Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Hypervalent Iodine Reagents for Oxidative Rearrangements

Author(s): Samata E. Shetgaonkar, Manjula Krishnan and Fateh V. Singh*

Volume 18, Issue 2, 2021

Published on: 27 July, 2020

Page: [138 - 158] Pages: 21

DOI: 10.2174/1570193X17999200727204349

Price: $65

Abstract

The chemistry of hypervalent iodine reagents has emerged as an astonishing field in synthetic organic chemistry owing to its easy availability and benign environmental features. Hypervalent iodine reagents are mostly employed as alternatives in various metal-catalyzed reactions since they show similar reactivity to the transition metals, are less toxic, and less expensive. These reagents are often used as oxidants as well as electrophilic reagents in a number of organic transformations, such as oxidative functionalization, alpha C-H bond functionalization of carbonyl compounds, rearrangements, and cyclization reactions. Furthermore, the application of iodine(III) and iodine(V) reagents in various oxidative rearrangement processes generating a diverse array of molecules have been well explored. In this mini-review, the recent developments in the area of oxidative rearrangements, using hypervalent iodine reagents, have been covered.

Keywords: Cationic intermediates, hypervalent iodine reagents, oxidative rearrangements, ring contractions, ring expansions, ring rearrangements.

Graphical Abstract
[1]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, (i), 1-62.
[2]
Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun. (Camb.), 2009, (16), 2073-2085.
[http://dx.doi.org/10.1039/b821747e] [PMID: 19360157]
[3]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[4]
Kandimalla, S.R.; Parvathaneni, S.P.; Sabitha, G.; Reddy, B.V.S. Recent advances in intramolecular metal-free oxidative C–H bond aminations using hypervalent iodine(III) reagents. Eur. J. Org. Chem., 2019, 8, 1687-1714.
[http://dx.doi.org/10.1002/ejoc.201801469]
[5]
Singh, F.V.; Wirth, T. Catalytic oxidation with hypervalent iodine. Catalytic oxidation in organic synthesis. Thieme Chem., 2017, 1, 29-62.
[6]
Singh, F.V.; Wirth, T. Stereoselective reactions Patai’s Chemistry of Functional Groups , 1st ed;John Wiley & Sons, Ltd: Chichester, 2018.
[http://dx.doi.org/10.1002/9780470682531.pat0957]
[7]
Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Cleavage of carbon-carbon bonds by radical reactions. Chem. Soc. Rev., 2019, 48(9), 2615-2656.
[http://dx.doi.org/10.1039/C8CS00386F] [PMID: 30901020]
[8]
Yusubov, M.S.; Zhdankin, V.V. Hypervalent iodine reagents and green chemistry. Curr. Org. Synth., 2012, 9, 247-272.
[http://dx.doi.org/10.2174/157017912799829021]
[9]
Uyanik, M.; Ishihara, K. Hypervalent iodine-mediated oxidation of alcohols. Chem. Commun. (Camb.), 2009, (16), 2086-2099.
[http://dx.doi.org/10.1039/b823399c] [PMID: 19360158]
[10]
Singh, F.V.; Wirth, T. Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions. Chem. Asian J., 2014, 9(4), 950-971.
[http://dx.doi.org/10.1002/asia.201301582] [PMID: 24523252]
[11]
Sagara, P.S.; Chebolu, R.; Bahuguna, A.; Ravikumar, P.C. Hypervalent iodine mediated direct one pot transformation of aldehydes to ketones. RSC Advances, 2014, 4, 15011-15013.
[http://dx.doi.org/10.1039/C4RA01748J]
[12]
Mangaonkar, S.R.; Kole, P.B.; Singh, F.V. oxidation of organosulfides to organosulfones with trifluoromethyl 3-Oxo-1λ3,2-benziodoxole-1(3H)-carboxylate as an oxidant. Synlett, 2018, 18, 199-202.
[http://dx.doi.org/10.1055/s-0036-1588575]
[13]
Singh, F.V.; Mangaonkar, S.R.; Kole, P.B. Ultrasound-assisted rapid synthesis of β-cyanoepoxides using hypervalent iodine reagents. Synth. Commun., 2018, 48, 2169-2176.
[http://dx.doi.org/10.1080/00397911.2018.1479760]
[14]
Mangaonkar, S.R.; Singh, F.V. Hypervalent Iodine(III)-catalyzed epoxidation of β-cyanostyrenes. Synthesis, 2019, 51, 4473-4486.
[http://dx.doi.org/10.1055/s-0039-1690621]
[15]
Singh, F.V.; Kole, P.B.; Mangaonkar, S.R.; Shetgaonkar, S.E. Synthesis of spirocyclic scaffolds using hypervalent iodine reagents. Beilstein J. Org. Chem., 2018, 14, 1778-1805.
[http://dx.doi.org/10.3762/bjoc.14.152] [PMID: 30112083]
[16]
Singh, F.V.; Wirth, T. Hypervalent iodine(III) mediated cyclization of ortho-Stillbenes into benzofurans. Synthesis, 2012, 44, 1171-1177.
[http://dx.doi.org/10.1055/s-0031-1290588]
[17]
Singh, F.V.; Wirth, T. Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent iodine oxidants. Org. Lett., 2011, 13(24), 6504-6507.
[http://dx.doi.org/10.1021/ol202800k] [PMID: 22085140]
[18]
Singh, F.V.; Mangaonkar, S.R. Hypervalent iodine(III)-catalyzed synthesis of 2-arylbenzofurans. Synthesis, 2018, 50, 4940-4948.
[http://dx.doi.org/10.1055/s-0037-1610650]
[19]
Hyatt, I.F.D.; Dave, L.; David, N.; Kaur, K.; Medard, M.; Mowdawalla, C. Hypervalent iodine reactions utilized in carbon-carbon bond formations. Org. Biomol. Chem., 2019, 17(34), 7822-7848.
[http://dx.doi.org/10.1039/C9OB01267B] [PMID: 31372624]
[20]
Zhang, G.; Wang, Y.; Xu, J.; Sun, J.; Sun, F.; Zhang, Y.; Zhang, C.; Du, Y. A new hypervalent iodine(III/V) oxidant and its application to the synthesis of 2H-azirines. Chem. Sci. (Camb.), 2020, 11, 947-953.
[http://dx.doi.org/10.1039/C9SC05536C]
[21]
Merritt, E.A.; Olofsson, B. α -Functionalization of carbonyl compounds using hypervalent iodine reagents. Synthesis, 2011, 4, 517-538.
[22]
Dong, D-Q.; Hao, S-H.; Wang, Z-L.; Chen, C. Hypervalent iodine: a powerful electrophile for asymmetric α-functionalization of carbonyl compounds. Org. Biomol. Chem., 2014, 12(25), 4278-4289.
[http://dx.doi.org/10.1039/c4ob00318g] [PMID: 24827449]
[23]
Li, X.; Chen, P.; Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J. Org. Chem., 2018, 14, 1813-1825.
[http://dx.doi.org/10.3762/bjoc.14.154] [PMID: 30112085]
[24]
Lee, J.H.; Choi, S.; Hong, K.B. Alkene difunctionalization using hypervalent iodine reagents: Progress and developments in the past ten years. Molecules, 2019, 24(14), 2634-2657.
[http://dx.doi.org/10.3390/molecules24142634] [PMID: 31331092]
[25]
Kohlhepp, S.V.; Gulder, T. Hypervalent iodine(iii) fluorinations of alkenes and diazo compounds: New opportunities in fluorination chemistry. Chem. Soc. Rev., 2016, 45(22), 6270-6288.
[http://dx.doi.org/10.1039/C6CS00361C] [PMID: 27417189]
[26]
Li, Y.; Hari, D.P.; Vita, M.V.; Waser, J. Cyclic hypervalent iodine reagents for atom-transfer reactions: Beyond trifluoromethylation. Angew. Chem. Int. Ed. Engl., 2016, 55(14), 4436-4454.
[http://dx.doi.org/10.1002/anie.201509073] [PMID: 26880486]
[27]
Kalim, J.; Duhail, T.; Le, T-N.; Vanthuyne, N.; Anselmi, E.; Togni, A.; Magnier, E. Merging hypervalent iodine and sulfoximine chemistry: A new electrophilic trifluoromethylation reagent. Chem. Sci. (Camb.), 2019, 10(45), 10516-10523.
[http://dx.doi.org/10.1039/C9SC04289J] [PMID: 32110339]
[28]
Kiyokawa, K.; Okumatsu, D.; Minakata, S. Synthesis of hypervalent iodine(III) reagents containing a transferable (Diarylmethyl-ene)amino group and their use in the oxidative amination of silyl ketene acetals. Angew. Chem. Int. Ed. Engl., 2019, 58(26), 8907-8911.
[http://dx.doi.org/10.1002/anie.201904971] [PMID: 31050356]
[29]
Silva, L.F., Jr; Olofsson, B. Hypervalent iodine reagents in the total synthesis of natural products. Nat. Prod. Rep., 2011, 28(10), 1722-1754.
[http://dx.doi.org/10.1039/c1np00028d] [PMID: 21829843]
[30]
Budhwan, R.; Yadav, S.; Murarka, S. Late stage functionalization of heterocycles using hypervalent iodine(iii) reagents. Org. Biomol. Chem., 2019, 17(26), 6326-6341.
[http://dx.doi.org/10.1039/C9OB00694J] [PMID: 31215580]
[31]
Singh, F.V.; Wirth, T. Oxidative rearrangements with hypervalent iodine reagents. Synthesis, 2013, 45(18), 2499-2511.
[http://dx.doi.org/10.1055/s-0033-1339679]
[32]
Maertens, G.; Canesi, S. Rearrangements induced by hypervalent iodine. Topics in Current Chemistry; Springer: Berlin, 2015, Vol. 373, pp. 223-241.
[33]
Singh, F.V.; Wirth, T. Oxidative functionalization with hypervalent iodine reagents. Comprehensive Organic Synthesis II; Elsevier, 2014, pp. 880-933.
[http://dx.doi.org/10.1016/B978-0-08-097742-3.00735-7]
[34]
Koser, G.F.; Wettach, R.H.; Troup, J.M.; Frenz, B.A. Hypervalent organoiodine. Crystal structure of phenylhydroxytosyloxyiodine. J. Org. Chem., 1976, 41, 3609-3611.
[http://dx.doi.org/10.1021/jo00884a028]
[35]
Koser, G.F.; Wettach, R.H. Hypervalent organoiodine. Reactions of silver arylsulfonates with iodosobenzene dichloride. J. Org. Chem., 1977, 42, 1476-1478.
[http://dx.doi.org/10.1021/jo00428a052]
[36]
Schäfer, S.; Wirth, T. A versatile and highly reactive polyfluorinated hypervalent iodine(III) compound. Angew. Chem. Int. Ed. Engl., 2010, 49(15), 2786-2789.
[http://dx.doi.org/10.1002/anie.200907134] [PMID: 20235257]
[37]
Eisenberger, P.; Gischig, S.; Togni, A. Novel 10-I-3 hypervalent iodine-based compounds for electrophilic trifluoromethylation. Chemistry, 2006, 12(9), 2579-2586.
[http://dx.doi.org/10.1002/chem.200501052] [PMID: 16402401]
[38]
Eisenberger, P.; Togni, A. Mild electrophilic trifluoromethylation of carbon- and sulphur-centered nucleophiles by a hypervalent iodine(III)–CF3 Reagent. Angew. Chem. Int. Ed., 2007, 46, 754-757.
[http://dx.doi.org/10.1002/anie.200603497]
[39]
Merritt, E.A.; Olofsson, B. Diaryliodonium salts: A journey from obscurity to fame. Angew. Chem. Int. Ed. Engl., 2009, 48(48), 9052-9070.
[http://dx.doi.org/10.1002/anie.200904689] [PMID: 19876992]
[40]
Parra, A. Chiral hypervalent iodines: Active players in asymmetric synthesis. Chem. Rev., 2019, 119(24), 12033-12088.
[http://dx.doi.org/10.1021/acs.chemrev.9b00338] [PMID: 31741377]
[41]
Tohma, H.; Kita, Y. Hypervalent iodine reagents for the oxidation of alcohols and their application to complex molecule synthesis. Adv. Synth. Catal., 2004, 346, 111-124.
[http://dx.doi.org/10.1002/adsc.200303203]
[42]
Richardson, R.D.; Zayed, J.M.; Altermann, S.; Smith, D.; Wirth, T. Tetrafluoro-IBA and-IBX: hypervalent iodine reagents. Angew. Chem. Int. Ed. Engl., 2007, 46(34), 6529-6532.
[http://dx.doi.org/10.1002/anie.200702313] [PMID: 17645277]
[43]
Yoshimura, A.; Yusubov, M.S.; Zhdankin, V.V. Synthetic applications of pseudocyclic hypervalent iodine compounds. Org. Biomol. Chem., 2016, 14(21), 4771-4781.
[http://dx.doi.org/10.1039/C6OB00773B] [PMID: 27143521]
[44]
Qurban, J.; Elsherbini, M.; Alharbi, H.; Wirth, T. Synthesis, characterisation, and reactivity of novel pseudocyclic hypervalent iodine reagents with heteroaryl carbonyl substituents. Chem. Commun. (Camb.), 2019, 55(55), 7998-8000.
[http://dx.doi.org/10.1039/C9CC03905H] [PMID: 31225543]
[45]
Xu, M.; Ren, T-T.; Li, C-Y. Gold-catalyzed oxidative rearrangement of homopropargylic ether via oxonium ylide. Org. Lett., 2012, 14(18), 4902-4905.
[http://dx.doi.org/10.1021/ol302238t] [PMID: 22954390]
[46]
Nejrotti, S.; Cerai, G.P.; Oppedisano, A.; Maranzana, A.; Occhiato, E.G.; Scarpi, D.; Deagostino, A.; Prandi, C.A. Gold(I)-catalyzed oxidative rearrangement of heterocycle derived 1,3-enynes provides an efficient and selective route to divinyl ketones. Eur. J. Org. Chem., 2017, 6228-6238.
[http://dx.doi.org/10.1002/ejoc.201701212]
[47]
Nordmann, G.; Buchwald, S.L. A domino copper-catalyzed C-O coupling-Claisen rearrangement process. J. Am. Chem. Soc., 2003, 125(17), 4978-4979.
[http://dx.doi.org/10.1021/ja034809y] [PMID: 12708838]
[48]
Zhang, Z.J.; Ren, Z.H.; Wang, Y.Y.; Guan, Z.H. Cu(TFA)2-catalyzed oxidative tandem cyclization/1,2-alkyl migration of enamino amides for synthesis of pyrrolin-4-ones. Org. Lett., 2013, 15(18), 4822-4825.
[http://dx.doi.org/10.1021/ol4022222] [PMID: 23988157]
[49]
May, J.A.; Stoltz, B.M. Non-carbonyl-stabilized metallocarbenoids in synthesis: the development of a tandem rhodium-catalyzed bamford-stevens/thermal aliphatic Claisen rearrangement sequence. J. Am. Chem. Soc., 2002, 124(42), 12426-12427.
[http://dx.doi.org/10.1021/ja028020j] [PMID: 12381180]
[50]
Tanaka, K.; Okazaki, E.; Shibata, Y. Cationic rhodium(I)-dppf complex-catalyzed olefin isomerization/propargyl Claisen rearrangement/carbonyl migration cascade. J. Am. Chem. Soc., 2009, 131(31), 10822-10823.
[http://dx.doi.org/10.1021/ja9038449] [PMID: 19606891]
[51]
Jana, S.; Koenigs, R.M. Rhodium-catalyzed carbene transfer reactions for sigmatropic rearrangement reactions of selenium ylides. Org. Lett., 2019, 21(10), 3653-3657.
[http://dx.doi.org/10.1021/acs.orglett.9b01092] [PMID: 31032612]
[52]
Kim, S.Y.; Park, Y.; Chung, Y.K. Sequential platinum-catalyzed cycloisomerization and Cope rearrangement of dienynes. Angew. Chem. Int. Ed. Engl., 2010, 49(2), 415-418.
[http://dx.doi.org/10.1002/anie.200905361] [PMID: 19950164]
[53]
Rosa, D.; Orellana, A. Palladium-catalyzed oxidative rearrangement of diaryl alkenyl carbinols to β,β-diaryl α,β-unsaturated ketones. Org. Lett., 2011, 13(14), 3648-3651.
[http://dx.doi.org/10.1021/ol201177t] [PMID: 21675731]
[54]
Li, J.; Tan, C.; Gong, J.; Yang, Z. Palladium-catalyzed oxidative rearrangement of tertiary allylic alcohols to enones with oxygen in aqueous solvent. Org. Lett., 2014, 16(20), 5370-5373.
[http://dx.doi.org/10.1021/ol502578h] [PMID: 25280006]
[55]
Yusubov, M.S.; Zholobova, G.A.; Filimonova, I.L.; Chi, K-W. New oxidative transformations of alkenes and alkynes under the action of diacetoxyiodobenzene. Russ. Chem. Bull. Int. Ed., 2004, 53, 1735-1742.
[http://dx.doi.org/10.1007/s11172-005-0027-8]
[56]
Boye, A.C.; Meyer, D.; Ingison, C.K.; French, A.N.; Wirth, T. Novel lactonization with phenonium ion participation induced by hypervalent iodine reagents. Org. Lett., 2003, 5(12), 2157-2159.
[http://dx.doi.org/10.1021/ol034616f] [PMID: 12790553]
[57]
Singh, F.V.; Rehbein, J.; Wirth, T. Facile oxidative rearrangements using hypervalent iodine reagents. ChemistryOpen, 2012, 1(6), 245-250.
[http://dx.doi.org/10.1002/open.201200037] [PMID: 24551514]
[58]
Purohit, V.C.; Allwein, S.P.; Bakale, R.P. Catalytic oxidative 1,2-shift in 1,1′-disubstituted olefins using arene(iodo)sulfonic acid as the pre-catalyst and oxone as the oxidant. Org. Lett., 2013, 15(7), 1650-1653.
[http://dx.doi.org/10.1021/ol400432x] [PMID: 23489019]
[59]
Liu, L.; Du, L.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Metal-free tandem oxidative aryl migration and C-C bond cleavage: Synthesis of α-ketoamides and esters from acrylic derivatives. Org. Lett., 2014, 16(21), 5772-5775.
[http://dx.doi.org/10.1021/ol502834g] [PMID: 25343425]
[60]
Liu, L.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Hypervalent iodine mediated C–C double bond activation: A cascade access to α-Keto diacetates from readily available cinnamic acids. Synthesis, 2015, 47, 2924-2930.
[http://dx.doi.org/10.1055/s-0034-1378718]
[61]
Yadagiri, D.; Anbarasan, P. An iodine(III) mediated oxidative rearrangement of enamines: Efficient synthesis of α-amino ketones. Chem. Commun. (Camb.), 2015, 51(75), 14203-14206.
[http://dx.doi.org/10.1039/C5CC04265H] [PMID: 26255755]
[62]
Evans, R.W.; Zbieg, J.R.; Zhu, S.; Li, W.; MacMillan, D.W.C. Simple catalytic mechanism for the direct coupling of α-carbonyls with functionalized amines: A one-step synthesis of Plavix. J. Am. Chem. Soc., 2013, 135(43), 16074-16077.
[http://dx.doi.org/10.1021/ja4096472] [PMID: 24107144]
[63]
Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Copper-catalyzed amination of ketene silyl acetals with hydroxylamines: Electrophilic amination approach to α-amino acids. Angew. Chem. Int. Ed. Engl., 2012, 51(47), 11827-11831.
[http://dx.doi.org/10.1002/anie.201206755] [PMID: 23070827]
[64]
Liu, L.; Zhang, T.; Yang, Y-F.; Zhang-Negrerie, D.; Zhang, X.; Du, Y.; Wu, Y-D.; Zhao, K. Metal-free synthesis of 3-arylquinolin-2-ones from acrylic amides via a highly regioselective 1,2-aryl migration: An experimental and computational study. J. Org. Chem., 2016, 81(10), 4058-4065.
[http://dx.doi.org/10.1021/acs.joc.6b00345] [PMID: 27124770]
[65]
Mai, W.P.; Sun, G.C.; Wang, J.T.; Song, G.; Mao, P.; Yang, L.R.; Yuan, J.W.; Xiao, Y.M.; Qu, L.B. Silver-catalyzed radical tandem cyclization: An approach to direct synthesis of 3-acyl-4-aryl-quinolin-2(1H)-ones. J. Org. Chem., 2014, 79(17), 8094-8102.
[http://dx.doi.org/10.1021/jo501301t] [PMID: 25084243]
[66]
Li, X.; Li, X.; Jiao, N. Rh-Catalyzed construction of quinolin-2(1H)-ones via C–H bond activation of simple anilines with CO and alkynes. J. Am. Chem. Soc., 2015, 137(29), 9246-9249.
[http://dx.doi.org/10.1021/jacs.5b05843] [PMID: 26186178]
[67]
Nakamura, A.; Tanaka, S.; Imamiya, A.; Takane, R.; Ohta, C.; Fujimura, K.; Maegawa, T.; Miki, Y. Synthesis of 3-acylindoles by oxidative rearrangement of 2-aminochalcones using a hypervalent iodine reagent and cyclization sequence. Org. Biomol. Chem., 2017, 15(32), 6702-6705.
[http://dx.doi.org/10.1039/C7OB01536D] [PMID: 28749517]
[68]
Challa, C.; Varughese, S.; Suresh, C.H.; Lankalapalli, R.S. Metal-free multiple carbon-carbon and carbon-hydrogen bond activations via charge-switching mechanism in unstrained diindolylmethanes. Org. Lett., 2017, 19(16), 4219-4222.
[http://dx.doi.org/10.1021/acs.orglett.7b01843] [PMID: 28763232]
[69]
Stempel, E.; Gaich, T. Cyclohepta[b]indoles: A privileged structure motif in natural products and drug design. Acc. Chem. Res., 2016, 49(11), 2390-2402.
[http://dx.doi.org/10.1021/acs.accounts.6b00265] [PMID: 27709885]
[70]
Zhao, Z.; Peng, Z.; Zhao, Y.; Liu, H.; Li, C.; Zhao, J. Hypervalent iodine-mediated oxidative rearrangement of N-H ketimines: An umpolung approach to amides. J. Org. Chem., 2017, 82(22), 11848-11853.
[http://dx.doi.org/10.1021/acs.joc.7b01468] [PMID: 28691492]
[71]
Yamakoshi, W.; Arisawa, M.; Murai, K. Oxidative rearrangement of primary amines using PhI(OAc)2 and Cs2CO3. Org. Lett., 2019, 21(9), 3023-3027.
[http://dx.doi.org/10.1021/acs.orglett.9b00559] [PMID: 30998017]
[72]
Sisti, A.J.; Milstein, S.R. Stieglitz rearrangement with lead tetraacetate and triarylmethylamines. J. Org. Chem., 1974, 39, 3932-3936.
[http://dx.doi.org/10.1021/jo00940a030]
[73]
Hoffman, R.V.; Poelker, D.J. Oxidation of amines with sulfonyl peroxides. 4. The Stieglitz rearrangement of tritylamines, benzhydrylamines, and benzylamines induced by p-nitrobenzenesulfonyl peroxide. J. Org. Chem., 1979, 44, 2364-2369.
[http://dx.doi.org/10.1021/jo01328a007]
[74]
Xu, K.; Yang, S.; Ding, Z.PhI. (OAc)2-mediated oxidative rearrangement of allylic amides: efficient synthesis of oxazoles and β-keto amides. Org. Chem. Front., 2020, 7, 69-72.
[http://dx.doi.org/10.1039/C9QO01298B]
[75]
Farid, U.; Malmedy, F.; Claveau, R.; Albers, L.; Wirth, T. Stereoselective rearrangements with chiral hypervalent iodine reagents. Angew. Chem. Int. Ed. Engl., 2013, 52(27), 7018-7022.
[http://dx.doi.org/10.1002/anie.201302358] [PMID: 23653165]
[76]
Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Enantioselective oxidative rearrangements with chiral hypervalent iodine reagents. Chemistry, 2016, 22(12), 4030-4035.
[http://dx.doi.org/10.1002/chem.201504844] [PMID: 26800241]
[77]
Malmedy, F.; Wirth, T. Stereoselective ketone rearrangements with hypervalent iodine reagents. Chemistry, 2016, 22(45), 16072-16077.
[http://dx.doi.org/10.1002/chem.201603022] [PMID: 27539556]
[78]
Qurban, J.; Elsherbini, M.; Wirth, T. Electron-deficient chiral lactic acid-based hypervalent iodine reagents. J. Org. Chem., 2017, 82(22), 11872-11876.
[http://dx.doi.org/10.1021/acs.joc.7b01571] [PMID: 28727455]
[79]
Zhang, D-Y.; Zhang, Y.; Wu, H.; Gong, L-Z. Organoiodine-catalyzed enantioselective tandem alkoxylation/oxidative rearrangement of allylic alcohols. Angew. Chem. Int. Ed. Engl., 2019, 58(22), 7450-7453.
[http://dx.doi.org/10.1002/anie.201903007] [PMID: 30942948]
[80]
Abazid, A.H.; Nachtsheim, B.J. A triazole-substituted aryl iodide with omnipotent reactivity in enantioselective oxidations. Angew. Chem. Int. Ed. Engl., 2020, 59(4), 1479-1484.
[http://dx.doi.org/10.1002/anie.201912023] [PMID: 31600009]
[81]
Zhang, X.; Huang, R.; Marrot, J.; Coeffard, V.; Xiong, Y. Hypervalent iodine-mediated synthesis of benzoxazoles and benzimidazoles via an oxidative rearrangement. Tetrahedron, 2015, 71(4), 700-708.
[http://dx.doi.org/10.1016/j.tet.2014.11.066]
[82]
Beaulieu, C.; Wang, Z.; Denis, D.; Greig, G.; Lamontagne, S.; O’Neill, G.; Slipetz, D.; Wang, J. Benzimidazoles as new potent and selective DP antagonists for the treatment of allergic rhinitis. Bioorg. Med. Chem. Lett., 2004, 14(12), 3195-3199.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.005] [PMID: 15149674]
[83]
Einav, S.; Sobol, H.D.; Gehrig, E.; Glenn, J.S. The hepatitis C virus (HCV) NS4B RNA binding inhibitor clemizole is highly synergistic with HCV protease inhibitors. J. Infect. Dis., 2010, 202(1), 65-74.
[http://dx.doi.org/10.1086/653080] [PMID: 20486856]
[84]
Oishi, R.; Segi, K.; Hamamoto, H.; Nakamuraa, A.; Maegawa, T.; Miki, Y. Hypervalent iodine-mediated Beckmann rearrangement of ketoximes. Synlett, 2018, 29, 1465-1468.
[http://dx.doi.org/10.1055/s-0037-1609686]
[85]
Silva, L.F., Jr Construction of cyclopentyl units by ring contraction reactions. Tetrahedron, 2002, 58, 9137-9161.
[http://dx.doi.org/10.1016/S0040-4020(02)00990-0]
[86]
Ferraz, H.M.C.; Aguilar, A.M.; Silva, L.F. Jr A diastereoselective total synthesis of the sesquiterpene (±)-mutisianthol. Tetrahedron, 2003, 59, 5817-5821.
[http://dx.doi.org/10.1016/S0040-4020(03)00974-8]
[87]
Silva, L.F., Jr Hypervalent iodine-mediated ring contraction reactions. Molecules, 2006, 11(6), 421-434.
[http://dx.doi.org/10.3390/11060421] [PMID: 17962775]
[88]
Silva, L.F., Jr; Siqueira, F.A.; Pedrozo, E.C.; Vieira, F.Y.M.; Doriguetto, A.C. Iodine(III)-promoted ring contraction of 1,2-dihydronaphthalenes: A diastereoselective total synthesis of (+/-)-indatraline. Org. Lett., 2007, 9(8), 1433-1436.
[http://dx.doi.org/10.1021/ol070027o] [PMID: 17371034]
[89]
Kameyama, M.; Siqueira, F.A.; Garcia-Mijares, M.; Silva, L.F., Jr; Silva, M.T.A. Indatraline: Synthesis and effect on the motor activity of Wistar rats. Molecules, 2011, 16(11), 9421-9438.
[http://dx.doi.org/10.3390/molecules16119421] [PMID: 22075572]
[90]
Ahamad, A.; Silva, L.F., Jr Synthesis of chromanes and 4H-chromenes: Exploring the oxidation of 2H-Chromenes and dihydro-1-benzoxepines by hypervalent iodine(III). Synthesis, 2012, 44, 3671-3677.
[http://dx.doi.org/10.1055/s-0032-1317497]
[91]
Ahmad, A.; Scarassati, P.; Jalalian, N.; Olofsson, B.; Silva, L.F. Jr Oxidative rearrangement of alkenes using in situ generated hypervalent iodine(III). Tetrahedron Lett., 2013, 54, 5818-5820.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.012]
[92]
Ahmad, A.; Silva, L.F. Jr Metal-free asymmetric synthesis of indanes through chiral hypervalent iodine(III)-mediated ring contraction. J. Org. Chem., 2016, 81(5), 2174-2181.
[http://dx.doi.org/10.1021/acs.joc.5b02803] [PMID: 26866897]
[93]
Sun, Y.; Huang, X.; Li, X.; Luo, F.; Zhang, L.; Chen, M.; Zheng, S.; Peng, B. Mild ring contractions of cyclobutanols to cyclopropyl ketones via hypervalent iodine oxidation. Adv. Synth. Catal., 2018, 360, 1082-1087.
[http://dx.doi.org/10.1002/adsc.201701237]
[94]
Silva, S.B.L.; Torre, A.D.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Silva, L.F., Jr Seven-membered rings through metal-free rearrangement mediated by hypervalent iodine. Molecules, 2015, 20(1), 1475-1494.
[http://dx.doi.org/10.3390/molecules20011475] [PMID: 25599151]
[95]
Huang, H.; Yang, Q.; Zhang, Q.; Wu, J.; Liu, Y.; Song, C.; Chang, J. A Hofmann rearrangement-ring expansion cascade for the synthesis of 1-pyrrolines: Application to the synthesis of 2,3-dihydro-1H-pyrrolo[2,1-α]isoquinolinium salts. Adv. Synth. Catal., 2016, 358, 1130-1135.
[http://dx.doi.org/10.1002/adsc.201501071]
[96]
Kelley, B.T.; Walters, J.C.; Wengryniuk, S.E. Access to diverse oxygen heterocycles via oxidative rearrangement of benzylic tertiary alcohols. Org. Lett., 2016, 18(8), 1896-1899.
[http://dx.doi.org/10.1021/acs.orglett.6b00672] [PMID: 27023314]
[97]
Illuminati, G.; Mandolini, L. Ring closure reactions of bifunctional chain molecules. Acc. Chem. Res., 1981, 14, 95-102.
[http://dx.doi.org/10.1021/ar00064a001]
[98]
Winnik, M.A. Cyclization and the conformation of hydrocarbon chains. Chem. Rev., 1981, 81, 491-524.
[http://dx.doi.org/10.1021/cr00045a004]
[99]
Walters, J.C.; Tierno, A.F.; Dubin, A.H.; Wengryniuk, S.E. (Poly)cationic λ3-iodane mediated oxidative ring expansion of secondary alcohols. Eur. J. Org. Chem., 2018, 1460-1464.
[http://dx.doi.org/10.1002/ejoc.201800118]
[100]
Murai, K.; Kobayashi, T.; Miyoshi, M.; Fujioka, H. Oxidative rearrangement of secondary amines using hypervalent iodine(III) reagent. Org. Lett., 2018, 20(8), 2333-2337.
[http://dx.doi.org/10.1021/acs.orglett.8b00675] [PMID: 29582653]
[101]
Beaulieu, M-A.; Guérard, K.C.; Maertens, G.; Sabot, C.; Canesi, S. Oxidative Prins-pinacol tandem process mediated by a hypervalent iodine reagent: Scope, limitations, and applications. J. Org. Chem., 2011, 76(22), 9460-9471.
[http://dx.doi.org/10.1021/jo2019027] [PMID: 21988536]
[102]
Guérard, K.C.; Guérinot, A.; Bouchard-Aubin, C.; Ménard, M-A.; Lepage, M.; Beaulieu, M.A.; Canesi, S. Oxidative 1,2- and 1,3-alkyl shift processes: developments and applications in synthesis. J. Org. Chem., 2012, 77(5), 2121-2133.
[http://dx.doi.org/10.1021/jo300169k] [PMID: 22332792]
[103]
Jacquemot, G.; Canesi, S. Oxidative ipso-rearrangement performed by a hypervalent iodine reagent and its application. J. Org. Chem., 2012, 77(17), 7588-7594.
[http://dx.doi.org/10.1021/jo301408j] [PMID: 22866905]
[104]
Desjardins, S.; Maertens, G.; Canesi, S. Asymmetric synthesis of the main core of kaurane family members triggered by an oxidative polycyclization-pinacol tandem process. Org. Lett., 2014, 16(18), 4928-4931.
[http://dx.doi.org/10.1021/ol5024486] [PMID: 25191786]
[105]
Deng, R.; Zhan, S.; Li, C.; Gu, Z. Hypervalent iodine-mediated carbon-carbon bond cleavage and dearomatization of 9H-fluoren-9-ols. Angew. Chem. Int. Ed. Engl., 2020, 59(8), 3093-3098.
[http://dx.doi.org/10.1002/anie.201913373] [PMID: 31823460]
[106]
Shang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Intramolecular metal-free oxidative aryl-aryl coupling: An unusual hypervalent-iodine-mediated rearrangement of 2-substituted N-phenyl-benzamides. Angew. Chem. Int. Ed. Engl., 2014, 53(24), 6216-6219.
[http://dx.doi.org/10.1002/anie.201402925] [PMID: 24764255]
[107]
Ganguly, A.K.; Wang, C.H.; Biswas, D.; Misiaszek, J.; Micula, A. Synthesis of novel heterocycles based on the structures of erythrina alkaloids. Tetrahedron Lett., 2006, 47, 5539-5542.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.177]
[108]
Kumar, S.; Pratap, R.; Kumar, A.; Kumar, B.; Tandon, V.K.; Ram, V.J. Synthesis of dibenzo[d,f]diazepinones and alkenylindolinones through ring transformation of 2H-pyran-2-one-3-carbonitriles by indolin-2-ones. Tetrahedron, 2013, 69, 4857-4865.
[http://dx.doi.org/10.1016/j.tet.2013.04.053]
[109]
Ulmer, A.; Stodulski, M.; Kohlhepp, S.V.; Patzelt, C.; Pöthig, A.; Bettray, W.; Gulder, T. Iodine(III)-catalyzed rearrangements of imides: A versatile route to α,α-dialkylated α-hydroxy carboxylamides. Chemistry, 2015, 21(4), 1444-1448.
[http://dx.doi.org/10.1002/chem.201405888] [PMID: 25470246]
[110]
Suárez-Rodríguez, T.; Suárez-Sobrino, A.L.; Ballesteros, A. Direct synthesis of α-iodoenones by IPy2BF4-promoted rearrangement of propargylic esters. J. Org. Chem., 2018, 83(20), 12575-12583.
[http://dx.doi.org/10.1021/acs.joc.8b01746]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy