Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Drug Repurposing in Oncology: Current Evidence and Future Direction

Author(s): Zhenzhan Zhang, Jianguang Ji* and Hao Liu*

Volume 28, Issue 11, 2021

Published on: 20 August, 2020

Page: [2175 - 2194] Pages: 20

DOI: 10.2174/0929867327999200820124111

Price: $65

Abstract

Background: Drug repurposing, the application of known drugs and compounds with a primary non-oncology purpose, might be an attractive strategy to offer more effective treatment options to cancer patients at a low cost and reduced time.

Methods: This review described a total of 10 kinds of non-oncological drugs from more than 100 mechanical studies as well as evidence from population-based studies. The future direction of repurposed drug screening is discussed by using patient-derived tumor organoids.

Results: Many old drugs showed previously unknown effects or off-target effects and can be intelligently applied for cancer chemoprevention and therapy. The identification of repurposed drugs needs to combine evidence from mechanical studies and population-based studies. Due to the heterogeneity of cancer, patient-derived tumor organoids can be used to screen the non-oncological drugs in vitro.

Conclusion: These identified old drugs could be repurposed in oncology and might be added as adjuvants and finally benefit patients with cancers.

Keywords: Drug repurposing, anti-cancer, population cohort, drug screening, organoid, future direction of cancer.

[1]
Verma, M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol., 2016, 12(13), 1645-1664.
[http://dx.doi.org/10.2217/fon-2015-0035] [PMID: 27079684]
[2]
Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; Phillimore, B.; Begum, S.; McDonald, N.Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C.R.; Nohadani, M.; Eklund, A.C.; Spencer-Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P.A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 2012, 366(10), 883-892.
[http://dx.doi.org/10.1056/NEJMoa1113205] [PMID: 22397650]
[3]
Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology--patient and health systems opportunities. Nat. Rev. Clin. Oncol., 2015, 12(12), 732-742.
[http://dx.doi.org/10.1038/nrclinonc.2015.169] [PMID: 26483297]
[4]
Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med., 2015, 372(9), 793-795.
[http://dx.doi.org/10.1056/NEJMp1500523] [PMID: 25635347]
[5]
Orecchioni, S.; Roma, S.; Raimondi, S.; Gandini, S.; Bertolini, F. Identifying drug repurposing opportunities in oncology. Cancer J., 2019, 25(2), 82-87.
[http://dx.doi.org/10.1097/PPO.0000000000000360] [PMID: 30896529]
[6]
Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov., 2012, 11(3), 191-200.
[http://dx.doi.org/10.1038/nrd3681] [PMID: 22378269]
[7]
Austin, C.P.; Brady, L.S.; Insel, T.R.; Collins, F.S. NIH molecular libraries initiative. NIH molecular libraries initiative. Science, 2004, 306(5699), 1138-1139.
[http://dx.doi.org/10.1126/science.1105511] [PMID: 15542455]
[8]
Skrabanek, L.; Saini, H.K.; Bader, G.D.; Enright, A.J. Computational prediction of protein-protein interactions. Mol. Biotechnol., 2008, 38(1), 1-17.
[http://dx.doi.org/10.1007/s12033-007-0069-2] [PMID: 18095187]
[9]
Kandela, I.; Aird, F. Reproducibility project: cancer, b. replication study: discovery and preclinical validation of drug indications using compendia of public gene expression data. eLife, 2017, 6e17044
[http://dx.doi.org/10.7554/eLife.17044 ] [PMID: 28100397]
[10]
Xu, H.; Aldrich, M.C.; Chen, Q.; Liu, H.; Peterson, N.B.; Dai, Q.; Levy, M.; Shah, A.; Han, X.; Ruan, X.; Jiang, M.; Li, Y.; Julien, J.S.; Warner, J.; Friedman, C.; Roden, D.M.; Denny, J.C. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. J. Am. Med. Inform. Assoc., 2015, 22(1), 179-191.
[http://dx.doi.org/10.1136/amiajnl-2014-002649]] [PMID: 25053577]
[11]
Darash-Yahana, M.; Pozniak, Y.; Lu, M.; Sohn, Y.S.; Karmi, O.; Tamir, S.; Bai, F.; Song, L.; Jennings, P.A.; Pikarsky, E.; Geiger, T.; Onuchic, J.N.; Mittler, R.; Nechushtai, R. Breast cancer tumorigenicity is dependent on high expression levels of NAF-1 and the lability of its Fe-S clusters. Proc. Natl. Acad. Sci. USA, 2016, 113(39), 10890-10895.
[http://dx.doi.org/10.1073/pnas.1612736113] [PMID: 27621439]
[12]
Piątkowska-Chmiel, I.; Gawrońska-Grzywacz, M.; Natorska-Chomicka, D.; Herbet, M.; Sysa, M.; Iwan, M.; Korga, A.; Dudka, J. Pioglitazone as a modulator of the chemoresistance of renal cell adenocarcinoma to methotrexate. Oncol. Rep., 2020, 43(3), 1019-1030.
[http://dx.doi.org/10.3892/or.2020.7482] [PMID: 32020228]
[13]
Higuchi, T.; Sugisawa, N.; Miyake, K.; Oshiro, H.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Igarashi, K.; Kline, Z.; Bouvet, M.; Singh, S.R.; Tsuchiya, H.; Hoffman, R.M. Pioglitazone, an agonist of PPARγ, reverses doxorubicin-resistance in an osteosarcoma patient-derived orthotopic xenograft model by downregulating P-glycoprotein expression. Biomed. Pharmacother., 2019, 118109356
[http://dx.doi.org/10.1016/j.biopha.2019.109356] [PMID: 31545293]
[14]
Higuchi, T.; Yamamoto, J.; Sugisawa, N.; Tashiro, Y.; Nishino, H.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Igarashi, K.; Bouvet, M.; Singh, S.R.; Tsuchiya, H.; Hoffman, R.M. PPARγ agonist pioglitazone in combination with cisplatinum arrests a chemotherapy-resistant osteosarcoma PDOX model. Cancer Genomics Proteomics, 2020, 17(1), 35-40.
[http://dx.doi.org/10.21873/cgp.20165] [PMID: 31882549]
[15]
Lv, S.; Wang, W.; Wang, H.; Zhu, Y.; Lei, C. PPARγ activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway. BMC Cancer, 2019, 19(1), 204.
[http://dx.doi.org/10.1186/s12885-019-5426-6] [PMID: 30845932]
[16]
Ciaramella, V.; Sasso, F.C.; Di Liello, R.; Corte, C.M.D.; Barra, G.; Viscardi, G.; Esposito, G.; Sparano, F.; Troiani, T.; Martinelli, E.; Orditura, M.; De Vita, F.; Ciardiello, F.; Morgillo, F. Activity and molecular targets of pioglitazone via blockade of proliferation, invasiveness and bioenergetics in human NSCLC. J. Exp. Clin. Cancer Res., 2019, 38(1), 178.
[http://dx.doi.org/10.1186/s13046-019-1176-1] [PMID: 31027492]
[17]
Vancura, A.; Bu, P.; Bhagwat, M.; Zeng, J.; Vancurova, I. Metformin as an anticancer agent. Trends Pharmacol. Sci., 2018, 39(10), 867-878.
[http://dx.doi.org/10.1016/j.tips.2018.07.006] [PMID: 30150001]
[18]
Morris, A. In search of the mechanisms of metformin in cancer. Nat. Rev. Endocrinol., 2018, 14(11), 628.
[http://dx.doi.org/10.1038/s41574-018-0104-3] [PMID: 30258089]
[19]
Chen, K.; Li, Y.; Guo, Z.; Zeng, Y.; Zhang, W.; Wang, H. Metformin: current clinical applications in nondiabetic patients with cancer. Aging (Albany NY), 2020, 12(4), 3993-4009.
[http://dx.doi.org/10.18632/aging.102787] [PMID: 32074084]
[20]
Wu, L.; Zhou, B.; Oshiro-Rapley, N.; Li, M.; Paulo, J.A.; Webster, C.M.; Mou, F.; Kacergis, M.C.; Talkowski, M.E.; Carr, C.E.; Gygi, S.P.; Zheng, B.; Soukas, A.A. An ancient, unified mechanism for metformin growth inhibition in C.elegans and cancer. Cell, 2016, 167(7), 1705-1718.e13.
[http://dx.doi.org/10.1016/j.cell.2016.11.055]] [PMID: 27984722]
[21]
Deschênes-Simard, X.; Rowell, M.C.; Ferbeyre, G. Metformin turns off the metabolic switch of pancreatic cancer. Aging (Albany NY), 2019, 11(23), 10793-10795.
[http://dx.doi.org/10.18632/aging.102622] [PMID: 31831715]
[22]
Han, H.; Hou, Y.; Chen, X.; Zhang, P.; Kang, M.; Jin, Q.; Ji, J.; Gao, M. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy. J. Am. Chem. Soc., 2020, 142(10), 4944-4954.
[http://dx.doi.org/10.1021/jacs.0c00650] [PMID: 32069041]
[23]
Zhang, X.; Liu, P.; Shang, Y.; Kerndl, H.; Kumstel, S.; Gong, P.; Vollmar, B.; Zechner, D. Metformin and LW6 impairs pancreatic cancer cells and reduces nuclear localization of YAP1. J. Cancer, 2020, 11(2), 479-487.
[http://dx.doi.org/10.7150/jca.33029] [PMID: 31897243]
[24]
Dong, S.; Ruiz-Calderon, B.; Rathinam, R.; Eastlack, S.; Maziveyi, M.; Alahari, S.K. Knockout model reveals the role of Nischarin in mammary gland development, breast tumorigenesis and response to metformin treatment. Int. J. Cancer, 2020, 146(9), 2576-2587.
[http://dx.doi.org/10.1002/ijc.32690] [PMID: 31525254]
[25]
Lord, S.R.; Cheng, W.C.; Liu, D.; Gaude, E.; Haider, S.; Metcalf, T.; Patel, N.; Teoh, E.J.; Gleeson, F.; Bradley, K.; Wigfield, S.; Zois, C.; McGowan, D.R.; Ah-See, M.L.; Thompson, A.M.; Sharma, A.; Bidaut, L.; Pollak, M.; Roy, P.G.; Karpe, F.; James, T.; English, R.; Adams, R.F.; Campo, L.; Ayers, L.; Snell, C.; Roxanis, I.; Frezza, C.; Fenwick, J.D.; Buffa, F.M.; Harris, A.L. Integrated pharmacodynamic analysis identifies two metabolic adaption pathways to metformin in breast cancer. Cell Metab., 2018, 28, 679-688.
[http://dx.doi.org/10.1016/j.cmet.2018.08.021] [PMID: 30244975 ]
[26]
Chen, H.; Lin, C.; Peng, T.; Hu, C.; Lu, C.; Li, L.; Wang, Y.; Han, R.; Feng, M.; Sun, F.; He, Y. Metformin reduces HGF-induced resistance to alectinib via the inhibition of Gab1. Cell Death Dis., 2020, 11(2), 111.
[http://dx.doi.org/10.1038/s41419-020-2307-5] [PMID: 32041944]
[27]
Moro, M.; Caiola, E.; Ganzinelli, M.; Zulato, E.; Rulli, E.; Marabese, M.; Centonze, G.; Busico, A.; Pastorino, U.; de Braud, F.G.; Vernieri, C.; Simbolo, M.; Bria, E.; Scarpa, A.; Indraccolo, S.; Broggini, M.; Sozzi, G.; Garassino, M.C. Metformin enhances cisplatin-induced apoptosis and prevents resistance to cisplatin in co-mutated KRAS/LKB1 NSCLC. J. Thorac. Oncol., 2018, 13(11), 1692-1704.
[http://dx.doi.org/10.1016/j.jtho.2018.07.102] [PMID: 30149143]
[28]
Arrieta, O.; Barrón, F.; Padilla, M.S.; Avilés-Salas, A.; Ramírez-Tirado, L.A.; Arguelles Jiménez, M.J.; Vergara, E.; Zatarain-Barrón, Z.L.; Hernández-Pedro, N.; Cardona, A.F.; Cruz-Rico, G.; Barrios-Bernal, P.; Yamamoto Ramos, M.; Rosell, R. Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol., 2019, 5(15)e192553
[http://dx.doi.org/10.1001/jamaoncol.2019.2553] [PMID: 31486833]
[29]
Hart, P.C.; Kenny, H.A.; Grassl, N.; Watters, K.M.; Litchfield, L.M.; Coscia, F.; Blazenovic, I.; Ploetzky, L.; Fiehn, O.; Mann, M.; Lengyel, E.; Romero, I.L. Mesothelial cell HIF1alpha expression is metabolically downregulated by metformin to prevent oncogenic tumor-stromal crosstalk. Cell Rep., 2019, 29(12), 4086-4098.
[http://dx.doi.org/10.1016/j.celrep.2019.11.079]] [PMID: 31851935]
[30]
de Oliveira, S.; Houseright, R.A.; Graves, A.L.; Golenberg, N.; Korte, B.G.; Miskolci, V.; Huttenlocher, A. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J. Hepatol., 2019, 70(4), 710-721.
[http://dx.doi.org/10.1016/j.jhep.2018.11.034] [PMID: 30572006]
[31]
Gong, Y.; Wang, C.; Jiang, Y.; Zhang, S.; Feng, S.; Fu, Y.; Luo, Y. Metformin inhibits tumor metastasis through suppressing Hsp90α secretion in an AMPKα1-PKCγ dependent manner. Cells, 2020, 9(1)E144
[http://dx.doi.org/10.3390/cells9010144] [PMID: 31936169]
[32]
Elgendy, M.; Ciro, M.; Hosseini, A.; Weiszmann, J.; Mazzarella, L.; Ferrari, E.; Cazzoli, R.; Curigliano, G.; DeCensi, A.; Bonanni, B.; Budillon, A.; Pelicci, P.G.; Janssens, V.; Ogris, M.; Baccarini, M.; Lanfrancone, L.; Weckwerth, W.; Foiani, M.; Minucci, S. Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3beta-MCL-1 axis. Cancer Cell, 2019, 35(5), 789-815.e5.
[http://dx.doi.org/10.1016/j.ccell.2019.03.007]] [PMID: 31031016]
[33]
Cha, J-H.; Yang, W-H.; Xia, W.; Wei, Y.; Chan, L-C.; Lim, S-O.; Li, C-W.; Kim, T.; Chang, S-S.; Lee, H-H.; Hsu, J.L.; Wang, H-L.; Kuo, C-W.; Chang, W.C.; Hadad, S.; Purdie, C.A.; McCoy, A.M.; Cai, S.; Tu, Y.; Litton, J.K.; Mittendorf, E.A.; Moulder, S.L.; Symmans, W.F.; Thompson, A.M.; Piwnica-Worms, H.; Chen, C.H.; Khoo, K-H.; Hung, M-C. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell, 2018, 71(4), 606-620.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.07.030]] [PMID: 30118680]
[34]
Zhao, Y.; Cao, J.; Melamed, A.; Worley, M.; Gockley, A.; Jones, D.; Nia, H.T.; Zhang, Y.; Stylianopoulos, T.; Kumar, A.S.; Mpekris, F.; Datta, M.; Sun, Y.; Wu, L.; Gao, X.; Yeku, O.; Del Carmen, M.G.; Spriggs, D.R.; Jain, R.K.; Xu, L. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc. Natl. Acad. Sci. USA, 2019, 116(6), 2210-2219.
[http://dx.doi.org/10.1073/pnas.1818357116] [PMID: 30659155]
[35]
Murphy, J.E.; Wo, J.Y.; Ryan, D.P.; Clark, J.W.; Jiang, W.; Yeap, B.Y.; Drapek, L.C.; Ly, L.; Baglini, C.V.; Blaszkowsky, L.S.; Ferrone, C.R.; Parikh, A.R.; Weekes, C.D.; Nipp, R.D.; Kwak, E.L.; Allen, J.N.; Corcoran, R.B.; Ting, D.T.; Faris, J.E.; Zhu, A.X.; Goyal, L.; Berger, D.L.; Qadan, M.; Lillemoe, K.D.; Talele, N.; Jain, R.K.; DeLaney, T.F.; Duda, D.G.; Boucher, Y.; Fernández-Del Castillo, C.; Hong, T.S. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol., 2019, 5(7), 1020-1027.
[http://dx.doi.org/10.1001/jamaoncol.2019.0892] [PMID: 31145418]
[36]
Benjamin, D.; Colombi, M.; Hindupur, S.K.; Betz, C.; Lane, H.A.; El-Shemerly, M.Y.; Lu, M.; Quagliata, L.; Terracciano, L.; Moes, S.; Sharpe, T.; Wodnar-Filipowicz, A.; Moroni, C.; Hall, M.N. Syrosingopine sensitizes cancer cells to killing by metformin. Sci. Adv., 2016, 2(12)e1601756
[http://dx.doi.org/10.1126/sciadv.1601756] [PMID: 28028542]
[37]
Benjamin, D.; Robay, D.; Hindupur, S.K.; Pohlmann, J.; Colombi, M.; El-Shemerly, M.Y.; Maira, S.M.; Moroni, C.; Lane, H.A.; Hall, M.N. Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep., 2018, 25(11), 3047-3058.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.11.043]] [PMID: 30540938]
[38]
Assad Kahn, S.; Costa, S.L.; Gholamin, S.; Nitta, R.T.; Dubois, L.G.; Fève, M.; Zeniou, M.; Coelho, P.L.; El-Habr, E.; Cadusseau, J.; Varlet, P.; Mitra, S.S.; Devaux, B.; Kilhoffer, M.C.; Cheshier, S.H.; Moura-Neto, V.; Haiech, J.; Junier, M.P.; Chneiweiss, H. The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway. EMBO Mol. Med., 2016, 8(5), 511-526.
[http://dx.doi.org/10.15252/emmm.201505421] [PMID: 27138566]
[39]
Langley, R.E.; Burdett, S.; Tierney, J.F.; Cafferty, F.; Parmar, M.K.; Venning, G. Aspirin and cancer: has aspirin been overlooked as an adjuvant therapy? Br. J. Cancer, 2011, 105(8), 1107-1113.
[http://dx.doi.org/10.1038/bjc.2011.289] [PMID: 21847126]
[40]
Fujiwara, N.; Singal, A.G.; Hoshida, Y. Dose and duration of aspirin use to reduce incident hepatocellular carcinoma. Hepatology, 2019, 70(6), 2216-2217.
[http://dx.doi.org/10.1002/hep.30813] [PMID: 31206214]
[41]
Wang, T.; Fu, X.; Jin, T.; Zhang, L.; Liu, B.; Wu, Y.; Xu, F.; Wang, X.; Ye, K.; Zhang, W.; Ye, L. Aspirin targets P4HA2 through inhibiting NF-κB and LMCD1-AS1/let-7g to inhibit tumour growth and collagen deposition in hepatocellular carcinoma. EBioMedicine, 2019, 45, 168-180.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.048] [PMID: 31278071]
[42]
Jiang, W.; Yan, Y.; Chen, M.; Luo, G.; Hao, J.; Pan, J.; Hu, S.; Guo, P.; Li, W.; Wang, R.; Zuo, Y.; Sun, Y.; Sui, S.; Yu, W.; Pan, Z.; Zou, K.; Zheng, Z.; Deng, W.; Wu, X.; Guo, W. Aspirin enhances the sensitivity of colon cancer cells to cisplatin by abrogating the binding of NF-κB to the COX-2 promoter. Aging (Albany NY), 2020, 12(1), 611-627.
[http://dx.doi.org/10.18632/aging.102644] [PMID: 31905343]
[43]
Lucotti, S.; Cerutti, C.; Soyer, M.; Gil-Bernabé, A.M.; Gomes, A.L.; Allen, P.D.; Smart, S.; Markelc, B.; Watson, K.; Armstrong, P.C.; Mitchell, J.A.; Warner, T.D.; Ridley, A.J.; Muschel, R.J. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J. Clin. Invest., 2019, 129(5), 1845-1862.
[http://dx.doi.org/10.1172/JCI121985] [PMID: 30907747]
[44]
Hamy, A.S.; Tury, S.; Wang, X.; Gao, J.; Pierga, J.Y.; Giacchetti, S.; Brain, E.; Pistilli, B.; Marty, M.; Espié, M.; Benchimol, G.; Laas, E.; Laé, M.; Asselain, B.; Aouchiche, B.; Edelman, M.; Reyal, F. Celecoxib with neoadjuvant chemotherapy for breast cancer might worsen outcomes differentially by COX-2 expression and ER status: exploratory analysis of the REMAGUS02 trial. J. Clin. Oncol., 2019, 37(8), 624-635.
[http://dx.doi.org/10.1200/JCO.18.00636] [PMID: 30702971]
[45]
Edelman, M.J.; Wang, X.; Hodgson, L.; Cheney, R.T.; Baggstrom, M.Q.; Thomas, S.P.; Gajra, A.; Bertino, E.; Reckamp, K.L.; Molina, J.; Schiller, J.H.; Mitchell-Richards, K.; Friedman, P.N.; Ritter, J.; Milne, G.; Hahn, O.M.; Stinchcombe, T.E.; Vokes, E.E. Alliance for clinical trials in oncology. Phase III randomized, placebo-controlled, double-blind trial of celecoxib in addition to standard chemotherapy for advanced non-small-cell lung cancer with cyclooxygenase-2 overexpression: CALGB 30801 (Alliance). J. Clin. Oncol., 2017, 35(19), 2184-2192.
[http://dx.doi.org/10.1200/JCO.2016.71.3743] [PMID: 28489511]
[46]
Kelly, J.D.; Tan, W.S.; Porta, N.; Mostafid, H.; Huddart, R.; Protheroe, A.; Bogle, R.; Blazeby, J.; Palmer, A.; Cresswell, J.; Johnson, M.; Brough, R.; Madaan, S.; Andrews, S.; Cruickshank, C.; Burnett, S.; Maynard, L.; Hall, E.; Investigators, B. BOXIT Investigators. BOXIT-A randomised phase III placebo-controlled trial evaluating the addition of celecoxib to standard treatment of transitional cell carcinoma of the bladder (CRUK/07/004). Eur. Urol., 2019, 75(4), 593-601.
[http://dx.doi.org/10.1016/j.eururo.2018.09.020] [PMID: 30279015]
[47]
Liu, X.; Wu, Y.; Zhou, Z.; Huang, M.; Deng, W.; Wang, Y.; Zhou, X.; Chen, L.; Li, Y.; Zeng, T.; Wang, G.; Fu, B. Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis. Int. J. Mol. Med., 2019, 44(2), 683-693.
[http://dx.doi.org/10.3892/ijmm.2019.4241] [PMID: 31198976]
[48]
Dai, H.; Zhang, S.; Ma, R.; Pan, L. Celecoxib inhibits hepatocellular carcinoma cell growth and migration by targeting PNO1. Med. Sci. Monit., 2019, 25, 7351-7360.
[http://dx.doi.org/10.12659/MSM.919218] [PMID: 31568401]
[49]
Qiu, Z.; Zhang, C.; Zhou, J.; Hu, J.; Sheng, L.; Li, X.; Chen, L.; Li, X.; Deng, X.; Zheng, G. Celecoxib alleviates AKT/c-Met-triggered rapid hepatocarcinogenesis by suppressing a novel COX-2/AKT/FASN cascade. Mol. Carcinog., 2019, 58(1), 31-41.
[http://dx.doi.org/10.1002/mc.22904] [PMID: 30182439]
[50]
Tołoczko-Iwaniuk, N.; Dziemiańczyk-Pakieła, D.; Celińska-Janowicz, K.; Zaręba, I.; Klupczyńska, A.; Kokot, Z.J.; Nowaszewska, B.K.; Reszeć, J.; Borys, J.; Miltyk, W. Proline-dependent induction of apoptosis in oral squamous cell carcinoma (OSCC)-The effect of celecoxib. Cancers (Basel), 2020, 12(1)E136
[http://dx.doi.org/10.3390/cancers12010136] [PMID: 31935820]
[51]
Velmurugan, B.K.; Hua, C.H.; Tsai, M.H.; Lee, C.P.; Chung, C.M.; Ko, Y.C. Combination of celecoxib and calyculin-A inhibits epithelial-mesenchymal transition in human oral cancer cells. Biotech. Histochem., 2020, 95(5), 341-348.
[http://dx.doi.org/10.1080/10520295.2019.1700429] [PMID: 31937145]
[52]
Burikhanov, R.; Hebbar, N.; Noothi, S.K.; Shukla, N.; Sledziona, J.; Araujo, N.; Kudrimoti, M.; Wang, Q.J.; Watt, D.S.; Welch, D.R.; Maranchie, J.; Harada, A.; Rangnekar, V.M. Chloroquine-inducible Par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep., 2017, 18(2), 508-519.
[http://dx.doi.org/10.1016/j.celrep.2016.12.051] [PMID: 28076793]
[53]
Chen, D.; Xie, J.; Fiskesund, R.; Dong, W.; Liang, X.; Lv, J.; Jin, X.; Liu, J.; Mo, S.; Zhang, T.; Cheng, F.; Zhou, Y.; Zhang, H.; Tang, K.; Ma, J.; Liu, Y.; Huang, B. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun., 2018, 9(1), 873.
[http://dx.doi.org/10.1038/s41467-018-03225-9] [PMID: 29491374]
[54]
Boone, B.A.; Murthy, P.; Miller-Ocuin, J.; Doerfler, W.R.; Ellis, J.T.; Liang, X.; Ross, M.A.; Wallace, C.T.; Sperry, J.L.; Lotze, M.T.; Neal, M.D.; Zeh, H.J. III. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer, 2018, 18(1), 678.
[http://dx.doi.org/10.1186/s12885-018-4584-2] [PMID: 29929491]
[55]
Valdés-Abadía, B.; Morán-Zendejas, R.; Rangel-Flores, J.M.; Rodríguez-Menchaca, A.A. Chloroquine inhibits tumor-related Kv10.1 channel and decreases migration of MDA-MB-231 breast cancer cells in vitro. Eur. J. Pharmacol., 2019, 855, 262-266.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.017] [PMID: 31082369]
[56]
Shiratori, H.; Kawai, K.; Hata, K.; Tanaka, T.; Nishikawa, T.; Otani, K.; Sasaki, K.; Kaneko, M.; Murono, K.; Emoto, S.; Sonoda, H.; Nozawa, H. The combination of temsirolimus and chloroquine increases radiosensitivity in colorectal cancer cells. Oncol. Rep., 2019, 42(1), 377-385.
[http://dx.doi.org/10.3892/or.2019.7134] [PMID: 31059051]
[57]
Hounjet, J.; Habets, R.; Schaaf, M.B.; Hendrickx, T.C.; Barbeau, L.M.O.; Yahyanejad, S.; Rouschop, K.M.; Groot, A.J.; Vooijs, M. The anti-malarial drug chloroquine sensitizes oncogenic NOTCH1 driven human T-ALL to γ-secretase inhibition. Oncogene, 2019, 38(27), 5457-5468.
[http://dx.doi.org/10.1038/s41388-019-0802-x] [PMID: 30967635]
[58]
Cook, K.L.; Wärri, A.; Soto-Pantoja, D.R.; Clarke, P.A.; Cruz, M.I.; Zwart, A.; Clarke, R. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin. Cancer Res., 2014, 20(12), 3222-3232.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3227] [PMID: 24928945]
[59]
Rosenfeld, M.R.; Ye, X.; Supko, J.G.; Desideri, S.; Grossman, S.A.; Brem, S.; Mikkelson, T.; Wang, D.; Chang, Y.C.; Hu, J.; McAfee, Q.; Fisher, J.; Troxel, A.B.; Piao, S.; Heitjan, D.F.; Tan, K.S.; Pontiggia, L.; O’Dwyer, P.J.; Davis, L.E.; Amaravadi, R.K. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy, 2014, 10(8), 1359-1368.
[http://dx.doi.org/10.4161/auto.28984] [PMID: 24991840]
[60]
Liu, L.Q.; Wang, S.B.; Shao, Y.F.; Shi, J.N.; Wang, W.; Chen, W.Y.; Ye, Z.Q.; Jiang, J.Y.; Fang, Q.X.; Zhang, G.B.; Xuan, Z.X. Hydroxychloroquine potentiates the anti-cancer effect of bevacizumab on glioblastoma via the inhibition of autophagy. Biomed. Pharmacother., 2019, 118109339
[http://dx.doi.org/10.1016/j.biopha.2019.109339] [PMID: 31545270]
[61]
Wang, W.; Liu, L.; Zhou, Y.; Ye, Q.; Yang, X.; Jiang, J.; Ye, Z.; Gao, F.; Tan, X.; Zhang, G.; Fang, Q.; Xuan, Z.X. Hydroxychloroquine enhances the antitumor effects of BC001 in gastric cancer. Int. J. Oncol., 2019, 55(2), 405-414.
[http://dx.doi.org/10.3892/ijo.2019.4824] [PMID: 31268153]
[62]
Li, Y.; Cao, F.; Li, M.; Li, P.; Yu, Y.; Xiang, L.; Xu, T.; Lei, J.; Tai, Y.Y.; Zhu, J.; Yang, B.; Jiang, Y.; Zhang, X.; Duo, L.; Chen, P.; Yu, X. Hydroxychloroquine induced lung cancer suppression by enhancing chemo-sensitization and promoting the transition of M2-TAMs to M1-like macrophages. J. Exp. Clin. Cancer Res., 2018, 37(1), 259.
[http://dx.doi.org/10.1186/s13046-018-0938-5] [PMID: 30373678]
[63]
Efferth, T. From ancient herb to modern drug: artemisia annua and artemisinin for cancer therapy. Semin. Cancer Biol., 2017, 46, 65-83.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.009] [PMID: 28254675]
[64]
Yao, Y.; Guo, Q.; Cao, Y.; Qiu, Y.; Tan, R.; Yu, Z.; Zhou, Y.; Lu, N. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 282.
[http://dx.doi.org/10.1186/s13046-018-0960-7] [PMID: 30477536]
[65]
Li, X.; Ba, Q.; Liu, Y.; Yue, Q.; Chen, P.; Li, J.; Zhang, H.; Ying, H.; Ding, Q.; Song, H.; Liu, H.; Zhang, R.; Wang, H. Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRα protein. Cell Discov., 2017, 3, 17042.
[http://dx.doi.org/10.1038/celldisc.2017.42] [PMID: 29387451]
[66]
Lin, M.X.; Lin, S.H.; Lin, C.C.; Yang, C.C.; Yuan, S.Y. In vitro and in vivo antitumor effects of pyrimethamine on non-small cell lung cancers. Anticancer Res., 2018, 38(6), 3435-3445.
[http://dx.doi.org/10.21873/anticanres.12612] [PMID: 29848694]
[67]
Liu, H.; Qin, Y.; Zhai, D.; Zhang, Q.; Gu, J.; Tang, Y.; Yang, J.; Li, K.; Yang, L.; Chen, S.; Zhong, W.; Meng, J.; Liu, Y.; Sun, T.; Yang, C. Antimalarial drug pyrimethamine plays a dual role in antitumor proliferation and metastasis through targeting DHFR and TP. Mol. Cancer Ther., 2019, 18(3), 541-555.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0936] [PMID: 30642883]
[68]
Khan, M.W.; Saadalla, A.; Ewida, A.H.; Al-Katranji, K.; Al-Saoudi, G.; Giaccone, Z.T.; Gounari, F.; Zhang, M.; Frank, D.A.; Khazaie, K. The STAT3 inhibitor pyrimethamine displays anti-cancer and immune stimulatory effects in murine models of breast cancer. Cancer Immunol. Immunother., 2018, 67(1), 13-23.
[http://dx.doi.org/10.1007/s00262-017-2057-0] [PMID: 28875329]
[69]
Liu, Y.; Zhou, H.; Yi, T.; Wang, H. Pyrimethamine exerts significant antitumor effects on human ovarian cancer cells both in vitro and in vivo. Anticancer Drugs, 2019, 30(6), 571-578.
[http://dx.doi.org/10.1097/CAD.0000000000000740] [PMID: 30614834]
[70]
Oh, E.; Kim, Y.J.; An, H.; Sung, D.; Cho, T.M.; Farrand, L.; Jang, S.; Seo, J.H.; Kim, J.Y. Flubendazole elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Int. J. Cancer, 2018, 143(8), 1978-1993.
[http://dx.doi.org/10.1002/ijc.31585] [PMID: 29744876]
[71]
Kim, Y.J.; Sung, D.; Oh, E.; Cho, Y.; Cho, T.M.; Farrand, L.; Seo, J.H.; Kim, J.Y. Flubendazole overcomes trastuzumab resistance by targeting cancer stem-like properties and HER2 signaling in HER2-positive breast cancer. Cancer Lett., 2018, 412, 118-130.
[http://dx.doi.org/10.1016/j.canlet.2017.10.020] [PMID: 29080749]
[72]
Lin, S.; Yang, L.; Yao, Y.; Xu, L.; Xiang, Y.; Zhao, H.; Wang, L.; Zuo, Z.; Huang, X.; Zhao, C. Flubendazole demonstrates valid antitumor effects by inhibiting STAT3 and activating autophagy. J. Exp. Clin. Cancer Res., 2019, 38(1), 293.
[http://dx.doi.org/10.1186/s13046-019-1303-z] [PMID: 31287013]
[73]
Li, Y.; Acharya, G.; Elahy, M.; Xin, H.; Khachigian, L.M. The anthelmintic flubendazole blocks human melanoma growth and metastasis and suppresses programmed cell death protein-1 and myeloid-derived suppressor cell accumulation. Cancer Lett., 2019, 459, 268-276.
[http://dx.doi.org/10.1016/j.canlet.2019.05.026] [PMID: 31128215]
[74]
Guerini, A.E.; Triggiani, L.; Maddalo, M.; Bonù, M.L.; Frassine, F.; Baiguini, A.; Alghisi, A.; Tomasini, D.; Borghetti, P.; Pasinetti, N.; Bresciani, R.; Magrini, S.M.; Buglione, M. Mebendazole as a candidate for drug repurposing in oncology: an extensive review of current literature. Cancers (Basel), 2019, 11(9)E1284
[http://dx.doi.org/10.3390/cancers11091284] [PMID: 31480477]
[75]
Rushworth, L.K.; Hewit, K.; Munnings-Tomes, S.; Somani, S.; James, D.; Shanks, E.; Dufès, C.; Straube, A.; Patel, R.; Leung, H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer, 2020, 122(4), 517-527.
[http://dx.doi.org/10.1038/s41416-019-0681-5] [PMID: 31844184]
[76]
Zhang, L.; Bochkur Dratver, M.; Yazal, T.; Dong, K.; Nguyen, A.; Yu, G.; Dao, A.; Bochkur Dratver, M.; Duhachek-Muggy, S.; Bhat, K.; Alli, C.; Pajonk, F.; Vlashi, E. Mebendazole potentiates radiation therapy in triple-negative breast cancer. Int. J. Radiat. Oncol. Biol. Phys., 2019, 103(1), 195-207.
[http://dx.doi.org/10.1016/j.ijrobp.2018.08.046] [PMID: 30196056]
[77]
Williamson, T.; Mendes, T.B.; Joe, N.; Cerutti, J.M.; Riggins, G.J. Mebendazole inhibits tumor growth and prevents lung metastasis in models of advanced thyroid cancer. Endocr. Relat. Cancer, 2020, 27(3), 123-136.
[http://dx.doi.org/10.1530/ERC-19-0341] [PMID: 31846433]
[78]
Chen, M.B.; Liu, Y.Y.; Xing, Z.Y.; Zhang, Z.Q.; Jiang, Q.; Lu, P.H.; Cao, C. Itraconazole-Induced inhibition on human esophageal cancer cell growth requires AMPK activation. Mol. Cancer Ther., 2018, 17(6), 1229-1239.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1094] [PMID: 29592879]
[79]
Kelly, R.J.; Ansari, A.M.; Miyashita, T.; Zahurak, M.; Lay, F.; Ahmed, A.K.; Born, L.J.; Pezhouh, M.K.; Salimian, K.J.; Ng, C.; Matsangos, A.E.; Stricker-Krongrad, A.H.; Mukaisho, K.I.; Marti, G.P.; Chung, C.H.; Canto, M.I.; Rudek, M.A.; Meltzer, S.J.; Harmon, J.W. Targeting the hedgehog pathway using itraconazole to prevent progression of Barrett’s Esophagus to invasive esophageal adenocarcinoma. Ann. Surg., 2019.
[http://dx.doi.org/10.1097/SLA.0000000000003455] [PMID: 31290765]
[80]
Wei, X.; Liu, W.; Wang, J.Q.; Tang, Z. “Hedgehog pathway”: a potential target of itraconazole in the treatment of cancer. J. Cancer Res. Clin. Oncol., 2020, 146(2), 297-304.
[http://dx.doi.org/10.1007/s00432-019-03117-5] [PMID: 31960187]
[81]
Hu, Q.; Hou, Y.C.; Huang, J.; Fang, J.Y.; Xiong, H. Itraconazole induces apoptosis and cell cycle arrest via inhibiting Hedgehog signaling in gastric cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 50.
[http://dx.doi.org/10.1186/s13046-017-0526-0] [PMID: 28399898]
[82]
Wang, X.; Wei, S.; Zhao, Y.; Shi, C.; Liu, P.; Zhang, C.; Lei, Y.; Zhang, B.; Bai, B.; Huang, Y.; Zhang, H. Anti-proliferation of breast cancer cells with itraconazole: Hedgehog pathway inhibition induces apoptosis and autophagic cell death. Cancer Lett., 2017, 385, 128-136.
[http://dx.doi.org/10.1016/j.canlet.2016.10.034] [PMID: 27810405]
[83]
Buczacki, S.J.A.; Popova, S.; Biggs, E.; Koukorava, C.; Buzzelli, J.; Vermeulen, L.; Hazelwood, L.; Francies, H.; Garnett, M.J.; Winton, D.J. Itraconazole targets cell cycle heterogeneity in colorectal cancer. J. Exp. Med., 2018, 215(7), 1891-1912.
[http://dx.doi.org/10.1084/jem.20171385] [PMID: 29853607]
[84]
Chen, C.; Zhang, W. Itraconazole alters the stem cell characteristics of A549 and NCI-H460 human lung cancer cells by suppressing Wnt signaling. Med. Sci. Monit., 2019, 25, 9509-9516.
[http://dx.doi.org/10.12659/MSM.919347] [PMID: 31833479]
[85]
Jiang, F.; Xing, H.S.; Chen, W.Y.; Du, J.; Ruan, Y.L.; Lin, A.Y.; Zhou, C.Z. Itraconazole inhibits proliferation of pancreatic cancer cells through activation of Bak-1. J. Cell. Biochem., 2019, 120(3), 4333-4341.
[http://dx.doi.org/10.1002/jcb.27719] [PMID: 30260036]
[86]
Morran, D.C.; Wu, J.; Jamieson, N.B.; Mrowinska, A.; Kalna, G.; Karim, S.A.; Au, A.Y.; Scarlett, C.J.; Chang, D.K.; Pajak, M.Z.; Oien, K.A.; McKay, C.J.; Carter, C.R.; Gillen, G.; Champion, S.; Pimlott, S.L.; Anderson, K.I.; Evans, T.R.; Grimmond, S.M.; Biankin, A.V.; Sansom, O.J.; Morton, J.P. Australian pancreatic cancer genome initiative (APGI). targeting mTOR dependency in pancreatic cancer. Gut, 2014, 63(9), 1481-1489.
[http://dx.doi.org/10.1136/gutjnl-2013-306202] [PMID: 24717934]
[87]
Liu, Q.; Zhou, X.; Li, C.; Zhang, X.; Li, C.L. Rapamycin promotes the anticancer action of dihydroartemisinin in breast cancer MDA-MB-231 cells by regulating expression of Atg7 and DAPK. Oncol. Lett., 2018, 15(4), 5781-5786.
[http://dx.doi.org/10.3892/ol.2018.8013] [PMID: 29545903]
[88]
Zhu, L.; Li, X-X.; Shi, L.; Wu, J.; Qian, J.Y.; Xia, T-S.; Zhou, W-B.; Sun, X.; Zhou, X.J.; Wei, J-F.; Ding, Q. Rapamycin enhances the sensitivity of ER positive breast cancer cells to tamoxifen by upregulating p73 expression. Oncol. Rep., 2019, 41(1), 455-464.
[http://dx.doi.org/10.3892/or.2018.6842] [PMID: 30542717]
[89]
Whang, Y.M.; Kim, M.J.; Cho, M.J.; Yoon, H.; Choi, Y.W.; Kim, T.H.; Chang, I.H. Rapamycin enhances growth inhibition on urothelial carcinoma cells through LKB1 deficiency-mediated mitochondrial dysregulation. J. Cell. Physiol., 2019, 234(8), 13083-13096.
[http://dx.doi.org/10.1002/jcp.27979] [PMID: 30549029]
[90]
Li, Y.; Sun, H.; Zhang, C.; Liu, J.; Zhang, H.; Fan, F.; Everley, R.A.; Ning, X.; Sun, Y.; Hu, J.; Liu, J.; Zhang, J.; Ye, W.; Qiu, X.; Dai, S.; Liu, B.; Xu, H.; Fu, S.; Gygi, S.P.; Zhou, C. Identification of translationally controlled tumor protein in promotion of DNA homologous recombination repair in cancer cells by affinity proteomics. Oncogene, 2017, 36(50), 6839-6849.
[http://dx.doi.org/10.1038/onc.2017.289] [PMID: 28846114]
[91]
Jiang, X.; Lu, W.; Shen, X.; Wang, Q.; Lv, J.; Liu, M.; Cheng, F.; Zhao, Z.; Pang, X. Repurposing sertraline sensitizes non-small cell lung cancer cells to erlotinib by inducing autophagy. JCI Insight, 2018, 3(11), 98921.
[http://dx.doi.org/10.1172/jci.insight.98921] [PMID: 29875309]
[92]
Xia, D.; Zhang, Y.T.; Xu, G.P.; Yan, W.W.; Pan, X.R.; Tong, J.H. Sertraline exerts its antitumor functions through both apoptosis and autophagy pathways in acute myeloid leukemia cells. Leuk. Lymphoma, 2017, 58(9), 1-10.
[http://dx.doi.org/10.1080/10428194.2017.1287358] [PMID: 28278721]
[93]
Wang, C.; Vegna, S.; Jin, H.; Benedict, B.; Lieftink, C.; Ramirez, C.; de Oliveira, R.L.; Morris, B.; Gadiot, J.; Wang, W.; du Chatinier, A.; Wang, L.; Gao, D.; Evers, B.; Jin, G.; Xue, Z.; Schepers, A.; Jochems, F.; Sanchez, A.M.; Mainardi, S.; Te Riele, H.; Beijersbergen, R.L.; Qin, W.; Akkari, L.; Bernards, R. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature, 2019, 574(7777), 268-272.
[http://dx.doi.org/10.1038/s41586-019-1607-3] [PMID: 31578521]
[94]
Caiaffo, V.; Oliveira, B.D.; de Sá, F.B.; Evêncio Neto, J. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine. Pharmacol. Res. Perspect., 2016, 4(3)e00231
[http://dx.doi.org/10.1002/prp2.231] [PMID: 27433341]
[95]
Marcinkute, M.; Afshinjavid, S.; Fatokun, A.A.; Javid, F.A. Fluoxetine selectively induces p53-independent apoptosis in human colorectal cancer cells. Eur. J. Pharmacol., 2019, 857172441
[http://dx.doi.org/10.1016/j.ejphar.2019.172441] [PMID: 31181210]
[96]
Sun, D.; Zhu, L.; Zhao, Y.; Jiang, Y.; Chen, L.; Yu, Y.; Ouyang, L. Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer. Cell Prolif., 2018, 51(2)e12402
[http://dx.doi.org/10.1111/cpr.12402] [PMID: 29094413]
[97]
Khing, T.M.; Po, W.W.; Sohn, U.D. Fluoxetine enhances anti-tumor activity of paclitaxel in gastric adenocarcinoma cells by triggering apoptosis and necroptosis. Anticancer Res., 2019, 39(11), 6155-6163.
[http://dx.doi.org/10.21873/anticanres.13823] [PMID: 31704843]
[98]
Wu, J.Y.; Lin, S.S.; Hsu, F.T.; Chung, J.G.; Fluoxetine Inhibits, D.N.A. Repair and NF-kB-modulated metastatic potential in non-small cell lung cancer. Anticancer Res., 2018, 38(9), 5201-5210.
[http://dx.doi.org/10.21873/anticanres.12843] [PMID: 30194168]
[99]
Cho, Y.W.; Kim, E.J.; Nyiramana, M.M.; Shin, E.J.; Jin, H.; Ryu, J.H.; Kang, K.R.; Lee, G.W.; Kim, H.J.; Han, J.; Kang, D. Paroxetine induces apoptosis of human breast cancer MCF-7 cells through Ca2+-and p38 MAP kinase-dependent ROS generation. Cancers (Basel), 2019, 11(1)E64
[http://dx.doi.org/10.3390/cancers11010064] [PMID: 30634506]
[100]
Jang, W.J.; Jung, S.K.; Vo, T.T.L.; Jeong, C.H. Anticancer activity of paroxetine in human colon cancer cells: involvement of MET and ERBB3. J. Cell. Mol. Med., 2019, 23(2), 1106-1115.
[http://dx.doi.org/10.1111/jcmm.14011] [PMID: 30421568]
[101]
Im, E.J.; Lee, C.H.; Moon, P.G.; Rangaswamy, G.G.; Lee, B.; Lee, J.M.; Lee, J.C.; Jee, J.G.; Bae, J.S.; Kwon, T.K.; Kang, K.W.; Jeong, M.S.; Lee, J.E.; Jung, H.S.; Ro, H.J.; Jun, S.; Kang, W.; Seo, S.Y.; Cho, Y.E.; Song, B.J.; Baek, M.C. Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat. Commun., 2019, 10(1), 1387.
[http://dx.doi.org/10.1038/s41467-019-09387-4] [PMID: 30918259]
[102]
Qiao, X.; Wang, X.; Shang, Y.; Li, Y.; Chen, S.Z. Azithromycin enhances anticancer activity of TRAIL by inhibiting autophagy and up-regulating the protein levels of DR4/5 in colon cancer cells in vitro and in vivo. Cancer Commun (Lond), 2018, 38(1), 43.
[http://dx.doi.org/10.1186/s40880-018-0309-9] [PMID: 29970185]
[103]
Li, F.; Huang, J.; Ji, D.; Meng, Q.; Wang, C.; Chen, S.; Wang, X.; Zhu, Z.; Jiang, C.; Shi, Y.; Liu, S.; Li, C. Azithromycin effectively inhibits tumor angiogenesis by suppressing vascular endothelial growth factor receptor 2-mediated signaling pathways in lung cancer. Oncol. Lett., 2017, 14(1), 89-96.
[http://dx.doi.org/10.3892/ol.2017.6103] [PMID: 28693139]
[104]
Iljin, K.; Ketola, K.; Vainio, P.; Halonen, P.; Kohonen, P.; Fey, V.; Grafström, R.C.; Perälä, M.; Kallioniemi, O. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth. Clin. Cancer Res., 2009, 15(19), 6070-6078.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1035] [PMID: 19789329]
[105]
Cvek, B. Nonprofit drugs as the salvation of the world’s healthcare systems: the case of Antabuse (disulfiram). Drug Discov. Today, 2012, 17(9-10), 409-412.
[http://dx.doi.org/10.1016/j.drudis.2011.12.010] [PMID: 22192884]
[106]
Chen, D.; Cui, Q.C.; Yang, H.; Dou, Q.P. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res., 2006, 66(21), 10425-10433.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2126] [PMID: 17079463]
[107]
Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.; Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.; Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.; Dou, Q.P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R.J.; Bartek, J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684), 194-199.
[http://dx.doi.org/10.1038/nature25016] [PMID: 29211715]
[108]
Skrott, Z.; Majera, D.; Gursky, J.; Buchtova, T.; Hajduch, M.; Mistrik, M.; Bartek, J. Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene, 2019, 38(40), 6711-6722.
[http://dx.doi.org/10.1038/s41388-019-0915-2] [PMID: 31391554]
[109]
Terashima, Y.; Toda, E.; Itakura, M.; Otsuji, M.; Yoshinaga, S.; Okumura, K.; Shand, F.H.W.; Komohara, Y.; Takeda, M.; Kokubo, K.; Chen, M.C.; Yokoi, S.; Rokutan, H.; Kofuku, Y.; Ohnishi, K.; Ohira, M.; Iizasa, T.; Nakano, H.; Okabe, T.; Kojima, H.; Shimizu, A.; Kanegasaki, S.; Zhang, M.R.; Shimada, I.; Nagase, H.; Terasawa, H.; Matsushima, K. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat. Commun., 2020, 11(1), 609.
[http://dx.doi.org/10.1038/s41467-020-14338-5] [PMID: 32001710]
[110]
Jivan, R.; Peres, J.; Damelin, L.H.; Wadee, R.; Veale, R.B.; Prince, S.; Mavri-Damelin, D. Disulfiram with or without metformin inhibits oesophageal squamous cell carcinoma in vivo. Cancer Lett., 2018, 417, 1-10.
[http://dx.doi.org/10.1016/j.canlet.2017.12.026] [PMID: 29274360]
[111]
Zhang, X.; Hu, P.; Ding, S-Y.; Sun, T.; Liu, L.; Han, S.; DeLeo, A.B.; Sadagopan, A.; Guo, W.; Wang, X. Induction of autophagy-dependent apoptosis in cancer cells through activation of ER stress: an uncovered anti-cancer mechanism by anti-alcoholism drug disulfiram. Am. J. Cancer Res., 2019, 9(6), 1266-1281.
[PMID: 31285958]
[112]
Kreipe, U. [Abnormalities of internal organs in thalidomide embryopathy. A contribution to the determination of the sensitivity phase in thalidomide administration during early pregnancy]. Arch. Kinderheilkd., 1967, 176(1), 33-61.
[PMID: 5595238]
[113]
Bartlett, J.B.; Dredge, K.; Dalgleish, A.G. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer, 2004, 4(4), 314-322.
[http://dx.doi.org/10.1038/nrc1323] [PMID: 15057291]
[114]
Zhou, S.; Wang, F.; Hsieh, T.C.; Wu, J.M.; Wu, E. Thalidomide-a notorious sedative to a wonder anticancer drug. Curr. Med. Chem., 2013, 20(33), 4102-4108.
[http://dx.doi.org/10.2174/09298673113209990198] [PMID: 23931282]
[115]
Shen, Y.; Li, S.; Wang, X.; Wang, M.; Tian, Q.; Yang, J.; Wang, J.; Wang, B.; Liu, P.; Yang, J. Tumor vasculature remolding by thalidomide increases delivery and efficacy of cisplatin. J. Exp. Clin. Cancer Res., 2019, 38(1), 427.
[http://dx.doi.org/10.1186/s13046-019-1366-x] [PMID: 31656203]
[116]
Zhang, X.; Luo, H. Effects of thalidomide on growth and VEGF-A expression in SW480 colon cancer cells. Oncol. Lett., 2018, 15(3), 3313-3320.
[http://dx.doi.org/10.3892/ol.2017.7645]] [PMID: 29435073]
[117]
Wang, J.; Yu, J.; Wang, J.; Ni, X.; Sun, Z.; Sun, W.; Sun, S.; Lu, Y. Thalidomide combined with chemo-radiotherapy for treating esophageal cancer: a randomized controlled study. Oncol. Lett., 2019, 18(1), 804-813.
[http://dx.doi.org/10.3892/ol.2019.10354] [PMID: 31289557]
[118]
Ji, J.; Sundquist, J.; Sundquist, K. Association of tamoxifen with meningioma: a population-based study in Sweden. Eur. J. Cancer Prev., 2016, 25(1), 29-33.
[http://dx.doi.org/10.1097/CEJ.0000000000000133] [PMID: 25642792]
[119]
Li, B.; Lu, L.; Zhong, M.; Tan, X.X.; Liu, C.Y.; Guo, Y.; Yi, X. Terbinafine inhibits KSR1 and suppresses Raf-MEK-ERK signaling in oral squamous cell carcinoma cells. Neoplasma, 2013, 60(4), 406-412.
[http://dx.doi.org/10.4149/neo_2013_052] [PMID: 23581412]
[120]
Lee, W.S.; Chen, R.J.; Wang, Y.J.; Tseng, H.; Jeng, J.H.; Lin, S.Y.; Liang, Y.C.; Chen, C.H.; Lin, C.H.; Lin, J.K.; Ho, P.Y.; Chu, J.S.; Ho, W.L.; Chen, L.C.; Ho, Y.S. In vitro and in vivo studies of the anticancer action of terbinafine in human cancer cell lines: G0/G1 p53-associated cell cycle arrest. Int. J. Cancer, 2003, 106(1), 125-137.
[http://dx.doi.org/10.1002/ijc.11194] [PMID: 12794767]
[121]
Chien, M.H.; Lee, T.S.; Kao, C.; Yang, S.F.; Lee, W.S. Terbinafine inhibits oral squamous cell carcinoma growth through anti-cancer cell proliferation and anti-angiogenesis. Mol. Carcinog., 2012, 51(5), 389-399.
[http://dx.doi.org/10.1002/mc.20800] [PMID: 21563217]
[122]
Ji, J.; Sundquist, J.; Sundquist, K. Use of terbinafine and risk of death in patients with prostate cancer: a population-based cohort study. Int. J. Cancer, 2019, 144(8), 1888-1895.
[http://dx.doi.org/10.1002/ijc.31901] [PMID: 30259971]
[123]
Huang, W.; Sundquist, J.; Sundquist, K.; Ji, J. Use of phosphodiesterase 5 inhibitors is associated with lower risk of colorectal cancer in men with benign colorectal neoplasms. Gastroenterology, 2019, 157(3), 672-681.e4.
[http://dx.doi.org/10.1053/j.gastro.2019.05.012]] [PMID: 31103628 ]
[124]
Pusceddu, S.; Vernieri, C.; Di Maio, M.; Marconcini, R.; Spada, F.; Massironi, S.; Ibrahim, T.; Brizzi, M.P.; Campana, D.; Faggiano, A.; Giuffrida, D.; Rinzivillo, M.; Cingarlini, S.; Aroldi, F.; Antonuzzo, L.; Berardi, R.; Catena, L.; De Divitiis, C.; Ermacora, P.; Perfetti, V.; Fontana, A.; Razzore, P.; Carnaghi, C.; Davi, M.V.; Cauchi, C.; Duro, M.; Ricci, S.; Fazio, N.; Cavalcoli, F.; Bongiovanni, A.; La Salvia, A.; Brighi, N.; Colao, A.; Puliafito, I.; Panzuto, F.; Ortolani, S.; Zaniboni, A.; Di Costanzo, F.; Torniai, M.; Bajetta, E.; Tafuto, S.; Garattini, S.K.; Femia, D.; Prinzi, N.; Concas, L.; Lo Russo, G.; Milione, M.; Giacomelli, L.; Buzzoni, R.; Delle Fave, G.; Mazzaferro, V.; de Braud, F. Metformin use is associated with longer progression-free survival of patients with diabetes and pancreatic neuroendocrine tumors receiving everolimus and/or somatostatin analogues. Gastroenterology, 2018, 155(2), 479-489.e7.
[http://dx.doi.org/10.1053/j.gastro.2018.04.010]] [PMID: 29655834 ]
[125]
Cheung, K.S.; Chan, E.W.; Wong, A.Y.S.; Chen, L.; Seto, W.K.; Wong, I.C.K.; Leung, W.K. Metformin use and gastric cancer risk in diabetic patients after Helicobacter pylori eradication. J. Natl. Cancer Inst., 2019, 111(5), 484-489.
[http://dx.doi.org/10.1093/jnci/djy144] [PMID: 30329127]
[126]
Wang, Q.L.; Santoni, G.; Ness-Jensen, E.; Lagergren, J.; Xie, S.H. Association between metformin use and risk of esophageal squamous cell carcinoma in a population-based Cohort study. Am. J. Gastroenterol., 2020, 115(1), 73-78.
[http://dx.doi.org/10.14309/ajg.0000000000000478] [PMID: 31821177]
[127]
Jackson, S.S.; Pfeiffer, R.M.; Liu, Z.; Anderson, L.A.; Tsai, H.T.; Gadalla, S.M.; Koshiol, J. Association between aspirin use and biliary tract cancer survival. JAMA Oncol., 2019, 5(12), 1802-1804.
[http://dx.doi.org/110.1001/jamaoncol.2019.4328 ] [PMID: 31621809]
[128]
Kim, M.H.; Chang, J.; Kim, W.J.; Banerjee, S.; Park, S.M. Cumulative dose threshold for the chemopreventive effect of aspirin against gastric cancer. Am. J. Gastroenterol., 2018, 113(6), 845-854.
[http://dx.doi.org/10.1038/s41395-018-0097-5] [PMID: 29855546]
[129]
He, Z.; Ding, R.; Zhang, F.; Wu, Z.; Liang, C. Risk Reduction of gastric cancer by aspirin: in the quest of the holy grail. Am. J. Gastroenterol., 2019, 114(3), 533.
[http://dx.doi.org/10.14309/ajg.0000000000000055] [PMID: 30676369]
[130]
Webb, P.M.; Na, R.; Weiderpass, E.; Adami, H.O.; Anderson, K.E.; Bertrand, K.A.; Botteri, E.; Brasky, T.M.; Brinton, L.A.; Chen, C.; Doherty, J.A.; Lu, L.; McCann, S.E.; Moysich, K.B.; Olson, S.; Petruzella, S.; Palmer, J.R.; Prizment, A.E.; Schairer, C.; Setiawan, V.W.; Spurdle, A.B.; Trabert, B.; Wentzensen, N.; Wilkens, L.; Yang, H.P.; Yu, H.; Risch, H.A.; Jordan, S.J. Use of aspirin, other nonsteroidal anti-inflammatory drugs and acetaminophen and risk of endometrial cancer: the epidemiology of endometrial cancer consortium. Ann. Oncol., 2019, 30(2), 310-316.
[http://dx.doi.org/10.1093/annonc/mdy541] [PMID: 30566587]
[131]
Sperling, C.D.; Verdoodt, F.; Aalborg, G.L.; Dehlendorff, C.; Friis, S.; Kjaer, S.K. Low-dose aspirin use and endometrial cancer mortality-a Danish nationwide cohort study. Int. J. Epidemiol., 2020, 49(1), 330-337.
[http://dx.doi.org/10.1093/ije/dyz253] [PMID: 31845990]
[132]
Lee, T.Y.; Hsu, Y.C.; Tseng, H.C.; Yu, S.H.; Lin, J.T.; Wu, M.S.; Wu, C.Y. Association of daily aspirin therapy with risk of hepatocellular carcinoma in patients with chronic hepatitis B. JAMA Intern. Med., 2019, 179(5), 633-640.
[http://dx.doi.org/10.1001/jamainternmed.2018.8342] [PMID: 30882847]
[133]
Rodriguez-Miguel, A.; Garcia-Rodriguez, L.A.; Gil, M.; Montoya, H.; Rodriguez-Martin, S.; de Abajo, F.J. Clopidogrel and low-dose aspirin, alone or together, reduce risk of colorectal cancer. Clin. Gastroenterol. Hepatol., 2019, 17(10), 2024-2033.e2.
[http://dx.doi.org/10.1016/j.cgh.2018.12.012]] [PMID: 30580092]
[134]
Amitay, E.L.; Carr, P.R.; Jansen, L.; Walter, V.; Roth, W.; Herpel, E.; Kloor, M.; Bläker, H.; Chang-Claude, J.; Brenner, H.; Hoffmeister, M. Association of aspirin and nonsteroidal anti-inflammatory drugs with colorectal cancer risk by molecular subtypes. J. Natl. Cancer Inst., 2019, 111(5), 475-483.
[http://dx.doi.org/10.1093/jnci/djy170] [PMID: 30388256]
[135]
Kehm, R.D.; Hopper, J.L.; John, E.M.; Phillips, K.A.; MacInnis, R.J.; Dite, G.S.; Milne, R.L.; Liao, Y.; Zeinomar, N.; Knight, J.A.; Southey, M.C.; Vahdat, L.; Kornhauser, N.; Cigler, T.; Chung, W.K.; Giles, G.G.; McLachlan, S.A.; Friedlander, M.L.; Weideman, P.C.; Glendon, G.; Nesci, S.; Andrulis, I.L.; Buys, S.S.; Daly, M.B.; Terry, M.B. kConFab Investigators. Regular use of aspirin and other non-steroidal anti-inflammatory drugs and breast cancer risk for women at familial or genetic risk: a cohort study. Breast Cancer Res., 2019, 21(1), 52.
[http://dx.doi.org/10.1186/s13058-019-1135-y] [PMID: 30999962]
[136]
Wang, T.; McCullough, L.E.; White, A.J.; Bradshaw, P.T.; Xu, X.; Cho, Y.H.; Terry, M.B.; Teitelbaum, S.L.; Neugut, A.I.; Santella, R.M.; Chen, J.; Gammon, M.D. Prediagnosis aspirin use, DNA methylation, and mortality after breast cancer: A population-based study. Cancer, 2019, 125(21), 3836-3844.
[http://dx.doi.org/10.1002/cncr.32364] [PMID: 31402456]
[137]
van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; McLaren-Douglas, A.; Blokker, J.; Jaksani, S.; Bartfeld, S.; Volckman, R.; van Sluis, P.; Li, V.S.; Seepo, S.; Sekhar Pedamallu, C.; Cibulskis, K.; Carter, S.L.; McKenna, A.; Lawrence, M.S.; Lichtenstein, L.; Stewart, C.; Koster, J.; Versteeg, R.; van Oudenaarden, A.; Saez-Rodriguez, J.; Vries, R.G.; Getz, G.; Wessels, L.; Stratton, M.R.; McDermott, U.; Meyerson, M.; Garnett, M.J.; Clevers, H. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4), 933-945.
[http://dx.doi.org/10.1016/j.cell.2015.03.053] [PMID: 25957691]
[138]
Pauli, C.; Hopkins, B.D.; Prandi, D.; Shaw, R.; Fedrizzi, T.; Sboner, A.; Sailer, V.; Augello, M.; Puca, L.; Rosati, R.; McNary, T.J.; Churakova, Y.; Cheung, C.; Triscott, J.; Pisapia, D.; Rao, R.; Mosquera, J.M.; Robinson, B.; Faltas, B.M.; Emerling, B.E.; Gadi, V.K.; Bernard, B.; Elemento, O.; Beltran, H.; Demichelis, F.; Kemp, C.J.; Grandori, C.; Cantley, L.C.; Rubin, M.A. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov., 2017, 7(5), 462-477.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1154] [PMID: 28331002]
[139]
Nagle, P.W.; Plukker, J.T.M.; Muijs, C.T.; van Luijk, P.; Coppes, R.P. Patient-derived tumor organoids for prediction of cancer treatment response. Semin. Cancer Biol., 2018, 53, 258-264.
[http://dx.doi.org/10.1016/j.semcancer.2018.06.005] [PMID: 29966678]
[140]
Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; Korving, J.; van Boxtel, R.; Duarte, A.A.; Lelieveld, D.; van Hoeck, A.; Ernst, R.F.; Blokzijl, F.; Nijman, I.J.; Hoogstraat, M.; van de Ven, M.; Egan, D.A.; Zinzalla, V.; Moll, J.; Boj, S.F.; Voest, E.E.; Wessels, L.; van Diest, P.J.; Rottenberg, S.; Vries, R.G.J.; Cuppen, E.; Clevers, H. A Living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2), 373-386.e10.
[http://dx.doi.org/10.1016/j.cell.2017.11.010] [PMID: 29224780]
[141]
Yin, X.; Mead, B.E.; Safaee, H.; Langer, R.; Karp, J.M.; Levy, O. Engineering stem cell organoids. Cell Stem Cell, 2016, 18(1), 25-38.
[http://dx.doi.org/10.1016/j.stem.2015.12.005] [PMID: 26748754]
[142]
Neal, J.T.; Li, X.; Zhu, J.; Giangarra, V.; Grzeskowiak, C.L.; Ju, J.; Liu, I.H.; Chiou, S.H.; Salahudeen, A.A.; Smith, A.R.; Deutsch, B.C.; Liao, L.; Zemek, A.J.; Zhao, F.; Karlsson, K.; Schultz, L.M.; Metzner, T.J.; Nadauld, L.D.; Tseng, Y.Y.; Alkhairy, S.; Oh, C.; Keskula, P.; Mendoza-Villanueva, D.; De La Vega, F.M.; Kunz, P.L.; Liao, J.C.; Leppert, J.T.; Sunwoo, J.B.; Sabatti, C.; Boehm, J.S.; Hahn, W.C.; Zheng, G.X.Y.; Davis, M.M.; Kuo, C.J. Organoid modeling of the tumor immune microenvironment. Cell, 2018, 175(7), 1972-1988.e16.
[http://dx.doi.org/10.1016/j.cell.2018.11.021] [PMID: 30550791]
[143]
Pantziarka, P.; Verbaanderd, C.; Huys, I.; Bouche, G.; Meheus, L. Repurposing drugs in oncology: From candidate selection to clinical adoption. Semin. Cancer Biol., 2021, 68, 186-191.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.008] [PMID: 31982510]
[144]
Sleire, L.; Førde, H.E.; Netland, I.A.; Leiss, L.; Skeie, B.S.; Enger, P.O. Drug repurposing in cancer. Pharmacol. Res., 2017, 124, 74-91.
[http://dx.doi.org/10.1016/j.phrs.2017.07.013] [PMID: 28712971]
[145]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[146]
Ji, J.; Sundquist, J.; Sundquist, K. Cholera vaccine use is associated with a reduced risk of death in patients with colorectal cancer: a population-based study. Gastroenterology, 2018, 154(1), 86-92.
[http://dx.doi.org/10.1053/j.gastro.2017.09.009]
[147]
Ji, J.; Sundquist, J.; Sundquist, K. Association between post-diagnostic use of cholera vaccine and risk of death in prostate cancer patients. Nat. Commun., 2018, 9(1), 2367.
[http://dx.doi.org/10.1038/s41467-018-04814-4] [PMID: 29915319]
[148]
Walsh, A.J.; Cook, R.S.; Skala, M.C. Functional optical imaging of primary human tumor organoids: development of a personalized drug screen. J. Nucl. Med., 2017, 58(9), 1367-1372.
[http://dx.doi.org/10.2967/jnumed.117.192534] [PMID: 28588148]
[149]
Takahashi, N.; Hoshi, H.; Higa, A.; Hiyama, G.; Tamura, H.; Ogawa, M.; Takagi, K.; Goda, K.; Okabe, N.; Muto, S.; Suzuki, H.; Shimomura, K.; Watanabe, S.; Takagi, M. An in vitro system for evaluating molecular targeted drugs using lung patient-derived tumor organoids. Cells, 2019, 8(5)E481
[http://dx.doi.org/10.3390/cells8050481] [PMID: 31137590]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy