Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Tailored Quinolines Demonstrate Flexibility to Exert Antitumor Effects through Varied Mechanisms-A Medicinal Perspective

Author(s): Sachin Sharma, Arshdeep Singh, Sahil Sharma, Ram Sharma, Jagjeet Singh, Nihar Kinarivala, Kunal Nepali* and Jing P. Liou*

Volume 21 , Issue 3 , 2021

Published on: 08 September, 2020

Page: [288 - 315] Pages: 28

DOI: 10.2174/1871520620666200908104303

Price: $65

Abstract

Background: Quinoline is considered to be a privileged heterocyclic ring owing to its presence in diverse scaffolds endowed with promising activity profiles. In particular, quinoline containing compounds have exhibited substantial antiproliferative effects through the diverse mechanism of actions, which indicates that the heteroaryl unit is flexible as well as accessible to subtle structural changes that enable its inclusion in chemically distinct anti-tumor constructs.

Methods: Herein, we describe a medicinal chemistry perspective on quinolines as anticancer agents by digging into the peer-reviewed literature as well as patents published in the past few years.

Results: This review will serve as a guiding tool for medicinal chemists and chemical biologists to gain insights about the benefits of quinoline ring installation to tune the chemical architectures for inducing potent anticancer effects.

Conclusion: Quinoline ring containing anticancer agents presents enough optimism and promise in the field of drug discovery to motivate the researchers towards the continued explorations on such scaffolds. It is highly likely that adequate efforts in this direction might yield some potential cancer therapeutics in the future.

Keywords: Quinoline, anticancer, medicinal, cytotoxic, scaffold, heterocycle, cell line.

Graphical Abstract
[1]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[2]
Salat, K.; Moniczewski, A.; Librowski, T. Nitrogen, oxygen or sulfur containing heterocyclic compounds as analgesic drugs used as modulators of the nitroxidative stress. Mini Rev. Med. Chem., 2013, 13(3), 335-352.
[PMID: 22876956]
[3]
Kinarivala, N.; Patel, R.; Boustany, R.M.; Al-Ahmad, A.; Trippier, P.C. Discovery of aromatic carbamates that confer neuroprotective activity by enhancing autophagy and inducing the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). J. Med. Chem., 2017, 60(23), 9739-9756.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01199] [PMID: 29110485]
[4]
Makoukji, J.; Saadeh, F.; Mansour, K.A.; El-Sitt, S.; Al Ali, J.; Kinarivala, N.; Trippier, P.C.; Boustany, R.M. Flupirtine derivatives as potential treatment for the neuronal ceroid lipofuscinoses. Ann. Clin. Transl. Neurol., 2018, 5(9), 1089-1103.
[http://dx.doi.org/10.1002/acn3.625] [PMID: 30250865]
[5]
Singh, H.; Singh, J.V.; Bhagat, K.; Gulati, H.K.; Sanduja, M.; Kumar, N.; Kinarivala, N.; Sharma, S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg. Med. Chem., 2019, 27(16), 3477-3510.
[http://dx.doi.org/10.1016/j.bmc.2019.06.033] [PMID: 31255497]
[6]
(a)Singh, H.; Kinarivala, N.; Sharma, S. Multi-targeting anticancer agents: Rational approaches, synthetic routes and structure activity relationship. Anticancer. Agents Med. Chem., 2019, 19(7), 842-874.
[http://dx.doi.org/10.2174/1871520619666190118120708] [PMID: 30657048]
(b)Bhagat, K.; Singh, J.V.; Pagare, P.P.; Kumar, N.; Sharma, A.; Kaur, G.; Kinarivala, N.; Gandu, S.; Singh, H.; Sharma, S.; Bedi, P.M.S. Rational approaches for the design of various GABA modulators and their clinical progression. Mol. Divers., 2020.
[http://dx.doi.org/10.1007/s11030-020-10068-4] [PMID: 32170466]
[7]
Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12, 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[8]
Lindner, T.; Loktev, A.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Jäger, D.; Mier, W.; Haberkorn, U. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J. Nucl. Med., 2018, 59(9), 1415-1422.
[http://dx.doi.org/10.2967/jnumed.118.210443] [PMID: 29626119]
[9]
Prajapati, S.M.; Patel, K.D.; Vekariya, R.H.; Panchal, S.N.; Patel, H.D. Recent advances in the synthesis of quinolines: A review. RSC Adv., 2014, 4, 24463-24476.
[http://dx.doi.org/10.1039/C4RA01814A]
[10]
Kouzarides, T. Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev., 1999, 9(1), 40-48.
[http://dx.doi.org/10.1016/S0959-437X(99)80006-9] [PMID: 10072350]
[11]
Ropero, S.; Esteller, M. The role of Histone Deacetylases (HDACs) in human cancer. Mol. Oncol., 2007, 1(1), 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[12]
Khan, O.; La Thangue, N.B. HDAC inhibitors in cancer biology: Emerging mechanisms and clinical applications. Immunol. Cell Biol., 2012, 90(1), 85-94.
[http://dx.doi.org/10.1038/icb.2011.100] [PMID: 22124371]
[13]
Lee, H.Y.; Chang, C.Y.; Su, C.J.; Huang, H.L.; Mehndiratta, S.; Chao, Y.H.; Hsu, C.M.; Kumar, S.; Sung, T.Y.; Huang, Y.Z.; Li, Y.H.; Yang, C.R.; Liou, J.P. 2-(Phenylsulfonyl)quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase. Eur. J. Med. Chem., 2016, 122, 92-101.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.023] [PMID: 27344487]
[14]
Chen, C.; Hou, X.; Wang, G.; Pan, W.; Yang, X.; Zhang, Y.; Fang, H. Design, synthesis and biological evaluation of quinoline derivatives as HDAC class I inhibitors. Eur. J. Med. Chem., 2017, 133, 11-23.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.064] [PMID: 28371677]
[15]
Lee, H.Y.; Nepali, K.; Huang, F.I.; Chang, C.Y.; Lai, M.J.; Li, Y.H.; Huang, H.L.; Yang, C.R.; Liou, J.P. (N-hydroxycarbonylbenylamino) quinolines as selective histone deacetylase 6 inhibitors suppress growth of multiple myeloma in vitro and in vivo. J. Med. Chem., 2018, 61(3), 905-917.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01404] [PMID: 29304284]
[16]
Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[17]
Järvinen, T.A.; Kononen, J.; Pelto-Huikko, M.; Isola, J. Expression of topoisomerase IIalpha is associated with rapid cell proliferation, aneuploidy, and c-erbB2 overexpression in breast cancer. Am. J. Pathol., 1996, 148(6), 2073-2082.
[PMID: 8669491]
[18]
Tseng, C.H.; Tzeng, C.C.; Yang, C.L.; Lu, P.J.; Chen, H.L.; Li, H.Y.; Chuang, Y.C.; Yang, C.N.; Chen, Y.L. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Part 2. J. Med. Chem., 2010, 53(16), 6164-6179.
[http://dx.doi.org/10.1021/jm1005447] [PMID: 20662543]
[19]
Alonso, C.; Fuertes, M.; Martín-Encinas, E.; Selas, A.; Rubiales, G.; Tesauro, C.; Knudssen, B.K.; Palacios, F. Novel topoisomerase I inhibitors. Syntheses and biological evaluation of phosphorus substituted quinoline derivates with antiproliferative activity. Eur. J. Med. Chem., 2018, 149, 225-237.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.058] [PMID: 29501943]
[20]
Kundu, B.; Das, S.K.; Paul Chowdhuri, S.; Pal, S.; Sarkar, D.; Ghosh, A.; Mukherjee, A.; Bhattacharya, D.; Das, B.B.; Talukdar, A. Discovery and mechanistic study of tailor-made quinoline derivatives as topoisomerase 1 poison with potent anticancer activity. J. Med. Chem., 2019, 62(7), 3428-3446.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01938] [PMID: 30897325]
[21]
Nepali, K.; Kumar, S.; Huang, H.L.; Kuo, F.C.; Lee, C.H.; Kuo, C.C.; Yeh, T.K.; Li, Y.H.; Chang, J.Y.; Liou, J.P.; Lee, H.Y. 2-Aroylquinoline-5,8-diones as potent anticancer agents displaying tubulin and Heat Shock Protein 90 (HSP90) inhibition. Org. Biomol. Chem., 2016, 14(2), 716-723.
[http://dx.doi.org/10.1039/C5OB02100F] [PMID: 26694589]
[22]
Shobeiri, N.; Rashedi, M.; Mosaffa, F.; Zarghi, A.; Ghandadi, M.; Ghasemi, A.; Ghodsi, R. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur. J. Med. Chem., 2016, 114, 14-23.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.069] [PMID: 26974371]
[23]
Li, W.; Xu, F.; Shuai, W.; Sun, H.; Yao, H.; Ma, C.; Xu, S.; Yao, H.; Zhu, Z.; Yang, D.H.; Chen, Z.S.; Xu, J. Discovery of novel quinoline-chalcone derivatives as potent antitumor agents with microtubule polymerization inhibitory activity. J. Med. Chem., 2019, 62(2), 993-1013.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01755] [PMID: 30525584]
[24]
Li, W.; Shuai, W.; Sun, H.; Xu, F.; Bi, Y.; Xu, J.; Ma, C.; Yao, H.; Zhu, Z.; Xu, S. Design, synthesis and biological evaluation of quinoline-indole derivatives as anti-tubulin agents targeting the colchicine binding site. Eur. J. Med. Chem., 2019, 163, 428-442.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.070] [PMID: 30530194]
[25]
Kumar, L.; Jha, A.; Sridhar, G. Synthesis and biological evaluation of chalcone fused quinoline derivatives as anticancer agents. Chem. Data Collect., 2019, 22100236
[http://dx.doi.org/10.1016/j.cdc.2019.100236]
[26]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[27]
Thangarasu, P.; Thamarai Selvi, S.; Manikandan, A. Unveiling novel 2-cyclopropyl-3-ethynyl-4-(4-fluorophenyl)quinolines as GPCR ligands via PI3-kinase/PAR-1 antagonism and platelet aggregation valuations; development of a new class of anticancer drugs with thrombolytic effects. Bioorg. Chem., 2018, 81, 468-480.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.011] [PMID: 30243238]
[28]
Vennila, K.N.; Sunny, D.; Madhuri, S.; Ciattini, S.; Chelazzi, L.; Elango, K.P. Design, synthesis, crystal structures and anticancer activity of 4-substituted quinolines to target PDK1. Bioorg. Chem., 2018, 81, 184-190.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.007] [PMID: 30138906]
[29]
Abbas, S.H.; Abd El-Hafeez, A.A.; Shoman, M.E.; Montano, M.M.; Hassan, H.A. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg. Chem., 2019, 82, 360-377.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.064] [PMID: 30428415]
[30]
Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2000, 103(2), 211-225.
[http://dx.doi.org/10.1016/S0092-8674(00)00114-8] [PMID: 11057895]
[31]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[32]
Aly, R.M.; Serya, R.A.T.; El-Motwally, A.M.; Esmat, A.; Abbas, S.; Abou El Ella, D.A. Novel quinoline-3-carboxamides (Part 2): Design, optimization and synthesis of quinoline based scaffold as EGFR inhibitors with potent anticancer activity. Bioorg. Chem., 2017, 75, 368-392.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.018] [PMID: 29096097]
[33]
George, R.F.; Samir, E.M.; Abdelhamed, M.N.; Abdel-Aziz, H.A.; Abbas, S.E. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg. Chem., 2019, 83, 186-197.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.038] [PMID: 30380447]
[34]
Abdelsalam, E.A.; Zaghary, W.A.; Amin, K.M.; Abou Taleb, N.A.; Mekawey, A.A.I.; Eldehna, W.M.; Abdel-Aziz, H.A.; Hammad, S.F. Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorg. Chem., 2019, 89102985
[http://dx.doi.org/10.1016/j.bioorg.2019.102985] [PMID: 31121559]
[35]
Maiolica, A.; de Medina-Redondo, M.; Schoof, E.M.; Chaikuad, A.; Villa, F.; Gatti, M.; Jeganathan, S.; Lou, H.J.; Novy, K.; Hauri, S.; Toprak, U.H.; Herzog, F.; Meraldi, P.; Penengo, L.; Turk, B.E.; Knapp, S.; Linding, R.; Aebersold, R. Modulation of the chromatin phosphoproteome by the Haspin protein kinase. Mol. Cell. Proteomics, 2014, 13(7), 1724-1740.
[http://dx.doi.org/10.1074/mcp.M113.034819] [PMID: 24732914]
[36]
Opoku-Temeng, C.; Dayal, N.; Aflaki Sooreshjani, M.; Sintim, H.O. 3H-pyrazolo[4,3-f]quinoline haspin kinase inhibitors and anticancer properties. Bioorg. Chem., 2018, 78, 418-426.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.031] [PMID: 29698892]
[37]
Aly, A.A.; El-Sheref, E.M.; Bakheet, M.E.M.; Mourad, M.A.E.; Bräse, S.; Ibrahim, M.A.A.; Nieger, M.; Garvalov, B.K.; Dalby, K.N.; Kaoud, T.S. Design, synthesis and biological evaluation of fused naphthofuro[3,2-c] quinoline-6,7,12-triones and pyrano[3,2-c]quinoline-6,7,8,13-tetraones derivatives as ERK inhibitors with efficacy in BRAF-mutant melanoma. Bioorg. Chem., 2019, 82, 290-305.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.044] [PMID: 30396063]
[38]
Leicht, D.T.; Balan, V.; Kaplun, A.; Singh-Gupta, V.; Kaplun, L.; Dobson, M.; Tzivion, G. RAF kinases: Function, regulation and role in human cancer. Biochim. Biophys. Acta, 2007, 1773(8), 1196-1212.
[http://dx.doi.org/10.1016/j.bbamcr.2007.05.001] [PMID: 17555829]
[39]
El-Gamal, M.I.; Khan, M.A.; Tarazi, H.; Abdel-Maksoud, M.S.; Gamal El-Din, M.M.; Yoo, K.H.; Oh, C-H. Design and synthesis of new RAF kinase-inhibiting antiproliferative quinoline derivatives. Part 2: Diarylurea derivatives. Eur. J. Med. Chem., 2017, 127, 413-423.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.006] [PMID: 28088086]
[40]
Arafa, R.K.; Hegazy, G.H.; Piazza, G.A.; Abadi, A.H. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur. J. Med. Chem., 2013, 63, 826-832.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.008] [PMID: 23584545]
[41]
Singh, K.; Verma, V.; Yadav, K.; Sreekanth, V.; Kumar, D.; Bajaj, A.; Kumar, V. Design, regioselective synthesis and cytotoxic evaluation of 2-aminoimidazole-quinoline hybrids against cancer and primary endothelial cells. Eur. J. Med. Chem., 2014, 87, 150-158.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.055] [PMID: 25247771]
[42]
Praveena, K.S.S.; Shivaji Ramarao, E.V.; Murthy, N.Y.S.; Akkenapally, S.; Kumar, C.G.; Kapavarapu, R.; Pal, S. Design of new hybrid template by linking quinoline, triazole and dihydroquinoline pharmacophoric groups: A greener approach to novel polyazaheterocycles as cytotoxic agents. Bioorg. Med. Chem. Lett., 2015, 25(5), 1057-1063.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.012] [PMID: 25655719]
[43]
Spanò, V.; Parrino, B.; Carbone, A.; Montalbano, A.; Salvador, A.; Brun, P.; Vedaldi, D.; Diana, P.; Cirrincione, G.; Barraja, P. Pyrazolo[3,4-h]quinolines promising photosensitizing agents in the treatment of cancer. Eur. J. Med. Chem., 2015, 102, 334-351.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.003] [PMID: 26295175]
[44]
Liberto, N.A.; Simões, J.B.; de Paiva Silva, S.; da Silva, C.J.; Modolo, L.V.; de Fátima, Â.; Silva, L.M.; Derita, M.; Zacchino, S.; Zuñiga, O.M.P.; Romanelli, G.P.; Fernandes, S.A. Quinolines: Microwave-assisted synthesis and their antifungal, anticancer and radical scavenger properties. Bioorg. Med. Chem., 2017, 25(3), 1153-1162.
[http://dx.doi.org/10.1016/j.bmc.2016.12.023] [PMID: 28041802]
[45]
Alegaon, S.G.; Parchure, P.; Araujo, L.D.; Salve, P.S.; Alagawadi, K.R.; Jalalpure, S.S.; Kumbar, V.M. Quinoline-azetidinone hybrids: Synthesis and in vitro antiproliferation activity against Hep G2 and Hep 3B human cell lines. Bioorg. Med. Chem. Lett., 2017, 27(7), 1566-1571.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.043] [PMID: 28262527]
[46]
Manohar, C.S.; Manikandan, A.; Sridhar, P.; Sivakumar, A.; Kumar, B.S.; Reddy, S.R. Drug repurposing of novel quinoline acetohydrazide derivatives as potent COX-2 inhibitors and anti-cancer agents. J. Mol. Struct., 2018, 1154, 437-444.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.075]
[47]
Kasaboina, S.; Ramineni, V.; Banu, S.; Bandi, Y.; Nagarapu, L.; Dumala, N.; Grover, P. Iodine mediated pyrazolo-quinoline derivatives as potent anti-proliferative agents. Bioorg. Med. Chem. Lett., 2018, 28(4), 664-667.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.023] [PMID: 29409753]
[48]
Sri Ramya, P.V.; Guntuku, L.; Angapelly, S.; Karri, S.; Digwal, C.S.; Babu, B.N.; Naidu, V.G.M.; Kamal, A. Curcumin inspired 2-chloro/phenoxy quinoline analogues: Synthesis and biological evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2018, 28(5), 892-898.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.070] [PMID: 29429834]
[49]
Li, S.; Hu, L.; Li, J.; Zhu, J.; Zeng, F.; Huang, Q.; Qiu, L.; Du, R.; Cao, R. Design, synthesis, structure-activity relationships and mechanism of action of new quinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2019, 162, 666-678.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.048] [PMID: 30496987]
[50]
Krawczyk, M.; Pastuch-Gawolek, G.; Mrozek-Wilczkiewicz, A.; Kuczak, M.; Skonieczna, M.; Musiol, R. Synthesis of 8-hydroxyquinoline glycoconjugates and preliminary assay of their β1,4-GalT inhibitory and anti-cancer properties. Bioorg. Chem., 2019, 84, 326-338.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.047] [PMID: 30530074]
[51]
Jafari, F.; Baghayi, H.; Lavaee, P.; Hadizadeh, F.; Soltani, F.; Moallemzadeh, H.; Mirzaei, S.; Aboutorabzadeh, S.M.; Ghodsi, R. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur. J. Med. Chem., 2019, 164, 292-303.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.060] [PMID: 30599418]
[52]
Haiba, M.E.; Al-Abdullah, E.S.; Ahmed, N.S.; Ghabbour, H.A.; Awad, H.M. Efficient and easy synthesis of new Benzo [h] chromene and Benzo [h] quinoline derivatives as a new class of cytotoxic agents. J. Mol. Struct., 2019, 1195, 701-711.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.081]
[53]
Ucar, D.; Cogle, C.R.; Zucali, J.R.; Ostmark, B.; Scott, E.W.; Zori, R.; Gray, B.A.; Moreb, J.S. Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem. Biol. Interact., 2009, 178(1-3), 48-55.
[http://dx.doi.org/10.1016/j.cbi.2008.09.029] [PMID: 18952074]
[54]
Yang, S-M.; Martinez, N.J.; Yasgar, A.; Danchik, C.; Johansson, C.; Wang, Y.; Baljinnyam, B.; Wang, A.Q.; Xu, X.; Shah, P.; Cheff, D.; Wang, X.S.; Roth, J.; Lal-Nag, M.; Dunford, J.E.; Oppermann, U.; Vasiliou, V.; Simeonov, A.; Jadhav, A.; Maloney, D.J. Discovery of orally bioavailable, quinoline-based aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors with potent cellular activity. J. Med. Chem., 2018, 61(11), 4883-4903.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00270] [PMID: 29767973]
[55]
Löffler, M.; Fairbanks, L.D.; Zameitat, E.; Marinaki, A.M.; Simmonds, H.A. Pyrimidine pathways in health and disease. Trends Mol. Med., 2005, 11(9), 430-437.
[http://dx.doi.org/10.1016/j.molmed.2005.07.003] [PMID: 16098809]
[56]
Vyas, V.K.; Qureshi, G.; Oza, D.; Patel, H.; Parmar, K.; Patel, P.; Ghate, M.D. Synthesis of 2-,4,-6-, and/or 7-substituted quinoline derivatives as human Dihydroorotate Dehydrogenase (hDHODH) inhibitors and anticancer agents: 3D QSAR-assisted design. Bioorg. Med. Chem. Lett., 2019, 29(7), 917-922.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.038] [PMID: 30738663]
[57]
Lolli, M.L.; Sainas, S.; Pippione, A.C.; Giorgis, M.; Boschi, D.; Dosio, F. Use of human Dihydroorotate Dehydrogenase (hDHODH) inhibitors in autoimmune diseases and new perspectives in cancer therapy. Recent Pat. Anti-Canc., 2018, 13, 86-105.
[58]
Leonessa, F.; Clarke, R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr. Relat. Cancer, 2003, 10(1), 43-73.
[http://dx.doi.org/10.1677/erc.0.0100043] [PMID: 12653670]
[59]
Karthikeyan, C.; Malla, R.; Ashby, C.R., Jr; Amawi, H.; Abbott, K.L.; Moore, J.; Chen, J.; Balch, C.; Lee, C.; Flannery, P.C.; Trivedi, P.; Faridi, J.S.; Pondugula, S.R.; Tiwari, A.K. Pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinolines: Novel compounds that reverse ABCG2-mediated resistance in cancer cells. Cancer Lett., 2016, 376(1), 118-126.
[http://dx.doi.org/10.1016/j.canlet.2016.03.030] [PMID: 27012188]
[60]
Pearl, L.H.; Prodromou, C. Structure and in vivo function of Hsp90. Curr. Opin. Struct. Biol., 2000, 10(1), 46-51.
[http://dx.doi.org/10.1016/S0959-440X(99)00047-0] [PMID: 10679459]
[61]
Bagatell, R.; Whitesell, L. Altered Hsp90 function in cancer: A unique therapeutic opportunity. Mol. Cancer Ther., 2004, 3(8), 1021-1030.
[PMID: 15299085]
[62]
Malayeri, S.O.; Abnous, K.; Arab, A.; Akaberi, M.; Mehri, S.; Zarghi, A.; Ghodsi, R. Design, synthesis and biological evaluation of 7-(aryl)-2,3-dihydro-[1,4]dioxino[2,3-g]quinoline derivatives as potential Hsp90 inhibitors and anticancer agents. Bioorg. Med. Chem., 2017, 25(3), 1294-1302.
[http://dx.doi.org/10.1016/j.bmc.2016.12.050] [PMID: 28073608]
[63]
Oh, E-T.; Park, H.J. Implications of NQO1 in cancer therapy. BMB Rep., 2015, 48(11), 609-617.
[http://dx.doi.org/10.5483/BMBRep.2015.48.11.190] [PMID: 26424559]
[64]
Scott, K.A.; Barnes, J.; Whitehead, R.C.; Stratford, I.J.; Nolan, K.A. Inhibitors of NQO1: Identification of compounds more potent than dicoumarol without associated off-target effects. Biochem. Pharmacol., 2011, 81(3), 355-363.
[http://dx.doi.org/10.1016/j.bcp.2010.10.011] [PMID: 20970406]
[65]
Ling, Y.; Yang, Q-X.; Teng, Y-N.; Chen, S.; Gao, W-J.; Guo, J.; Hsu, P-L.; Liu, Y.; Morris-Natschke, S.L.; Hung, C-C.; Lee, K.H. Development of novel amino-quinoline-5,8-dione derivatives as NAD(P)H: Quinone Oxidoreductase 1 (NQO1) inhibitors with potent antiproliferative activities. Eur. J. Med. Chem., 2018, 154, 199-209.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.025] [PMID: 29803003]
[66]
Li, K.; Li, Y.; Zhou, D.; Fan, Y.; Guo, H.; Ma, T.; Wen, J.; Liu, D.; Zhao, L. Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors. Bioorg. Med. Chem., 2016, 24(8), 1889-1897.
[http://dx.doi.org/10.1016/j.bmc.2016.03.016] [PMID: 26979485]
[67]
Nepali, K.; Lin, M.H.; Chao, M.W.; Peng, S.J.; Hsu, K.C.; Eight Lin, T.; Chen, M.C.; Lai, M.J.; Pan, S.L.; Liou, J.P. Amide-tethered quinoline-resorcinol conjugates as a new class of HSP90 inhibitors suppressing the growth of prostate cancer cells. Bioorg. Chem., 2019, 91103119
[http://dx.doi.org/10.1016/j.bioorg.2019.103119] [PMID: 31349117]
[68]
Knight, S.D.; Schmidt, S.J. Quinoline derivatives as PI3 kinase inhibitors., US Patent 8,633,187B2, 2014.
[69]
Kumar, S.; Vishwakarma, R.; Mundada, R.; Deore, V.; Kumar, P.; Sharma, S. Imidazo[4, 5-C]quinoline derivatives and their use in the treatment of tumors and/or inflammation., US Patent 8,637,670B2, 2014.
[70]
Liu, J.O.; Shim, J.S.; Chong, C.R.; Bhat, S. Quinoline compounds as inhibitors of angiogenesis, human methionine aminopeptidase, and sirt1, and methods of treating disorders., US Patent 8,729,097B2, 2014.
[71]
Furet, P.; Porta, D.G.; Guagnano, V. Quinoline carboxamide derivatives as protein tyrosine kinase inhibitors., US Patent 371 8,815,901B2, 2014.
[72]
Weissman, A.M.; Yang, Y. Highly soluble pyrimido-dionequinoline compounds and their use in the treatment of cancer., US Patent 8,877,765B2, 2014.
[73]
Tzeng, C-C.; Chen, Y-L.; Chen, Y-W.; Lu, P-J. 4-anilinofuro [2,3-b] quinoline derivatives, their preparation processes, and pharmaceutical compositions comprising the same., US Patent 8,952,033B2, 2015.
[74]
Xu, H. Quinoline compound composing 1, 2, 4-triazine-dione and use thereof., US Patent 8,993,566B2, 2015.
[75]
Fuchss, T.; Mederski, W.; Zenke, F. Imidazo [4, 5-c] quinolines as DNA-PK inhibitors., US Patent 9,000,153B2, 2015.
[76]
Kuo, S-C.; Teng, C-M.; Lee, K-H.; Huang, L-J.; Chou, L-C.; Chang, C-S.; Sun, C-M.; Wu, T-S.; Pan, S-L.; Way, T-D. 2-selenophene-4-quinolones as anticancer agents, US Patent 9,023,866B2, 2015.
[77]
Kuo, S-C.; Teng, C-M.; Lee, K-H.; Huang, L-J.; Chou, L-C.; Chang, C-S.; Sun, C-M.; Wu, T-S.; Pan, S-L.; Way, T-D. Hydrophilic derivatives of 2-Selenophene-4-quinolones as anticancer agents., US Patent 9,023,867B2, 2015.
[78]
Kuo, S-C.; Teng, C-M.; Lee, K-H.; Huang, L-J.; Chou, L-C.; Chang, C-S.; Sun, C-M.; Wu, T-S.; Pan, S-L.; Way, T-D. 2-Phenyl-4-quinolines as anticancer agents., US Patent 9,029,394B2, 2015.
[79]
Xi, N. Substituted quinoline compounds and methods of use., US Patent 9,133,162B2, 2015.
[80]
Schaus, S.E.; Hansen, U.; Bishop, J.A. [1, 3] dioxolo [4, 5-g][1, 2, 4] triazolo [1, 5-a] quinoline derivatives as inhibitors of the late SV40 factor (LSF) for use in treating cancer., US Patent 9,175,001B2, 2015.
[81]
Chan, A.S-C.; Tang, J.C-O.; Lam, K-H.; Chui, C-H.; Kok, S.H-L.; Chan, S.H.; Cheung, F.; Gambari, R.; Cheng, C.H. Method of making and administering quinoline derivatives as anti-cancer agents., US Patent 9,321,730B2, 2016.
[82]
Tao, C.; Sun, X.; Han, H.; Koroniak, L.; Desai, N. Isoquinoline, quinoline, and quinazoline derivatives as inhibitors of hedgehog signaling., US Patent 9,345,699B2, 2016.
[83]
Gong, P.; Zhao, Y.; Liu, Y.; Zhai, X.; Li, S.; Zhu, W.; Qin, M. Quinoline and cinnoline derivatives and their applications., US Patent 9,382,232B2, 2016.
[84]
Berdini, V.; Angibaud, P.R.; Woodhead, S.J.; Saxty, G. Quinolines as FGFR kinase modulators., US Patent 9,439,896B2, 2016.
[85]
Gekeler, V.; Maier, T.; Zimmermann, A.; Hofmann, H-P.; Kulkarni, S.A.; Jagtap, A.P.; Chaure, G.S. Substituted imidazoquinolines., US Patent 9,446,040B2, 2016.
[86]
Tang, J.C-O.; Chan, A.S.C.; Lam, K.H.; Chan, S.H. Quinoline derivatives as anti-cancer agents., US Patent 9,493,419B2, 2016.
[87]
Inukai, T.; Takeuchi, J.; Yasuhiro, T. Quinoline derivative., US Patent 9,573,935B2, 2017.
[88]
Gil, A.M.; Ayuso-Gontan, C.G.; Ruiz, V.P.; Martin, C.P.; Fernandez, D.I.P.; Rodriguez, J.A.R. Heterocyclic GSK-3 allosteric modulators., US Patent 9,585,879B2, 2017.
[89]
Xi, N. Substituted quinoline compounds and methods of use., US Patent 9,598,400B2, 2017.
[90]
Gold, B.I.; Xie, X.; Srinivasan, A.; Wang, L. Compounds and methods for inhibition of AP endonuclease-1/redox factor-1 (HAPE1) activity., US Patent 9,624,235B2, 2017.
[91]
Scott, W.J.; Möwes, M.; Liu, N.; Mönning, U.; Bömer, U. Alkoxysubstituted 2, 3-dihydroimidazo [1, 2-C] quinazolines., US Patent 9,675,616B2, 2017.
[92]
Castro, A.C.; Evans, C.A.; Tremblay, M.R. Trisubstituted bicyclic heterocyclic compounds with kinase activities and uses thereof., US Patent 9,708,348B2, 2017.
[93]
Chu, Y-W.; Chien, D-S. Use of aryl-quinolin derivatives as inhibitors of vasculogenic mimicry., US Patent 9,717,721B2, 2017.
[94]
Wu, H.; Chaofeng, L.; Lin, J.; Chen, X.; Yunhui, L.; Zhuowei, L.; Changqing, W.; Chen, L.; Chen, S. Quinoline derivatives as SMO inhibitors., US Patent 9,938,292B2, 2018.
[95]
Lee, H.; Solomon, V.R.; Pundir, S. Quinoline sulfonyl derivatives and uses thereof., US Patent 9,975,852B2, 2018.
[96]
Coffman, K.J.; Galatsis, P.; Garnsey, M.R.; Henderson, J.L.; Kormos, B. Imidazo[4,5-C]quinoline and Imidazo[4,5-C]naphthyridine derivatives as LLRK2 inhibitors., US Patent 10,039,753B2, 2018.
[97]
Xie, L.; Wang, X.; Lee, K.-H. N-aryl unsaturated fused ring tertiary amine compounds, preparation method and anti-tumor applications thereof1., EP Patent 2,857,393B, 2018.
[98]
Chen, P.G.; Yan, C.; Reale, M.; Chen, M. Fused quinoline compunds as PI3K, mTOR inhibitors., US Patent 10,112,945B, 2018.
[99]
Fuchss, T.; Emde, U.; Buchstaller, H-P.; Mederski, W. Arylquinazolines., US Patent 10,172,859B2, 2019.
[100]
Sonia, B.; Beret, A.; Bassissi, F.; Halfon, P.; Courcambeck, J. Substituted 2, 4-diamino-quinoline derivatives for use in the treatment of proliferative diseases., US Patent 10,179,770B2, 2019.
[101]
Inukai, T.; Takeuchi, J.; Yasuhiro, T. Quinoline derivative., US Patent 10,208,034B2, 2019.
[102]
Amaravadi, R.K.; Winkler, F. Dimeric quinacrine derivatives as autophagy inhibitors for cancer therapy., US Patent 10,221,140B2, 2019.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy