838-860.
[http://dx.doi.org/10.3390/cancers11060838] [PMID: 31213009]
[59]
Norouzi-Barough, L.; Sarookhani, M.R.; Sharifi, M.; Moghbelinejad, S.; Jangjoo, S.; Salehi, R. Molecular mechanisms of drug resistance in ovarian cancer. J. Cell. Physiol., 2018, 233(6), 4546-4562.
[http://dx.doi.org/10.1002/jcp.26289] [PMID: 29152737]
[60]
Haslehurst, A.M.; Koti, M.; Dharsee, M.; Nuin, P.; Evans, K.; Geraci, J.; Childs, T.; Chen, J.; Li, J.; Weberpals, J.; Davey, S.; Squire, J.; Park, P.C.; Feilotter, H. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer, 2012, 12(1), 91.
[http://dx.doi.org/10.1186/1471-2407-12-91] [PMID: 22429801]
[61]
Shibue, T.; Weinberg, R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol., 2017, 14(10), 611-629.
[http://dx.doi.org/10.1038/nrclinonc.2017.44] [PMID: 28397828]
[62]
Deng, J.; Wang, L.; Chen, H.; Hao, J.; Ni, J.; Chang, L.; Duan, W.; Graham, P.; Li, Y. Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer. Oncotarget, 2016, 7(34), 55771-55788.
[http://dx.doi.org/10.18632/oncotarget.9908] [PMID: 27304054]
[63]
Rosanò, L.; Cianfrocca, R.; Spinella, F.; Di Castro, V.; Nicotra, M.R.; Lucidi, A.; Ferrandina, G.; Natali, P.G.; Bagnato, A. Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells. Clin. Cancer Res., 2011, 17(8), 2350-2360.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2325] [PMID: 21220476]
[64]
Achkar, I.W.; Abdulrahman, N.; Al-Sulaiti, H.; Joseph, J.M.; Uddin, S.; Mraiche, F. Cisplatin based therapy: The role of the mitogen activated protein kinase signaling pathway. J. Transl. Med., 2018, 16(1), 96-108.
[http://dx.doi.org/10.1186/s12967-018-1471-1] [PMID: 29642900]
[65]
Dou, Y.; Jiang, X.; Xie, H.; He, J.; Xiao, S. The Jun N-terminal kinases signaling pathway plays a “seesaw” role in ovarian carcinoma: A molecular aspect. J. Ovarian Res., 2019, 12(1), 99.
[http://dx.doi.org/10.1186/s13048-019-0573-6] [PMID: 31639019]
[66]
Granados, M.L.; Hudson, L.G.; Samudio-Ruiz, S.L. Contributions of the epidermal growth factor receptor to acquisition of platinum resistance in ovarian cancer cells. PLoS One, 2015, 10(9)e0136893
[http://dx.doi.org/10.1371/journal.pone.0136893] [PMID: 26351843]
[67]
Zhu, L. ER-α 36 mediates cisplatin resistance in breast cancer cells through EGFR/HER-2/ERK signaling pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 1-11.
[http://dx.doi.org/10.1186/s13046-018-0798-z] [PMID: 29301578]
[68]
Mizushima, N. Autophagy: Process and function. Genes Dev., 2007, 21(22), 2861-2873.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[69]
Bhutia, S.K.; Mukhopadhyay, S.; Sinha, N.; Das, D.N.; Panda, P.K.; Patra, S.K.; Maiti, T.K.; Mandal, M.; Dent, P.; Wang, X.Y.; Das, S.K.; Sarkar, D.; Fisher, P.B. Autophagy: Cancer’s friend or foe? Adv. Cancer Res., 2013, 118, 61-95.
[http://dx.doi.org/10.1016/B978-0-12-407173-5.00003-0] [PMID: 23768510]
[70]
Shen, Y.; Li, D.D.; Wang, L.L.; Deng, R.; Zhu, X.F. Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy, 2008, 4(8), 1067-1068.
[http://dx.doi.org/10.4161/auto.6827] [PMID: 18776739]
[71]
Liu, E.Y.; Ryan, K.M. Autophagy and cancer--issues we need to digest. J. Cell Sci., 2012, 125(Pt 10), 2349-2358.
[http://dx.doi.org/10.1242/jcs.093708] [PMID: 22641689]
[72]
Ávalos, Y.; Canales, J.; Bravo-Sagua, R.; Criollo, A.; Lavandero, S.; Quest, A.F.G. Tumor suppression and promotion by autophagy. BioMed Res. Int., 2014, 2014603980
[http://dx.doi.org/10.1155/2014/603980] [PMID: 25328887]
[73]
Zhang, X.Y.; Zhang, P.Y. Recent perspectives of epithelial ovarian carcinoma. Oncol. Lett., 2016, 12(5), 3055-3058.
[http://dx.doi.org/10.3892/ol.2016.5107] [PMID: 27899963]
[74]
Wang, J.; Wu, G.S. Role of autophagy in cisplatin resistance in ovarian cancer cells. J. Biol. Chem., 2014, 289(24), 17163-17173.
[http://dx.doi.org/10.1074/jbc.M114.558288] [PMID: 24794870]
[75]
Long, F.; Liu, W.; Jia, P.; Wang, H.; Jiang, G.; Wang, T. HIF-1α-induced autophagy contributes to cisplatin resistance in ovarian cancer cells. Pharmazie, 2018, 73(9), 533-536.
[http://dx.doi.org/10.1691/ph.2018.8514] [PMID: 30223937]
[76]
Tan, W.X.; Xu, T.M.; Zhou, Z.L.; Lv, X.J.; Liu, J.; Zhang, W.J.; Cui, M.H. TRP14 promotes resistance to cisplatin by inducing autophagy in ovarian cancer. Oncol. Rep., 2019, 42(4), 1343-1354.
[http://dx.doi.org/10.3892/or.2019.7258] [PMID: 31524236]
[77]
Damia, G.; Broggini, M. Platinum resistance in ovarian cancer: Role of DNA repair. Cancers (Basel), 2019, 11(1), 1-15.
[http://dx.doi.org/10.3390/cancers11010119] [PMID: 30669514]
[78]
Rocha, C.R.R.; Silva, M.M.; Quinet, A.; Cabral-Neto, J.B.; Menck, C.F.M. DNA repair pathways and cisplatin resistance: An intimate relationship. Clinics (São Paulo), 2018, 73(8)(Suppl. 1)e478s
[http://dx.doi.org/10.6061/clinics/2018/e478s] [PMID: 30208165]
[79]
Sun, Y. Cellular and molecular biology the impacts of ERCC1 gene Exon VIII alternative splicing on cisplatin-resistance in ovarian cancer. Cancer Invest., 2009, 27(9), 891-897.
[http://dx.doi.org/10.3109/07357900902744536] [PMID: 19832035]
[80]
Basu, A.; Krishnamurthy, S. Cellular responses to Cisplatin-induced DNA damage. J. Nucleic Acids, 2010, 2010, 1-14.
[http://dx.doi.org/10.4061/2010/182894] [PMID: 20811617]
[81]
Hasan, S.; Taha, R.; Omri, H.E. Current opinions on chemoresistance: An overview. Bioinformation, 2018, 14(2), 80-85.
[http://dx.doi.org/10.6026/97320630014080] [PMID: 29618904]
[82]
Nakayama, K.; Kanzaki, A.; Terada, K.; Mutoh, M.; Ogawa, K.; Sugiyama, T.; Takenoshita, S.; Itoh, K.; Yaegashi, N.; Miyazaki, K.; Neamati, N.; Takebayashi, Y. Prognostic value of the Cu-transporting ATPase in ovarian carcinoma patients receiving cisplatin-based chemotherapy. Clin. Cancer Res., 2004, 10(8), 2804-2811.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0454] [PMID: 15102688]
[83]
Ferreira, J.A.; Peixoto, A.; Neves, M.; Gaiteiro, C.; Reis, C.A.; Assaraf, Y.G.; Santos, L.L. Mechanisms of cisplatin resistance and targeting of cancer stem cells: Adding glycosylation to the equation. Drug Resist. Updat., 2016, 24, 34-54.
[http://dx.doi.org/10.1016/j.drup.2015.11.003] [PMID: 26830314]
[84]
Liu, Z.; Zhu, Y.; Li, F.; Xie, Y. GATA1-regulated JAG1 promotes ovarian cancer progression by activating Notch signal pathway. Protoplasma, 2020, 257(3), 901-910.
[http://dx.doi.org/10.1007/s00709-019-01477-w] [PMID: 31897811]
[85]
Perez-Juarez, C.E.; Arechavaleta-Velasco, F.; Zeferino-Toquero, M.; Alvarez-Arellano, L.; Estrada-Moscoso, I.; Diaz-Cueto, L. Inhibition of PI3K/AKT/mTOR and MAPK signaling pathways decreases progranulin expression in Ovarian Clear Cell Carcinoma (OCCC) cell line: A potential biomarker for therapy response to signaling pathway inhibitors. Med. Oncol., 2019, 37(1), 4.
[http://dx.doi.org/10.1007/s12032-019-1326-5] [PMID: 31713081]
[86]
Bagratuni, T.; Mavrianou, N.; Gavalas, N.G.; Tzannis, K.; Arapinis, C.; Liontos, M.; Christodoulou, M.I.; Thomakos, N.; Haidopoulos, D.; Rodolakis, A.; Kastritis, E.; Scorilas, A.; Dimopoulos, M.A.; Bamias, A. JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Eur. J. Cancer, 2020, 126, 125-135.
[http://dx.doi.org/10.1016/j.ejca.2019.11.017] [PMID: 31927213]
[87]
Asem, M.; Young, A.M.; Oyama, C.; Claure De La Zerda, A.; Liu, Y.; Yang, J.; Hilliard, T.S.; Johnson, J.; Harper, E.I.; Guldner, I.; Zhang, S.; Page-Mayberry, T.; Kaliney, W.J.; Stack, M.S. Host Wnt5a potentiates microenvironmental regulation of ovarian cancer metastasis. Cancer Res., 2020, 80(5), 1156-1170.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1601] [PMID: 31932454]
[88]
Liang, R.; Chen, X.; Chen, L.; Wan, F.; Chen, K.; Sun, Y.; Zhu, X. STAT3 signaling in ovarian cancer: A potential therapeutic target. J. Cancer, 2020, 11(4), 837-848.
[http://dx.doi.org/10.7150/jca.35011] [PMID: 31949487]
[89]
Wang, Z.; Deng, Z.; Zhu, G. Emerging platinum(iv) prodrugs to combat cisplatin resistance: From isolated cancer cells to tumor microenvironment. Dalton Trans., 2019, 48(8), 2536-2544.
[http://dx.doi.org/10.1039/C8DT03923B] [PMID: 30633263]
[90]
Feng, Y.L.; Chen, D.Q.; Vaziri, N.D.; Guo, Y.; Zhao, Y.Y. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med. Res. Rev., 2020, 40(1), 54-78.
[http://dx.doi.org/10.1002/med.21596] [PMID: 31131921]
[91]
Kenny, H.A.; Lal-Nag, M.; Shen, M.; Kara, B.; Nahotko, D.A.; Wroblewski, K.; Fazal, S.; Chen, S.; Chiang, C.Y.; Chen, Y.J.; Brimacombe, K.R.; Marugan, J.; Ferrer, M.; Lengyel, E. Quantitative high-throughput screening using an organotypic model identifies compounds that inhibit ovarian cancer metastasis. Mol. Cancer Ther., 2020, 19(1), 52-62.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0052] [PMID: 31562255]
[92]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64, 24-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[93]
Jiang, L.; Wang, H.; Chen, S. Aptamer (AS1411)-conjugated liposome for enhanced therapeutic efficacy of miRNA-29b in ovarian cancer. J. Nanosci. Nanotechnol., 2020, 20(4), 2025-2031.
[http://dx.doi.org/10.1166/jnn.2020.17301] [PMID: 31492208]
[94]
Vandghanooni, S.; Eskandani, M.; Barar, J.; Omidi, Y. Antisense LNA-loaded nanoparticles of star-shaped glucose-core PCL-PEG copolymer for enhanced inhibition of oncomiR-214 and nucleolin-mediated therapy of cisplatin-resistant ovarian cancer cells. Int. J. Pharm., 2020, 573118729
[http://dx.doi.org/10.1016/j.ijpharm.2019.118729] [PMID: 31705975]
[95]
Zhang, S.; Wang, D.; Huang, J.; Hu, Y.; Xu, Y. Application of capsaicin as a potential new therapeutic drug in human cancers. J. Clin. Pharm. Ther., 2020, 45(1), 16-28.
[http://dx.doi.org/10.1111/jcpt.13039] [PMID: 31545523]
[96]
Corey, L.; Valente, A.; Wade, K. Personalized medicine in gynecologic cancer: Fact or fiction? Obstet. Gynecol. Clin. North Am., 2019, 46(1), 155-163.
[http://dx.doi.org/10.1016/j.ogc.2018.09.010] [PMID: 30683261]
[97]
Wilson, A.J.; Saskowski, J.; Barham, W.; Khabele, D.; Yull, F. Microenvironmental effects limit efficacy of thymoquinone treatment in a mouse model of ovarian cancer. Mol. Cancer, 2015, 14(1), 192.
[http://dx.doi.org/10.1186/s12943-015-0463-5] [PMID: 26552746]
[98]
Nessa, M.U.; Beale, P.; Chan, C.; Yu, J.Q.; Huq, F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res., 2011, 31(11), 3789-3797.
[PMID: 22110201]
[99]
Li, N.; Sun, C.; Zhou, B.; Xing, H.; Ma, D.; Chen, G.; Weng, D. Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS One, 2014, 9(7)e100314
[http://dx.doi.org/10.1371/journal.pone.0100314] [PMID: 24999622]
[100]
Shafabakhsh, R.; Asemi, Z. Quercetin: A natural compound for ovarian cancer treatment. J. Ovarian Res., 2019, 12(1), 55.
[http://dx.doi.org/10.1186/s13048-019-0530-4] [PMID: 31202269]
[101]
Imran, M.; Rauf, A.; Khan, I.A.; Shahbaz, M.; Qaisrani, T.B.; Fatmawati, S.; Abu-Izneid, T.; Imran, A.; Rahman, K.U.; Gondal, T.A. Thymoquinone: A novel strategy to combat cancer: A review. Biomed. Pharmacother., 2018, 106(4), 390-402.
[http://dx.doi.org/10.1016/j.biopha.2018.06.159] [PMID: 29966985]
[102]
Wilson, A.J.; Saskowski, J.; Barham, W.; Yull, F.; Khabele, D. Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer. J. Ovarian Res., 2015, 8(1), 46-56.
[http://dx.doi.org/10.1186/s13048-015-0177-8] [PMID: 26215403]
[103]
Horinaka, M.; Yoshida, T.; Shiraishi, T.; Nakata, S.; Wakada, M.; Nakanishi, R.; Nishino, H.; Matsui, H.; Sakai, T. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene, 2005, 24(48), 7180-7189.
[http://dx.doi.org/10.1038/sj.onc.1208874] [PMID: 16007131]
[104]
Ong, C.S.; Zhou, J.; Ong, C.N.; Shen, H.M. Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt-GSK-3β-Cyclin D1 pathway. Cancer Lett., 2010, 298(2), 167-175.
[http://dx.doi.org/10.1016/j.canlet.2010.07.001] [PMID: 20655656]
[105]
Wang, H.; Luo, Y.; Qiao, T.; Wu, Z.; Huang, Z. Luteolin sensitizes the antitumor effect of cisplatin in drug-resistant ovarian cancer via induction of apoptosis and inhibition of cell migration and invasion. J. Ovarian Res., 2018, 11(1), 93-105.
[http://dx.doi.org/10.1186/s13048-018-0468-y] [PMID: 30454003]
[106]
Tu, S.H.; Ho, C.T.; Liu, M.F.; Huang, C.S.; Chang, H.W.; Chang, C.H.; Wu, C.H.; Ho, Y.S. Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem., 2013, 141(2), 1553-1561.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.077] [PMID: 23790951]
[107]
Luo, H. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Cancer Cell Int., 2010, 10(1), 37-41.
[http://dx.doi.org/10.1080/01635580802100851] [PMID: 19005980]
[108]
Qi, Y.; Ding, Z.; Yao, Y.; Ma, D.; Ren, F.; Yang, H.; Chen, A. Novel triazole analogs of apigenin-7-methyl ether exhibit potent antitumor activity against ovarian carcinoma cells via the induction of mitochondrial-mediated apoptosis. Exp. Ther. Med., 2019, 17(3), 1670-1676.
[http://dx.doi.org/10.3892/etm.2018.7138] [PMID: 30783435]
[109]
Liu, R.; Ji, P.; Liu, B.; Qiao, H.; Wang, X.; Zhou, L.; Deng, T.; Ba, Y. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol. Lett., 2017, 13(2), 1024-1030.
[http://dx.doi.org/10.3892/ol.2016.5495] [PMID: 28356995]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy