Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Review Article (Mini-Review)

Research Trends in Plant-Derived Oligomers for Health Applications

Author(s): Merve Deniz Kose , John G. Hardy, Emer Sheridan, Feyruz Bozoğlan and Oguz Bayraktar*

Volume 2 , Issue 1 , 2021

Published on: 26 July, 2020

Page: [3 - 13] Pages: 11

DOI: 10.2174/2665978601999200727103858

Abstract

Objective: Epidemiological data illustrates that there is a strong relationship between dietary intake of natural bioactive compounds and their beneficial properties against various diseases, and this stimulates academic and industrial interest in using plant-derived compounds for health and making medicines. For this reason, recent health related studies in the literature have focused on a variety of many plant-derived bioactive compounds. Even though the bioactivities of such compounds have widely been investigated, there are few studies about oligomeric species and their activities.

Methods: In this review, extraction and isolation methods of the plant-derived oligomers and the use of such oligomers in health applications are summarised.

Results: In the literature, many studies state that oligomeric compounds have benefits to human health. To maximize these beneficial properties, various ways to use oligomeric compounds have been examined and summarised.

Conclusion: A better understanding of the specific activities of distinct components of plantderived oligomers is expected to open new avenues for drug discovery. This review gives an overview of oligomers with health beneficial properties and their possible applications in healthcare.

Keywords: Plant-derived oligomers, oligopeptides, oligosaccharides, probiotics, prebiotics, drugs delivery systems, health applications, functional foods.

Graphical Abstract
[1]
Hailu, G.; Boecker, A.; Henson, S.; Cranfield, J. Consumer valuation of functional foods and nutraceuticals in Canada. A conjoint study using probiotics. Appetite, 2009, 52(2), 257-265.
[http://dx.doi.org/10.1016/j.appet.2008.10.002] [PMID: 19007828]
[2]
Shahidi, F. Nutraceuticals and functional foods: Whole versus processed foods. Trends Food Sci. Technol., 2009, 20(9), 376-387.
[http://dx.doi.org/10.1016/j.tifs.2008.08.004]
[3]
Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr., 2005, 81(Suppl. 1), 317S-325S.
[http://dx.doi.org/10.1093/ajcn/81.1.317S] [PMID: 15640497]
[4]
Yahia, E.M.; De Jesus Ornelas-Paz, J.; Gonzalez-Aguilar, G.A. Nutritional and health-promoting properties of tropical and subtropical fruits. Postharvest Biology and Technology of Tropical and Subtropical Fruits; Elsevier Ltd., 2011, pp. 21-78.
[http://dx.doi.org/10.1533/9780857093622.21]
[5]
Tomé-Carneiro, J.; Larrosa, M.; González-Sarrías, A.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr. Pharm. Des., 2013, 19(34), 6064-6093.
[http://dx.doi.org/10.2174/13816128113199990407] [PMID: 23448440]
[6]
Kose, M.D.; Bayraktar, O. Encapsulated Plant- Derived Polyphenols as Potential Cancer Treatment Agents. Herbal Medicine: Back to the Future Cancer Therapy; Murad, F.; Rahman, A.; Bian, K.Eds.; Bentham Science; , 2019, pp. 91-122.
[http://dx.doi.org/10.2174/9789811411205119030005]
[7]
Jenkins, A.D.; Stepto, R.F.T.; Kratochvíl, P.; Suter, U.W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure Appl. Chem., 1996, 68(12), 2287-2311.
[http://dx.doi.org/10.1351/pac199668122287]
[8]
Ibrahim, O.O. Functional oligo-saccharides: Chemicals structure, Manufacturing, health benefits, applications and regulations. J Food Chem Nanotechnol, 2018, 4(4), 65-76.
[http://dx.doi.org/10.17756/jfcn.2018-060]
[9]
Courtois, J. Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology. Curr. Opin. Microbiol., 2009, 12(3), 261-273.
[http://dx.doi.org/10.1016/j.mib.2009.04.007] [PMID: 19467920]
[10]
Ouellette, R.J.; Rawn, J.D. Organic Chemistry, 2nd ed; Academic Press, 2018, pp. 889-928.
[11]
Kunz, C.; Rudloff, S. Health promoting aspects of milk oligosaccharides. Int. Dairy J., 2006, 16(11), 1341-1346.
[http://dx.doi.org/10.1016/j.idairyj.2006.06.020]
[12]
Dilworth, L.L.; Riley, C.K.; Stennett, D.K. Plant Constituents: Carbohydrates, oils, resins, balsams, and plant hormones.Pharmacognosy: Fundamentals, Applications and Strategy; Elsevier Inc., 2017, Vol. 1, pp. 61-80.
[13]
Qiang, X. YongLie C, QianBing W. Health benefit application of functional oligosaccharides. Carbohydr. Polym., 2009, 77(3), 435-441.
[http://dx.doi.org/10.1016/j.carbpol.2009.03.016]
[14]
Roberfroid, M.; Slavin, J. Nondigestible oligosaccharides. Crit. Rev. Food Sci. Nutr., 2000, 40(6), 461-480.
[http://dx.doi.org/10.1080/10408690091189239] [PMID: 11186236]
[15]
Yan, Y.; Ji, Y.; Su, N.; Mei, X.; Wang, Y.; Du, S.; Zhu, W.; Zhang, C.; Lu, Y.; Xing, X.H. Non-anticoagulant effects of low molecular weight heparins in inflammatory disorders: A review. Carbohydr. Polym., 2017, 160, 71-81.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.037]
[16]
Ohta, A. Prevention of osteoporosis by foods and dietary supplements. The effect of fructooligosaccharides (FOS) on the calcium absorption and bone. Clin. Calcium, 2006, 16(10), 1639-1645.
[PMID: 17012821]
[17]
Liao, S.F.; Nyachoti, M. Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr., 2017, 3, 331-343.
[18]
Aly, S.E.; Sabry, B.A.; Shaheen, M.S.; Hathout, A.S. Assessment of antimycotoxigenic and antioxidant activity of star anise (Illicium verum) in vitro. J. Saudi Soc. Agric. Sci., 2016, 15(1), 20-27.
[http://dx.doi.org/10.1016/j.jssas.2014.05.003]
[19]
Luchese, R.H.; Prudencio, E.R.; Guerra, A.F. Honey as a Functional Food, Honey Analysis; InTech, 2017.
[http://dx.doi.org/10.5772/67020]
[20]
Van Laere, K.M.J.; Wissing, E. Nutritional composition with health promoting action containing oligosaccharides. US 8,227,448 B2, 2012, Vol. 2.,
[21]
Guo, Z.; Zeng, S.; Zhang, Y.; Lu, X.; Tian, Y.; Zheng, B. The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch. Food Hydrocoll., 2015, 44, 285-291.
[http://dx.doi.org/10.1016/j.foodhyd.2014.09.014]
[22]
Guo, Z.; Zhao, B.; Li, H.; Miao, S.; Zheng, B. Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.). Innov. Food Sci. Emerg. Technol., 2019, 54, 51-63.
[http://dx.doi.org/10.1016/j.ifset.2019.03.009]
[23]
Liang, L.; Liu, G.; Yu, G.; Song, Y.; Li, Q. Simultaneous decoloration and purification of crude oligosaccharides from pumpkin (Cucurbita moschata Duch) by macroporous adsorbent resin. Food Chem., 2019, 277, 744-752.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.138] [PMID: 30502211]
[24]
Sanches Lopes, S.M.; Francisco, M.G.; Higashi, B.; de Almeida, R.T.R.; Krausová, G.; Pilau, E.J.; Gonçalves, J.E.; Gonçalves, R.A.C.; Oliveira, A.J.B. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydr. Polym., 2016, 152, 718-725.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.043] [PMID: 27516323]
[25]
Lu, X.; Zheng, Z.; Li, H.; Cao, R.; Zheng, Y.; Yu, H.; Xiao, J.; Miao, S.; Zheng, B. Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. Ind. Crops Prod., 2017, 107, 546-557.
[http://dx.doi.org/10.1016/j.indcrop.2017.05.060]
[26]
Khuituan, P. K-da, S.; Bannob, K.; Hayeeawaema, F.; Peerakietkhajorn, S.; Tipbunjong, C.; Wichienchot, S.; Charoenphandhu, N. Prebiotic oligosaccharides from dragon fruits alter gut motility in mice. Biomed. Pharmacother., 2019, 114108821
[http://dx.doi.org/10.1016/j.biopha.2019.108821] [PMID: 30951951]
[27]
Desai, N.M.; Martha, G.S.; Harohally, N.V.; Murthy, P.S. Non-digestible oligosaccharides of green coffee spent and their prebiotic efficiency. LWT, 2020, 118108784
[http://dx.doi.org/10.1016/j.lwt.2019.108784]
[28]
Marseglia, A.; Sforza, S.; Faccini, A.; Bencivenni, M.; Palla, G.; Caligiani, A. Extraction, identification and semi-quantification of oligopeptides in cocoa beans. Food Res. Int., 2014, 63, 382-389.
[http://dx.doi.org/10.1016/j.foodres.2014.03.046]
[29]
D’Souza, R.N.; Grimbs, A.; Grimbs, S.; Behrends, B.; Corno, M.; Ullrich, M.S.; Kuhnert, N. Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans. Food Res. Int., 2018, 109, 506-516.
[http://dx.doi.org/10.1016/j.foodres.2018.04.068] [PMID: 29803477]
[30]
Ren, Y.; Liang, K.; Jin, Y.; Zhang, M.; Chen, Y.; Wu, H.; Lai, F. Identification and characterization of two novel α-glucosidase inhibitory oligopeptides from hemp (Cannabis sativa L.) seed protein. J. Funct. Foods, 2016, 26, 439-450.
[http://dx.doi.org/10.1016/j.jff.2016.07.024]
[31]
Rojas, M.J.; Siqueira, P.F.; Miranda, L.C.; Tardioli, P.W.; Giordano, R.L.C. Sequential proteolysis and cellulolytic hydrolysis of soybean hulls for oligopeptides and ethanol production. Ind. Crops Prod., 2014, 61, 202-210.
[http://dx.doi.org/10.1016/j.indcrop.2014.07.002]
[32]
Cheng, D.; Shao, Y.; Hartman, R.; Roder, E.; Zhao, K. Oligopeptides from Aster tataricus. Phytochemistry, 1994, 36(4), 945-948.
[http://dx.doi.org/10.1016/S0031-9422(00)90468-0] [PMID: 7765211]
[33]
Jiang, L.; Hua, D.; Wang, Z.; Xu, S. Aqueous enzymatic extraction of peanut oil and protein hydrolysates. Food Bioprod. Process., 2010, 88(2-3), 233-238.
[http://dx.doi.org/10.1016/j.fbp.2009.08.002]
[34]
Prabal, K.G.; Digvir, S.J.; Yogesh, C.A. Enzymatic Hydrolysis of Oilseeds for Enhanced Oil Extraction: Current Status. In: 2007 Minneapolis, Minnesota, June 17-20, 2007.St. Joseph, MI, 2007..
[35]
Soto-Sierra, L.; Stoykova, P.; Nikolov, Z.L. Extraction and fractionation of microalgae-based protein products. Algal Res., 2018, 36, 175-192.
[36]
Jia, Q.; Liu, X.; Wu, X.; Wang, R.; Hu, X.; Li, Y.; Huang, C. Hypoglycemic activity of a polyphenolic oligomer-rich extract of Cinnamomum parthenoxylon bark in normal and streptozotocin-induced diabetic rats. Phytomedicine, 2009, 16(8), 744-750.
[http://dx.doi.org/10.1016/j.phymed.2008.12.012] [PMID: 19464860]
[37]
Sugiyama, H.; Akazome, Y.; Shoji, T.; Yamaguchi, A.; Yasue, M.; Kanda, T.; Ohtake, Y. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J. Agric. Food Chem., 2007, 55(11), 4604-4609.
[http://dx.doi.org/10.1021/jf070569k] [PMID: 17458979]
[38]
Yanagida, A.; Kanda, T.; Shoji, T. OhnishiKameyama, M.; Nagata, T. Fractionation of apple procyanidins by size-exclusion chromatography. J. Chromatogr. A, 1999, 855(1), 181-190.
[http://dx.doi.org/10.1016/S0021-9673(99)00684-6] [PMID: 10514983]
[39]
Strandås, C.; Kamal-Eldin, A.; Andersson, R.; Åman, P. Composition and properties of flaxseed phenolic oligomers. Food Chem., 2008, 110(1), 106-112.
[http://dx.doi.org/10.1016/j.foodchem.2008.01.064] [PMID: 26050172]
[40]
Lu, Y.; Foo, L.Y.; Wong, H. Sagecoumarin, a novel caffeic acid trimer from Salvia officinalis. Phytochemistry, 1999, 52(6), 1149-1152.
[http://dx.doi.org/10.1016/S0031-9422(99)00368-4]
[41]
Lu, Y.; Yeap Foo, L. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem., 2001, 75(2), 197-202.
[http://dx.doi.org/10.1016/S0308-8146(01)00198-4]
[42]
Bors, W.; Michel, C.; Stettmaier, K.; Lu, Y.; Foo, L.Y. Antioxidant mechanisms of polyphenolic caffeic acid oligomers, constituents of Salvia officinalis. Biol. Res., 2004, 37(2), 301-311.
[http://dx.doi.org/10.4067/S0716-97602004000200017] [PMID: 15455660]
[43]
González-Sarrías, A.; Gromek, S.; Niesen, D.; Seeram, N.P.; Henry, G.E. Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest. J. Agric. Food Chem., 2011, 59(16), 8632-8638.
[http://dx.doi.org/10.1021/jf201561e] [PMID: 21761862]
[44]
Ito, T.; Hoshino, R.; Iinuma, M. Absolute configuration of resveratrol oligomers isolated from hopea utilis. Helv. Chim. Acta, 2015, 98(1), 32-46.
[http://dx.doi.org/10.1002/hlca.201400146]
[45]
Shankar, G.M.; Bloodgood, B.L.; Townsend, M.; Walsh, D.M.; Selkoe, D.J.; Sabatini, B.L. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci., 2007, 27(11), 2866-2875.
[http://dx.doi.org/10.1523/JNEUROSCI.4970-06.2007] [PMID: 17360908]
[46]
Phan, H.T.; Gresch, U.; Conrad, U. In vitro-formulated oligomers of strep-tagged avian influenza haemagglutinin produced in plants cause neutralizing immune responses. Front. Bioeng. Biotechnol., 2018, 6(AUG), 115.
[http://dx.doi.org/10.3389/fbioe.2018.00115] [PMID: 30177967]
[47]
Ji, Y.; Qiao, H.; He, J.; Li, W.; Chen, R.; Wang, J.; Wu, L.; Hu, R.; Duan, J.; Chen, Z. Functional oligopeptide as a novel strategy for drug delivery. J. Drug Target., 2017, 25(7), 597-607.
[http://dx.doi.org/10.1080/1061186X.2017.1309044] [PMID: 28338354]
[48]
Bansode, R.R.; Randolph, P.; Ahmedna, M.; Hurley, S.; Hanner, T.; Baxter, S.A.S.; Johnston, T.A.; Su, M.; Holmes, B.M.; Yu, J.; Williams, L.L. Bioavailability of polyphenols from peanut skin extract associated with plasma lipid lowering function. Food Chem., 2014, 148, 24-29.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.129] [PMID: 24262521]
[49]
Yang, C.; Hu, C.; Zhang, H.; Chen, W.; Deng, Q.; Tang, H.; Huang, F. Optimation for preparation of oligosaccharides from flaxseed gum and evaluation of antioxidant and antitumor activities in vitro. Int. J. Biol. Macromol., 2020, 153, 1107-1116.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.241] [PMID: 31756466]
[50]
Özdemir, F.; Apaydın, E.; Önder, N.İ.; Şen, M.; Ayrım, A.; Öğünç, Y.; İncesu, Z. Apoptotic effects of ε-viniferin in combination with cis-platin in C6 cells. Cytotechnology, 2018, 70(3), 1061-1073.
[http://dx.doi.org/10.1007/s10616-018-0197-5] [PMID: 29476302]
[51]
Pai, R.V.; Vavia, P.R. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition. Int. J. Pharm., 2020, 577119095
[http://dx.doi.org/10.1016/j.ijpharm.2020.119095] [PMID: 32004680]
[52]
Chi, L.; Khan, I.; Lin, Z.; Zhang, J.; Lee, M.Y.S.; Leong, W.; Hsiao, W.L.W.; Zheng, Y. Fructo-oligosaccharides from Morinda officinalis remodeled gut microbiota and alleviated depression features in a stress rat model. Phytomedicine, 2020, 67153157
[http://dx.doi.org/10.1016/j.phymed.2019.153157] [PMID: 31896054]
[53]
Gong, L.; Wang, H.; Wang, T.; Liu, Y.; Wang, J.; Sun, B. Feruloylated oligosaccharides modulate the gut microbiota in vitro via the combined actions of oligosaccharides and ferulic acid. J. Funct. Foods, 2019, 60103453
[http://dx.doi.org/10.1016/j.jff.2019.103453]
[54]
Li, E.; Yang, H.; Zou, Y.; Wang, H.; Hu, T.; Li, Q.; Liao, S. In-vitro digestion by simulated gastrointestinal juices of Lactobacillus rhamnosus cultured with mulberry oligosaccharides and subsequent fermentation with human fecal inocula. LWT, 2019, 101, 61-68.
[http://dx.doi.org/10.1016/j.lwt.2018.11.029]
[55]
Souza, C.A.; Li, S.; Lin, A.Z.; Boutrot, F.; Grossmann, G.; Zipfel, C.; Somerville, S.C. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol., 2017, 173(4), 2383-2398.
[http://dx.doi.org/10.1104/pp.16.01680] [PMID: 28242654]
[56]
Segun, P.A.; Ogbole, O.O.; Ismail, F.M.D.; Nahar, L.; Evans, A.R.; Ajaiyeoba, E.O.; Sarker, S.D. Resveratrol derivatives from Commiphora africana (A. Rich.) Endl. display cytotoxicity and selectivity against several human cancer cell lines. Phytother. Res., 2019, 33(1), 159-166.
[http://dx.doi.org/10.1002/ptr.6209] [PMID: 30346066]
[57]
Bose, S.K.; Howlader, P.; Jia, X.; Wang, W.; Yin, H. Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via Abscisic acid signaling in strawberry. Food Chem., 2019, 283, 665-674.
[http://dx.doi.org/10.1016/j.foodchem.2019.01.060] [PMID: 30722925]
[58]
Chen, X.; Zhang, Y.; Tang, C.; Tian, C.; Sun, Q.; Su, Z.; Xue, L.; Yin, Y.; Ju, C.; Zhang, C. Co-delivery of paclitaxel and anti-survivin siRNA via redox-sensitive oligopeptide liposomes for the synergistic treatment of breast cancer and metastasis. Int. J. Pharm., 2017, 529(1-2), 102-115.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.071] [PMID: 28642204]
[59]
Noor, N.M.; Sheikh, K.; Somavarapu, S.; Taylor, K.M.G. Preparation and characterization of dutasteride-loaded nanostructured lipid carriers coated with stearic acid-chitosan oligomer for topical delivery. Eur. J. Pharm. Biopharm., 2017, 117, 372-384.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.012] [PMID: 28412472]
[60]
Ohara, K.; Kusano, K.; Kitao, S.; Yanai, T.; Takata, R.; Kanauchi, O. ε-Viniferin, a resveratrol dimer, prevents diet-induced obesity in mice. Biochem. Biophys. Res. Commun., 2015, 468(4), 877-882.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.047] [PMID: 26596701]
[61]
Ose, R.; Hirano, K.; Maeno, S.; Nakagawa, J.; Salminen, S.; Tochio, T.; Endo, A. The ability of human intestinal anaerobes to metabolize different oligosaccharides: Novel means for microbiota modulation? Anaerobe, 2018, 51, 110-119.
[http://dx.doi.org/10.1016/j.anaerobe.2018.04.018] [PMID: 29734011]
[62]
Zheng, Z-Q.; Geng, Z-H.; Liu, J-X.; Guo, S-T. Compressed food with added functional oligopeptides improves performance during military endurance training. Asia Pac. J. Clin. Nutr., 2017, 26(6), 1066-1075.
[PMID: 28917232]
[63]
Buckley, M.L.; Ramji, D.P. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis.Biochimica et Biophysica Acta - Molecular Basis of Disease; Elsevier, 2015, pp. 1498-1510.
[http://dx.doi.org/10.1016/j.bbadis.2015.04.011]
[64]
Li, X.; Chen, Y.; Li, S.; Chen, M.; Xiao, J.; Xie, B.; Sun, Z. Oligomer Procyanidins from Lotus Seedpod Regulate Lipid Homeostasis Partially by Modifying Fat Emulsification and Digestion. J. Agric. Food Chem., 2019, 67(16), 4524-4534.
[http://dx.doi.org/10.1021/acs.jafc.9b01469] [PMID: 30945544]
[65]
Wang, X.; Tsang, Y.F.; Li, Y.; Ma, X.; Cui, S.; Zhang, T.A.; Hu, J.; Gao, M.T. Inhibitory effects of phenolic compounds of rice straw formed by saccharification during ethanol fermentation by Pichia stipitis. Bioresour. Technol., 2017, 244(Pt 1), 1059-1067.
[http://dx.doi.org/10.1016/j.biortech.2017.08.096] [PMID: 28851161]
[66]
Shi, J.; Wang, Y.; Wei, H.; Hu, J.; Gao, M.T. Structure analysis of condensed tannin from rice straw and its inhibitory effect on Staphylococcus aureus. Ind. Crops Prod., 2020, 145112130
[http://dx.doi.org/10.1016/j.indcrop.2020.112130]
[67]
Xiao, J.; Li, S.; Sui, Y.; Li, X.; Wu, Q.; Zhang, R.; Zhang, M.; Xie, B.; Sun, Z. In vitro antioxidant activities of proanthocyanidins extracted from the lotus seedpod and ameliorative effects on learning and memory impairment in scopolamine-induced amnesia mice. Food Sci. Biotechnol., 2015, 24(4), 1487-1494.
[http://dx.doi.org/10.1007/s10068-015-0192-y]
[68]
Chen, Y.; Zhang, R.; Xie, B.; Sun, Z.; McClements, D.J. Lotus seedpod proanthocyanidin-whey protein complexes: Impact on physical and chemical stability of β-carotene-nanoemulsions. Food Res. Int., 2020, 127108738
[http://dx.doi.org/10.1016/j.foodres.2019.108738] [PMID: 31882082]
[69]
Kawahara, S.I.; Ishihara, C.; Matsumoto, K.; Senga, S.; Kawaguchi, K.; Yamamoto, A.; Suwannachot, J.; Hamauzu, Y.; Makabe, H.; Fujii, H. Identification and characterization of oligomeric proanthocyanidins with significant anti-cancer activity in adzuki beans (Vigna angularis). Heliyon, 2019, 5(10)e02610
[http://dx.doi.org/10.1016/j.heliyon.2019.e02610] [PMID: 31687492]
[70]
Castro, M.C.; Villagarcía, H.; Nazar, A.; Arbeláez, L.G.; Massa, M.L.; Del Zotto, H.; Ríos, J.L.; Schinella, G.R.; Francini, F. Cacao extract enriched in polyphenols prevents endocrine-metabolic disturbances in a rat model of prediabetes triggered by a sucrose rich diet. J. Ethnopharmacol., 2020, 247112263
[http://dx.doi.org/10.1016/j.jep.2019.112263] [PMID: 31580944]
[71]
Bala, A.E.A.; Kollmann, A.; Ducrot, P-H.; Majira, A.; Kerhoas, L.; Leroux, P.; Delorme, R.; Einhorn, J. Cise-viniferin: A New Antifungal Resveratrol Dehydrodimer from Cyphostemma crotalarioides Roots. J. Phytopathol., 2000, 148(1), 29-32..
[http://dx.doi.org/10.1046/j.1439-0434.2000.00071.x]

© 2022 Bentham Science Publishers | Privacy Policy