Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Current Trends and Future Approaches in Small-Molecule Therapeutics for COVID-19

Author(s): Mark Laws, Yasmin M. Surani, Md. Mahbub Hasan, Yiyuan Chen, Peiqin Jin, Taha Al-Adhami, Madiha Chowdhury, Aqeel Imran, Ioannis Psaltis, Shirin Jamshidi, Kazi S. Nahar and Khondaker Miraz Rahman*

Volume 28, Issue 19, 2021

Published on: 21 July, 2020

Page: [3803 - 3824] Pages: 22

DOI: 10.2174/0929867327666200721161840

Price: $65

Abstract

The novel coronavirus (SARS-CoV-2) pandemic has created a global public health emergency. The pandemic is causing substantial morbidity, mortality and significant economic loss. Currently, no approved treatments for COVID-19 are available, and it is likely to takes at least 12-18 months to develop a new vaccine. Therefore, there is an urgent need to find new therapeutics that can be progressed to clinical development as soon as possible. Repurposing regulatory agency-approved drugs and experimental drugs with known safety profiles can provide important repositories of compounds that can be fast-tracked to clinical development. Globally, over 500 clinical trials involving repurposed drugs have been registered, and over 150 have been initiated, including some backed by the World Health Organisation (WHO). This review is intended as a guide to research into small-molecule therapies to treat COVID-19; it discusses the SARS-CoV-2 infection cycle and identifies promising viral therapeutic targets, reports on a number of promising pre-approved small-molecule drugs with reference to over 150 clinical trials worldwide, and offers a perspective on the future of the field.

Keywords: COVID-19, SARS-CoV-2, coronavirus, drug discovery, small-molecule therapeutics, clinical trials.

[1]
Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In: StatPearls; StatPearls Publishing, 2021.
[PMID: 32150360]
[2]
Worldometer. COVID-19 coronavirus pandemic, 2020. Available at: https://www.worldometers.info/coronavirus/ (Accessed: April 22, 2020).
[3]
Weiss, S.R.; Leibowitz, J.L. Coronavirus pathogenesis. Adv. Virus Res., 2011, 81, 85-164.
[http://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2] [PMID: 22094080]
[4]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[5]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
Tang, B.; Bragazzi, N.L.; Li, Q.; Tang, S.; Xiao, Y.; Wu, J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect. Dis. Model., 2020, 5, 248-255.
[http://dx.doi.org/10.1016/j.idm.2020.02.001] [PMID: 32099934]
[7]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[8]
Kim, Y.; Jedrzejczak, R.; Maltseva, N.I.; Endres, M.; Godzik, A.; Michalska, K.; Joachimiak, A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci., 2020, 29(7), 1596-1605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[9]
Simmons, G.; Zmora, P.; Gierer, S.; Heurich, A.; Pöhlmann, S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res., 2013, 100(3), 605-614.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.028] [PMID: 24121034]
[10]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[11]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[12]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chem. Bio. Chem., 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[13]
Pyrc, K.; Bosch, B.J.; Berkhout, B.; Jebbink, M.F.; Dijkman, R.; Rottier, P.; van der Hoek, L. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob. Agents Chemother., 2006, 50(6), 2000-2008.
[http://dx.doi.org/10.1128/AAC.01598-05] [PMID: 16723558]
[14]
Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res., 2020, 176, 104742.
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[15]
Lim, Y.X.; Ng, Y.L.; Tam, J.P.; Liu, D.X. Human coronaviruses: a review of virus-host interactions. Diseases, 2016, 4(3), E26.
[http://dx.doi.org/10.3390/diseases4030026] [PMID: 28933406]
[16]
Ziebuhr, J.; Snijder, E.J.; Gorbalenya, A.E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol., 2000, 81(Pt 4), 853-879.
[http://dx.doi.org/10.1099/0022-1317-81-4-853] [PMID: 10725411]
[17]
Gorbalenya, A.E.; Donchenko, A.P.; Blinov, V.M.; Koonin, E.V. Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett., 1989, 243(2), 103-114.
[http://dx.doi.org/10.1016/0014-5793(89)80109-7] [PMID: 2645167]
[18]
Brockway, S.M.; Clay, C.T.; Lu, X.T.; Denison, M.R. Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J. Virol., 2003, 77(19), 10515-10527.
[http://dx.doi.org/10.1128/JVI.77.19.10515-10527.2003] [PMID: 12970436]
[19]
Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ., 2020, 27(5), 1451-1454.
[http://dx.doi.org/10.1038/s41418-020-0530-3] [PMID: 32205856]
[20]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[21]
Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; Wang, Q.; Zhou, H.; Yan, J.; Qi, J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4), 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[22]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[23]
Tanner, J.A.; Zheng, B.J.; Zhou, J.; Watt, R.M.; Jiang, J.Q.; Wong, K.L.; Lin, Y.P.; Lu, L.Y.; He, M.L.; Kung, H.F.; Kesel, A.J.; Huang, J.D. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem. Biol., 2005, 12(3), 303-311.
[http://dx.doi.org/10.1016/j.chembiol.2005.01.006] [PMID: 15797214]
[24]
Beck, B.R.; Shin, B.; Choi, Y.; Park, S.; Kang, K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J., 2020, 18, 784-790.
[http://dx.doi.org/10.1016/j.csbj.2020.03.025] [PMID: 32280433]
[25]
Littler, D.R.; Gully, B.S.; Colson, R.N.; Rossjohn, J. Crystal structure of the SARS-CoV-2 non-structural protein 9, Nsp9. iScience, 2020, 23(7), 101258.
[http://dx.doi.org/10.1016/j.isci.2020.101258] [PMID: 32592996]
[26]
Laborda, P.; Wang, S.Y.; Voglmeir, J. Influenza neuraminidase inhibitors: synthetic approaches, derivatives and biological activity. Molecules, 2016, 21(11), E1513.
[http://dx.doi.org/10.3390/molecules21111513] [PMID: 27845731]
[27]
Liao, Y.; Tam, J.P.; Liu, D.X. Viroporin activity of SARS-CoV E protein. Adv. Exp. Med. Biol., 2006, 581, 199-202.
[http://dx.doi.org/10.1007/978-0-387-33012-9_34] [PMID: 17037530]
[28]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[29]
Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; Wang, T.; Guo, W.; Chen, J.; Ding, C.; Zhang, X.; Huang, J.; Han, M.; Li, S.; Luo, X.; Zhao, J.; Ning, Q. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ, 2020, 368, m1091.
[http://dx.doi.org/10.1136/bmj.m1091] [PMID: 32217556]
[30]
Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal., 2020, 10(2), 102-108.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[31]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[32]
Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223), 473-475.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[33]
Zhao, J.P.; Hu, Y.; Du, R.H.; Chen, Z.S.; Jin, Y.; Zhou, M.; Zhang, J.; Qu, J.M.; Cao, B. Expert consensus on the use of corticosteroid in patients with 2019-nCoV pneumonia. Zhonghua Jie He He Hu Xi Za Zhi, 2020, 43(3), 183-184.
[http://dx.doi.org/10.3760/cma.j.issn.1001-0939.2020.03.008] [PMID: 32164084]
[34]
Zhang, J.; Zhou, L.; Yang, Y.; Peng, W.; Wang, W.; Chen, X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir. Med., 2020, 8(3), e11-e12.
[http://dx.doi.org/10.1016/S2213-2600(20)30071-0] [PMID: 32061335]
[35]
Khamitov, R.A.; Loginova, S.Ia.; Shchukina, V.N.; Borisevich, S.V.; Maksimov, V.A.; Shuster, A.M. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr. Virusol., 2008, 53(4), 9-13.
[PMID: 18756809]
[36]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[37]
Teissier, E.; Zandomeneghi, G.; Loquet, A.; Lavillette, D.; Lavergne, J.P.; Montserret, R.; Cosset, F.L.; Böckmann, A.; Meier, B.H.; Penin, F.; Pécheur, E.I. Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol. PLoS One, 2011, 6(1), e15874.
[http://dx.doi.org/10.1371/journal.pone.0015874] [PMID: 21283579]
[38]
Touret, F.; Gilles, M.; Barral, K.; Nougairède, A.; Decroly, E.; de Lamballerie, X.; Coutard, B. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci. Rep., 2020, 10(1), 13093.
[http://dx.doi.org/10.1038/s41598-020-70143-6] [PMID: 32753646]
[39]
Boriskin, Y.S.; Pécheur, E.I.; Polyak, S.J. Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection. Virol. J., 2006, 3(1), 56.
[http://dx.doi.org/10.1186/1743-422X-3-56] [PMID: 16854226]
[40]
Brancato, V.; Peduto, A.; Wharton, S.; Martin, S.; More, V.; Di Mola, A.; Massa, A.; Perfetto, B.; Donnarumma, G.; Schiraldi, C.; Tufano, M.A.; de Rosa, M.; Filosa, R.; Hay, A. Design of inhibitors of influenza virus membrane fusion: synthesis, structure-activity relationship and in vitro antiviral activity of a novel indole series. Antiviral Res., 2013, 99(2), 125-135.
[http://dx.doi.org/10.1016/j.antiviral.2013.05.005] [PMID: 23707194]
[41]
Shi, L.; Xiong, H.; He, J.; Deng, H.; Li, Q.; Zhong, Q.; Hou, W.; Cheng, L.; Xiao, H.; Yang, Z. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch. Virol., 2007, 152(8), 1447-1455.
[http://dx.doi.org/10.1007/s00705-007-0974-5] [PMID: 17497238]
[42]
Lian, N.; Xie, H.; Lin, S.; Huang, J.; Zhao, J.; Lin, Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin. Microbiol. Infect., 2020, 26(7), 917-921.
[http://dx.doi.org/10.1016/j.cmi.2020.04.026] [PMID: 32344167]
[43]
Akerström, S.; Gunalan, V.; Keng, C.T.; Tan, Y.J.; Mirazimi, A. Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected. Virology, 2009, 395(1), 1-9.
[http://dx.doi.org/10.1016/j.virol.2009.09.007] [PMID: 19800091]
[44]
The National Institute for Occupational Safety and Health (NIOSH). Nitric oxide: immediately dangerous to life or health concentrations (IDLH), 1994. Available at: https://www.cdc.gov/niosh/idlh/10102439.html (Accessed: May 19, 2020).
[45]
Zhang, P.; Zhu, L.; Cai, J.; Lei, F.; Qin, J.; Xie, J.; Zhao, Y.; Huang, X.; Lin, L.; Xia, M.; Chen, M.; Cheng, X.; Zhang, X.; Guo, D.; Peng, Y.; Ji, Y-X.; Chen, J.; She, Z.-G.; Wang, Y.; Xu, Q.; Tan, R.; Wang, H.; Lin, J.; Luo, P.; Fu, S.; Cai, H.; Ye, P.; Xiao, B.; Mao, W.; Liu, L.; Yan, Y.; Liu, M.; Chen, M.; Zhang, X.-J.; Wang, X.; Touyz, R.M.; Xia, J.; Zhang, B.-H.; Huang, X.; Yuan, Y.; Rohit, L.; Liu, P.P.; Li, H. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ. Res., 2020, 126(12), 1671-1681.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317134] [PMID: 32302265]
[46]
Rico-Mesa, J.S.; White, A.; Anderson, A.S. Outcomes in patients with COVID-19 infection taking ACEI/ARB. Curr. Cardiol. Rep., 2020, 22(5), 31.
[http://dx.doi.org/10.1007/s11886-020-01291-4] [PMID: 32291526]
[47]
Kimura, M.; Watanabe, H.; Abo, T. Selective activation of extrathymic T cells in the liver by glycyrrhizin. Biotherapy, 1992, 5(3), 167-176.
[http://dx.doi.org/10.1007/BF02171049] [PMID: 1419465]
[48]
Chen, H.; Du, Q. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints, 2020., 2020010358.
[http://dx.doi.org/10.20944/preprints202001.0358.v3]
[49]
Takahashi, S.; Yoshiya, T.; Yoshizawa-Kumagaye, K.; Sugiyama, T. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomed. Res., 2015, 36(3), 219-224.
[http://dx.doi.org/10.2220/biomedres.36.219] [PMID: 26106051]
[50]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[51]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[52]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6(1), 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[53]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[54]
Frisk-Holmberg, M.; Bergqvist, Y.; Englund, U. Chloroquine intoxication. Br. J. Clin. Pharmacol., 1983, 15(4), 502-503.
[http://dx.doi.org/10.1111/j.1365-2125.1983.tb01540.x] [PMID: 6849790]
[55]
Al-Bari, M.A. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother., 2015, 70(6), 1608-1621.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
[56]
Al-Bari, M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect., 2017, 5(1), e00293.
[http://dx.doi.org/10.1002/prp2.293] [PMID: 28596841]
[57]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[58]
Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect. Dis., 2003, 3(11), 722-727.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[59]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[60]
Fantini, J.; Di Scala, C.; Chahinian, H.; Yahi, N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int. J. Antimicrob. Agents, 2020, 55(5), 105960.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105960] [PMID: 32251731]
[61]
Membrillo, F.J.; Ramírez-Olivencia, G.; Estébanez, M.; de Dios, B.; Herrero, M.D.; Mata, T.; Borobia, A.M.; Gutiérrez, C.; Simón, M.; Ochoa, A.; Martínez, Y.; Aguirre, A.; Alcántara, F.D.A.; Fernández-González, P.; López, E.; Valle, P.; Campos, S.; Navarro, M.; Ballester, L.E. Early hydroxychloroquine is associated with an increase of survival in COVID-19 patients: an observational study; Preprints, 2020, p. 2020050057.
[http://dx.doi.org/10.20944/preprints202005.0057.v1]
[62]
Chacko, J.; Brar, G.; Premkumar, R. Hydroxychloroquine in COVID-19: a systematic review and meta-analysis. medRxiv, 2020., 2020.2005.2014.20101774.
[http://dx.doi.org/10.1101/2020.05.14.20101774]
[63]
Gibo, J.; Ito, T.; Kawabe, K.; Hisano, T.; Inoue, M.; Fujimori, N.; Oono, T.; Arita, Y.; Nawata, H. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. Lab. Invest., 2005, 85(1), 75-89.
[http://dx.doi.org/10.1038/labinvest.3700203] [PMID: 15531908]
[64]
Hosoya, M.; Shigeta, S.; Ishii, T.; Suzuki, H.; De Clercq, E. Comparative inhibitory effects of various nucleoside and nonnucleoside analogues on replication of influenza virus types A and B in vitro and in ovo. J. Infect. Dis., 1993, 168(3), 641-646.
[http://dx.doi.org/10.1093/infdis/168.3.641] [PMID: 8354905]
[65]
Kawase, M.; Shirato, K.; van der Hoek, L.; Taguchi, F.; Matsuyama, S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol., 2012, 86(12), 6537-6545.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[66]
Zhou, Y.; Vedantham, P.; Lu, K.; Agudelo, J.; Carrion, R. Jr.; Nunneley, J.W.; Barnard, D.; Pöhlmann, S.; McKerrow, J.H.; Renslo, A.R.; Simmons, G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res., 2015, 116, 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[67]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[68]
Hanada, K.; Tamai, M.; Yamagishi, M.; Ohmura, S.; Sawada, J.; Tanaka, I. Isolation and characterization of E-64, a new thiol protease inhibitor. Agric. Biol. Chem., 1978, 42(3), 523-528.
[http://dx.doi.org/10.1080/00021369.1978.10863014]
[69]
Goldhill, D.H.; Te Velthuis, A.J.W.; Fletcher, R.A.; Langat, P.; Zambon, M.; Lackenby, A.; Barclay, W.S. The mechanism of resistance to favipiravir in influenza. Proc. Natl. Acad. Sci. USA, 2018, 115(45), 11613-11618.
[http://dx.doi.org/10.1073/pnas.1811345115] [PMID: 30352857]
[70]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[71]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing), 2020, 6(10), 1192-1198.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[72]
Totura, A.L.; Bavari, S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin. Drug Discov., 2019, 14(4), 397-412.
[http://dx.doi.org/10.1080/17460441.2019.1581171] [PMID: 30849247]
[73]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[74]
Morgenstern, B.; Michaelis, M.; Baer, P.C.; Doerr, H.W.; Cinatl, J. Jr. Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem. Biophys. Res. Commun., 2005, 326(4), 905-908.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.128] [PMID: 15607755]
[75]
Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K.S.; Van Tongeren, S.A.; Garza, N.L.; Donnelly, G.; Shurtleff, A.C.; Retterer, C.J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B.P.; Grimes, E.; Welch, L.S.; Gomba, L.; Wilhelmsen, C.L.; Nichols, D.K.; Nuss, J.E.; Nagle, E.R.; Kugelman, J.R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M.O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K.M.; Trancheva, I.; Feng, J.Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M.R.; Flint, M.; McMullan, L.K.; Chen, S.S.; Fearns, R.; Swaminathan, S.; Mayers, D.L.; Spiropoulou, C.F.; Lee, W.A.; Nichol, S.T.; Cihlar, T.; Bavari, S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531(7594), 381-385.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[76]
Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-e18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[77]
Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; Bannister, R.; Park, Y.; Babusis, D.; Clarke, M.O.; Mackman, R.L.; Spahn, J.E.; Palmiotti, C.A.; Siegel, D.; Ray, A.S.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med., 2017, 9(396), eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[78]
NIH. NIH Clinical trial shows remdesivir accelerates recovery from advanced COVID-19., Available at: https://www.niaid.nih.gov/news-events/nih-clinical-trial-shows-remdesivir-accelerates-recovery-advanced-covid-19 (Accessed: May 19, 2020).
[79]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[80]
FDA. Coronavirus (COVID-19) Update: FDA issues emergency use authorization for potential COVID-19 treatment, 2020. Available at: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-issues-emergency-use-authorization-potential-covid-19-treatment (Accessed: May 20, 2020).
[81]
Yamamoto, N.; Matsuyama, S.; Hoshino, T.; Yamamoto, N. Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. bioRxiv, 2020., 2020.2004.2006.026476.
[http://dx.doi.org/10.1101/2020.04.06.02647]
[82]
Infante, A. AbbVie partnering with global authorities to determine efficacy of HIV drug in treating COVID-19, 2020. Available at: https://news.abbvie.com/news/press-releases/abbvie-partnering-with-global-authorities-to-determine-efficacy-hiv-drug-in-treating-covid-19.htm (Accessed: April 11, 2020).
[83]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[84]
Ay, M.; Charli, A.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Boston, 2016, pp. 447-452.
[http://dx.doi.org/10.1016/B978-0-12-802147-7.00032-2]
[85]
Huang, F.; Li, Y.; Leung, E.L.; Liu, X.; Liu, K.; Wang, Q.; Lan, Y.; Li, X.; Yu, H.; Cui, L.; Luo, H.; Luo, L. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol. Res., 2020, 158, 104929.
[http://dx.doi.org/10.1016/j.phrs.2020.104929] [PMID: 32442720]
[86]
Zhang, W.; Zhou, H.; Liu, Z.; Chen, X.; He, Y. Handbook of Pharmacogenomics and Stratified Medicine; Padmanabhan, S., Ed.; Academic Press: San Diego, 2014, pp. 999-1013.
[http://dx.doi.org/10.1016/B978-0-12-386882-4.00044-X]
[87]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, T.T.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[88]
Nguyen, T.T.; Woo, H.J.; Kang, H.K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[89]
Chen, F.; Chan, K.H.; Jiang, Y.; Kao, R.Y.; Lu, H.T.; Fan, K.W.; Cheng, V.C.; Tsui, W.H.; Hung, I.F.; Lee, T.S.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol., 2004, 31(1), 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[90]
Juillet, G. In Low-cost dexamethasone reduces death by up to one third in hospitalised patients with severe respiratory complications of COVID-19; Oxford University, 2020.
[91]
Wan, S.; Yi, Q.; Fan, S.; Lv, J.; Zhang, X.; Guo, L.; Lang, C.; Xiao, Q.; Xiao, K.; Yi, Z.; Qiang, M.; Xiang, J.; Zhang, B.; Chen, Y. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv, 2020., 2020.2002.2010.20021832.
[http://dx.doi.org/10.1101/2020.02.10.20021832]
[92]
Nidorf, S.M.; Thompson, P.L. Why colchicine should be considered for secondary prevention of atherosclerosis: an overview. Clin. Ther., 2019, 41(1), 41-48.
[http://dx.doi.org/10.1016/j.clinthera.2018.11.016] [PMID: 30591286]
[93]
Kontzias, A.; Kotlyar, A.; Laurence, A.; Changelian, P.; O’Shea, J.J. Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr. Opin. Pharmacol., 2012, 12(4), 464-470.
[http://dx.doi.org/10.1016/j.coph.2012.06.008] [PMID: 22819198]
[94]
Stebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis., 2020, 20(4), 400-402.
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
[95]
Favalli, E.G.; Biggioggero, M.; Maioli, G.; Caporali, R. Baricitinib for COVID-19: a suitable treatment? Lancet Infect. Dis., 2020, 20(9), 1012-1013.
[http://dx.doi.org/10.1016/s1473-3099(20)30262-0] [PMID: 32251638]
[96]
Richardson, P.J.; Corbellino, M.; Stebbing, J. Baricitinib for COVID-19: a suitable treatment? - authors’ reply. Lancet Infect. Dis., 2020, 20(9), 1013-1014.
[http://dx.doi.org/10.1016/S1473-3099(20)30270-X] [PMID: 32251639]
[97]
Vlahakos, D.; Arkadopoulos, N.; Kostopanagiotou, G.; Siasiakou, S.; Kaklamanis, L.; Degiannis, D.; Demonakou, M.; Smyrniotis, V. Deferoxamine attenuates lipid peroxidation, blocks interleukin-6 production, ameliorates sepsis inflammatory response syndrome, and confers renoprotection after acute hepatic ischemia in pigs. Artif. Organs, 2012, 36(4), 400-408.
[http://dx.doi.org/10.1111/j.1525-1594.2011.01385.x] [PMID: 22187937]
[98]
Cheng, Y.; Wang, H.; Mao, M.; Liang, C.; Zhang, Y.; Yang, D.; Wei, Z.; Gao, S.; Hu, B.; Wang, L.; Cai, Q. Escin increases the survival rate of LPS-induced septic mice through inhibition of HMGB1 release from macrophages. Cell. Physiol. Biochem., 2015, 36(4), 1577-1586.
[http://dx.doi.org/10.1159/000430320] [PMID: 26159678]
[99]
Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients, 2017, 9(11), E1211.
[http://dx.doi.org/10.3390/nu9111211] [PMID: 29099763]
[100]
Bakaev, V.V.; Duntau, A.P. Ascorbic acid in blood serum of patients with pulmonary tuberculosis and pneumonia. Int. J. Tuberc. Lung Dis., 2004, 8(2), 263-266.
[PMID: 15139458]
[101]
Mochalkin, N.I. Ascorbic acid in the complex therapy of acute pneumonia. Voen. Med. Zh., 1970, 9, 17-21.
[PMID: 5515787]
[102]
Atherton, J.G.; Kratzing, C.C.; Fisher, A. The effect of ascorbic acid on infection chick-embryo ciliated tracheal organ cultures by coronavirus. Arch. Virol., 1978, 56(3), 195-199.
[http://dx.doi.org/10.1007/BF01317848] [PMID: 205194]
[103]
Davelaar, F.G.; Bos, J. Ascorbic acid and infectious bronchitis infections in broilers. Avian Pathol., 1992, 21(4), 581-589.
[http://dx.doi.org/10.1080/03079459208418879] [PMID: 18670976]
[104]
McKibbin, W.; Fernando, R. The global macroeconomic impacts of COVID-19: seven scenarios. Asian Economic Papers, 2020, 20(2), 1-30.
[http://dx.doi.org/10.1162/asep_a_00796]
[105]
Young, L. World not prepared for the next big pandemic: report, 2019. Available at: https://globalnews.ca/news/5914803/world-not-prepared-pandemic/ (Accessed: April 24, 2020).
[106]
Walsh, B. 2020. The world is not ready for the next pandemic, 2017. Available at: https://time.com/magazine/us/4766607/may-15th-2017-vol-189-no-18-u-s/ (Accessed: April 24, 2020).
[107]
Sanger, D.E.; Lipton, E.; Sullivan, E.; Crowley, M. Before virus outbreak, a cascade of warnings went unheeded, 2020 Available at: https://www.nytimes.com/2020/03/19/us/politics/trump-coronavirus-outbreak.html (Accessed: April 24, 2020).
[108]
Gautret, P.; Lagier, J-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[109]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Sevestre, J.; Mailhe, M.; Doudier, B.; Aubry, C.; Amrane, S.; Seng, P.; Hocquart, M.; Eldin, C.; Finance, J.; Vieira, V.E.; Tissot-Dupont, H.T.; Honoré, S.; Stein, A.; Million, M.; Colson, P.; La Scola, B.; Veit, V.; Jacquier, A.; Deharo, J.C.; Drancourt, M.; Fournier, P.E.; Rolain, J.M.; Brouqui, P.; Raoult, D. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med. Infect. Dis., 2020, 34, 101663.
[http://dx.doi.org/10.1016/j.tmaid.2020.101663] [PMID: 32289548]
[110]
Marcus, A. Hydroxychloroquine-COVID-19 study did not meet publishing society’s expected standard, 2020. Available at: https://retractionwatch.com/2020/04/06/hydroxychlorine-covid-19-study-did-not-meet-publishing-societys-expected-standard/ (Accessed: April 21, 2020).
[111]
Feuerstein, A.; Herper, M. Early peek at data on Gilead coronavirus drug suggests patients are responding to treatment, 2020 Available at: https://www.statnews.com/2020/04/16/early-peek-at-data-on-gilead-coronavirus-drug-suggests-patients-are-responding-to-treatment/ (Accessed: April 21, 2020).
[112]
Lippi, G.; Mattiuzzi, C.; Bovo, C.; Plebani, M. Current laboratory diagnostics of coronavirus disease 2019 (COVID-19). Acta Biomed., 2020, 91(2), 137-145.
[http://dx.doi.org/10.23750/abm.v91i2.9548] [PMID: 32420937]
[113]
Wolters, F.; van de Bovenkamp, J.; van den Bosch, B.; van den Brink, S.; Broeders, M.; Chung, N.H.; Favié, B.; Goderski, G.; Kuijpers, J.; Overdevest, I.; Rahamat-Langedoen, J.; Wijsman, L.; Melchers, W.J.; Meijer, A. Multi-center evaluation of cepheid xpert® xpress SARS-CoV-2 point-of-care test during the SARS-CoV-2 pandemic. J. Clin. Virol., 2020, 128, 104426.
[http://dx.doi.org/10.1016/j.jcv.2020.104426] [PMID: 32417674]
[114]
van Kasteren, P.B.; van der Veer, B.; van den Brink, S.; Wijsman, L.; de Jonge, J.; van den Brandt, A.; Molenkamp, R.; Reusken, C.B.E.M.; Meijer, A. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol., 2020, 128, 104412.
[http://dx.doi.org/10.1016/j.jcv.2020.104412] [PMID: 32416600]
[115]
Krüttgen, A.; Cornelissen, C.G.; Dreher, M.; Hornef, M.; Imöhl, M.; Kleines, M. Comparison of four new commercial serologic assays for determination of SARS-CoV-2 IgG. J. Clin. Virol., 2020, 128, 104394.
[http://dx.doi.org/10.1016/j.jcv.2020.104394] [PMID: 32416599]
[116]
Nelson, P.P.; Rath, B.A.; Fragkou, P.C.; Antalis, E.; Tsiodras, S.; Skevaki, C. Current and future point-of-care tests for emerging and new respiratory viruses and future perspectives. Front. Cell. Infect. Microbiol., 2020, 10, 181.
[http://dx.doi.org/10.3389/fcimb.2020.00181] [PMID: 32411619]
[117]
LeBlanc, J.J.; Gubbay, J.B.; Li, Y.; Needle, R.; Arneson, S.R.; Marcino, D.; Charest, H.; Desnoyers, G.; Dust, K.; Fattouh, R.; Garceau, R.; German, G.; Hatchette, T.F.; Kozak, R.A.; Krajden, M.; Kuschak, T.; Lang, A.L.S.; Levett, P.; Mazzulli, T.; McDonald, R.; Mubareka, S.; Prystajecky, N.; Rutherford, C.; Smieja, M.; Yu, Y.; Zahariadis, G.; Zelyas, N.; Bastien, N. COVID-19 Pandemic Diagnostics Investigation Team of the Canadian Public Health Laboratory Network (CPHLN) Respiratory Virus Working Group. Real-time PCR-based SARS-CoV-2 detection in Canadian laboratories. J. Clin. Virol., 2020, 128, 104433.
[http://dx.doi.org/10.1016/j.jcv.2020.104433] [PMID: 32405254]
[118]
Smithgall, M.C.; Scherberkova, I.; Whittier, S.; Green, D.A. Comparison of cepheid xpert xpress and Abbott ID now to roche cobas for the rapid detection of SARS-CoV-2. J. Clin. Virol., 2020, 128, 104428.
[http://dx.doi.org/10.1016/j.jcv.2020.104428] [PMID: 32434706]
[119]
Merindol, N.; Pépin, G.; Marchand, C.; Rheault, M.; Peterson, C.; Poirier, A.; Houle, C.; Germain, H.; Danylo, A. SARS-CoV-2 detection by direct rRT-PCR without RNA extraction. J. Clin. Virol., 2020, 128, 104423.
[http://dx.doi.org/10.1016/j.jcv.2020.104423] [PMID: 32416598]
[120]
Xiang, X.; Qian, K.; Zhang, Z.; Lin, F.; Xie, Y.; Liu, Y.; Yang, Z. CRISPR-cas systems based molecular diagnostic tool for infectious diseases and emerging 2019 novel coronavirus (COVID-19) pneumonia. J. Drug Target., 2020, 28(7-8), 727-731.
[http://dx.doi.org/10.1080/1061186X.2020.1769637] [PMID: 32401064]
[121]
Morales-Narváez, E.; Dincer, C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens. Bioelectron., 2020, 163, 112274.
[http://dx.doi.org/10.1016/j.bios.2020.112274] [PMID: 32421627]
[123]
Cogan, J.F.; Shultz, G.P. Remdesivir affirms the American way 2020. Available at: https://www.wsj.com/articles/remdesivir-affirms-the-american-way-11588368750 (Accessed: May 19, 2020).
[124]
ICER. ICER presents alternative pricing models for remdesivir as a treatment for COVID-19 2020. Available at: https://icer-review.org/announcements/alternative_ pricing_ models_for_remdesivir/ (Accessed: May 19, 2020).
[125]
Hill, A.M.; Barber, M.J.; Gotham, D. Estimated costs of production and potential prices for the WHO essential medicines list. BMJ Glob. Health, 2018, 3(1), e000571.
[http://dx.doi.org/10.1136/bmjgh-2017-000571] [PMID: 29564159]
[126]
Hill, A.; Wang, J.; Levi, J.; Heath, K.; Fortunak, J. Minimum costs to manufacture new treatments for COVID-19. J. Virus Erad., 2020, 6(2), 61-69.
[http://dx.doi.org/10.1016/s2055-6640(20)30018-2] [PMID: 32405423]
[127]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure-based drug design, virtual screening and high-throughput screening rapidly identify antiviral leads targeting COVID-19. bioRxiv, 2020., 2020. 2002. 2026.964882.
[http://dx.doi.org/10.1038/s41586-020-2223-y]
[128]
Strain-Damerell, C.; Owen, D.; Lukacik, P.; Douangamath, A.; Fearon, D.; Powell, A.; Dias, A.; Resnick, E.; Gehrtz, P.; Reddi, R.; Wild, C.; Krojer, T.; Skyner, R.; Carbery, A.; Brandao-Neto, J.; Dunnett, L.; Williams, M.; Aragao, D.; Crawshaw, A.; Mazzorana, M.; McAuley, K.; Flaig, R.; Hall, D.; Stuart, D. Main protease structure and XChem fragment screen 2020. Available at: https://www.diamond. ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem.html (Accessed: April 21, 2020).
[129]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; O’Meara, M.J.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Huettenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Shen, W.; Shi, Y.; Zhang, Z.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Ramachandran, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Wankowicz, S.A.; Bohn, M.; Sharp, P.P.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Roesch, F.; Vallet, T.; Meyer, B.; White, K.M.; Miorin, L.; Rosenberg, O.S.; Verba, K.A.; Agard, D.; Ott, M.; Emerman, M.; Ruggero, D.; García-Sastre, A.; Jura, N.; von Zastrow, M.; Taunton, J.; Ashworth, A.; Schwartz, O.; Vignuzzi, M.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.; Fraser, J.S.; Gross, J.; Sali, A.; Kortemme, T.; Beltrao, P.; Shokat, K.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drugrepurposing. bioRxiv, 2022., 2020.2003.2022.002386.
[130]
Lee, A.; Robinson, M. Contribute your expertise to design inhibitors of the SARS-CoV-2 main protease. Available at: https://postera.ai/covid (Accessed: April 21, 2020).
[131]
Young, N.; Saperia, E. Crowdsourcing ideas to combat COVID-19. 2020. Available at: https://www.nesta.org.uk/blog/crowdsourcing-ideas-combat-covid-19/ (Accessed: April 21, 2020).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy