Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

SUV39H1-Mediated DNMT1 is Involved in the Epigenetic Regulation of Smad3 in Cervical Cancer

Author(s): Li Zhang, Sijuan Tian, Minyi Zhao, Ting Yang, Shimin Quan, Lihua Song* and Xiaofeng Yang*

Volume 21 , Issue 6 , 2021

Published on: 21 July, 2020

Page: [756 - 765] Pages: 10

DOI: 10.2174/1871520620666200721110016

Price: $65

Abstract

Background: SMAD3 is a pivotal intracellular mediator for participating in the activation of multiple immune signal pathways.

Objective: The epigenetic regulation mechanism of the positive immune factor SMAD3 in cervical cancer remains unknown. Therefore, the epigenetic regulation on SMAD3 is investigated in this study.

Methods: The methylation status of SMAD3 was detected by Methylation-Specific PCR (MS-PCR) and Quantitative Methylation-Specific PCR (MS-qPCR) in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT1-SMAD3 regulation were elucidated using cervical cancer cell lines containing siRNA or/and over-expression systems. The regulation of DNMT1 by SUV39H1 was confirmed using Chromatin Immunoprecipitation-qPCR (ChIP-qPCR). The statistical methods used for comparing samples between groups were paired t-tests and one-way ANOVAs.

Results: H3K9me3 protein regulated by SUV39H1 directly interacts with the DNMT1 promoter region to regulate its expression in cervical cancer cells, resulting in the reduced expression of the downstream target gene DNMT1. In addition, DNMT1 mediates the epigenetic modulation of the SMAD3 gene by directly binding to its promoter region. The depletion of DNMT1 effectively restores the expression of SMAD3 in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1-DNMT1 was found to correlate with SMAD3 expression in accordance with the expression at the cellular level. Notably, the promoter region of SMAD3 was hypermethylated in cervical cancer tissues, and this hypermethylation inhibited the subsequent gene expression.

Conclusion: These results indicate that SUV39H1-DNMT1 is a crucial SMAD3 regulatory axis in cervical cancer. SUV39H1-DNMT1 axis may provide a potential therapeutic target for the treatment of cervical cancer.

Keywords: Uterine cervical neoplasms, decitabine, SUV39H1, H3K9me3, DNA methylation, SMAD3 protein.

Graphical Abstract
[1]
Small, W., Jr; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; Gaffney, D.K. Cervical cancer: A global health crisis. Cancer, 2017, 123(13), 2404-2412.
[http://dx.doi.org/10.1002/cncr.30667] [PMID: 28464289]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Sun, P.; Zhang, S.J.; Maksim, S.; Yao, Y.F.; Liu, H.M.; Du, J. Epigenetic modification in macrophages: A promising target for tumor and inflammation-associated disease therapy. Curr. Top. Med. Chem., 2019, 19(15), 1350-1362.
[http://dx.doi.org/10.2174/1568026619666190619143706] [PMID: 31215380]
[4]
Meldi, K.M.; Gaconnet, G.A.; Mayo, K.E. DNA methylation and histone modifications are associated with repression of the inhibin α promoter in the rat corpus luteum. Endocrinology, 2012, 153(10), 4905-4917.
[http://dx.doi.org/10.1210/en.2012-1292] [PMID: 22865368]
[5]
Du, J.; Johnson, L.M.; Jacobsen, S.E.; Patel, D.J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol., 2015, 16(9), 519-532.
[http://dx.doi.org/10.1038/nrm4043] [PMID: 26296162]
[6]
Ligresti, G.; Caporarello, N.; Meridew, J.A.; Jones, D.L.; Tan, Q.; Choi, K.M.; Haak, A.J.; Aravamudhan, A.; Roden, A.C.; Prakash, Y.S.; Lomberk, G.; Urrutia, R.A.; Tschumperlin, D.J. CBX5/G9a/H3K9me-mediated gene repression is essential to fibroblast activation during lung fibrosis. JCI Insight, 2019, 5(12)e127111
[7]
Wakabayashi, Y.; Tamiya, T.; Takada, I.; Fukaya, T.; Sugiyama, Y.; Inoue, N.; Kimura, A.; Morita, R.; Kashiwagi, I.; Takimoto, T.; Nomura, M.; Yoshimura, A. Histone 3 lysine 9 (H3K9) methyltransferase recruitment to the Interleukin-2 (IL-2) promoter is a mechanism of suppression of IL-2 transcription by the transforming growth factor-β-Smad pathway. J. Biol. Chem., 2011, 286(41), 35456-35465.
[http://dx.doi.org/10.1074/jbc.M111.236794] [PMID: 21862595]
[8]
Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet., 2010, 11(3), 204-220.
[http://dx.doi.org/10.1038/nrg2719] [PMID: 20142834]
[9]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[10]
Spurgeon, M.E.; den Boon, J.A.; Horswill, M.; Barthakur, S.; Forouzan, O.; Rader, J.S.; Beebe, D.J.; Roopra, A.; Ahlquist, P.; Lambert, P.F. Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen. Proc. Natl. Acad. Sci. USA, 2017, 114(43), E9076-E9085.
[http://dx.doi.org/10.1073/pnas.1712018114] [PMID: 29073104]
[11]
Wu, T.; Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett., 2017, 387, 61-68.
[http://dx.doi.org/10.1016/j.canlet.2016.01.043] [PMID: 26845449]
[12]
Tang, P.M.; Zhou, S.; Meng, X.M.; Wang, Q.M.; Li, C.J.; Lian, G.Y.; Huang, X.R.; Tang, Y.J.; Guan, X.Y.; Yan, B.P.; To, K.F.; Lan, H.Y. SMAD3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nat. Commun., 2017, 8, 14677.
[http://dx.doi.org/10.1038/ncomms14677] [PMID: 28262747]
[13]
Zhao, M.; Li, Y.; Wei, X.; Zhang, Q.; Jia, H.; Quan, S.; Cao, D.; Wang, L.; Yang, T.; Zhao, J.; Pei, M.; Tian, S.; Yu, Y.; Guo, Y.; Yang, X. Negative immune factors might predominate local tumor immune status and promote carcinogenesis in cervical carcinoma. Virol. J., 2017, 14(1), 5.
[http://dx.doi.org/10.1186/s12985-016-0670-8] [PMID: 28086903]
[14]
Ehnert, S.; Linnemann, C.; Aspera-Werz, R.H.; Bykova, D.; Biermann, S.; Fecht, L.; De Zwart, P.M.; Nussler, A.K.; Stuby, F. Immune cell induced migration of osteoprogenitor cells is mediated by TGF-β dependent upregulation of NOX4 and activation of focal adhesion kinase. Int. J. Mol. Sci., 2018, 19(8)E2239
[http://dx.doi.org/10.3390/ijms19082239]] [PMID: 30065198]
[15]
Schlenner, S.M.; Weigmann, B.; Ruan, Q.; Chen, Y.; von Boehmer, H. SMAD3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut. J. Exp. Med., 2012, 209(9), 1529-1535.
[http://dx.doi.org/10.1084/jem.20112646] [PMID: 22908322]
[16]
Wei, X.; Zhang, S.; Cao, D.; Zhao, M.; Zhang, Q.; Zhao, J.; Yang, T.; Pei, M.; Wang, L.; Li, Y.; Yang, X. Aberrant hypermethylation of SALL3 with HPV involvement contributes to the carcinogenesis of cervical cancer. PLoS One, 2015, 10(12)e0145700
[http://dx.doi.org/10.1371/journal.pone.0145700]] [PMID: 26697877]
[17]
Huang, W.Y.; Hsu, S.D.; Huang, H.Y.; Sun, Y.M.; Chou, C.H.; Weng, S.L.; Huang, H.D.; Meth, H.C.; Meth, H.C. A database of DNA methylation and gene expression in human cancer. Nucleic Acids Res., 2015, 43(Database issue), D856-D861.
[http://dx.doi.org/10.1093/nar/gku1151] [PMID: 25398901]
[18]
Becker, J.S.; Nicetto, D.; Zaret, K.S. H3K9me3-dependent heterochromatin: Barrier to cell fate changes. Trends Genet., 2016, 32(1), 29-41.
[http://dx.doi.org/10.1016/j.tig.2015.11.001] [PMID: 26675384]
[19]
Shirai, A.; Kawaguchi, T.; Shimojo, H.; Muramatsu, D.; Ishida-Yonetani, M.; Nishimura, Y.; Kimura, H.; Nakayama, J.I.; Shinkai, Y. Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. eLife, 2017, 6e25317
[20]
Vidal, E.; Sayols, S.; Moran, S.; Guillaumet-Adkins, A.; Schroeder, M.P.; Royo, R.; Orozco, M.; Gut, M.; Gut, I.; Lopez-Bigas, N.; Heyn, H.; Esteller, M. A DNA methylation map of human cancer at single base-pair resolution. Oncogene, 2017, 36(40), 5648-5657.
[http://dx.doi.org/10.1038/onc.2017.176] [PMID: 28581523]
[21]
Schuyler, R.P.; Merkel, A.; Raineri, E.; Altucci, L.; Vellenga, E.; Martens, J.H.A.; Pourfarzad, F.; Kuijpers, T.W.; Burden, F.; Farrow, S.; Downes, K.; Ouwehand, W.H.; Clarke, L.; Datta, A.; Lowy, E.; Flicek, P.; Frontini, M.; Stunnenberg, H.G.; Martín-Subero, J.I.; Gut, I.; Heath, S. Distinct trends of DNA methylation patterning in the innate and adaptive immune systems. Cell Rep., 2016, 17(8), 2101-2111.
[http://dx.doi.org/10.1016/j.celrep.2016.10.054] [PMID: 27851971]
[22]
Janson, P.C.; Marits, P.; Thörn, M.; Ohlsson, R.; Winqvist, O. CpG methylation of the IFNG gene as a mechanism to induce immunosuppression [correction of immunosupression] in tumor-infiltrating lymphocytes. J. Immunol., 2008, 181(4), 2878-2886.
[http://dx.doi.org/10.4049/jimmunol.181.4.2878] [PMID: 18684979]
[23]
Vizoso, M.; Puig, M.; Carmona, F.J.; Maqueda, M.; Velásquez, A.; Gómez, A.; Labernadie, A.; Lugo, R.; Gabasa, M.; Rigat-Brugarolas, L.G.; Trepat, X.; Ramírez, J.; Moran, S.; Vidal, E.; Reguart, N.; Perera, A.; Esteller, M.; Alcaraz, J. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts. Carcinogenesis, 2015, 36(12), 1453-1463.
[http://dx.doi.org/10.1093/carcin/bgv146] [PMID: 26449251]
[24]
Mersakova, S.; Nachajova, M.; Szepe, P.; Kasajova, P.S.; Halasova, E. DNA methylation and detection of cervical cancer and precancerous lesions using molecular methods. Tumour Biol., 2016, 37(1), 23-27.
[http://dx.doi.org/10.1007/s13277-015-4197-1] [PMID: 26459314]
[25]
Xu, T.; Ni, M.M.; Huang, C.; Meng, X.M.; He, Y.H.; Zhang, L.; Li, J. NLRC5 mediates IL-6 and IL-1β secretion in LX-2 cells and modulated by the NF-κB/SMAD3 pathway. Inflammation, 2015, 38(5), 1794-1804.
[http://dx.doi.org/10.1007/s10753-015-0157-6] [PMID: 25820389]
[26]
Wolfraim, L.A.; Fernandez, T.M.; Mamura, M.; Fuller, W.L.; Kumar, R.; Cole, D.E.; Byfield, S.; Felici, A.; Flanders, K.C.; Walz, T.M.; Roberts, A.B.; Aplan, P.D.; Balis, F.M.; Letterio, J.J. Loss of SMAD3 in acute T-cell lymphoblastic leukemia. N. Engl. J. Med., 2004, 351(6), 552-559.
[http://dx.doi.org/10.1056/NEJMoa031197] [PMID: 15295048]
[27]
Kim, S.H.; Kim, K.H.; Ahn, S.; Hyeon, J.; Park, C.K. SMAD3 and SMAD3 phosphoisoforms are prognostic markers of gastric carcinoma. Dig. Dis. Sci., 2013, 58(4), 989-997.
[http://dx.doi.org/10.1007/s10620-012-2470-3] [PMID: 23179147]
[28]
Yang, Y.; Liu, R.; Qiu, R.; Zheng, Y.; Huang, W.; Hu, H.; Ji, Q.; He, H.; Shang, Y.; Gong, Y.; Wang, Y. CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing. Oncogene, 2015, 34(1), 104-118.
[http://dx.doi.org/10.1038/onc.2013.522] [PMID: 24292684]
[29]
Ando, M.; Saito, Y.; Xu, G.; Bui, N.Q.; Medetgul-Ernar, K.; Pu, M.; Fisch, K.; Ren, S.; Sakai, A.; Fukusumi, T.; Liu, C.; Haft, S.; Pang, J.; Mark, A.; Gaykalova, D.A.; Guo, T.; Favorov, A.V.; Yegnasubramanian, S.; Fertig, E.J.; Ha, P.; Tamayo, P.; Yamasoba, T.; Ideker, T.; Messer, K.; Califano, J.A. Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nat. Commun., 2019, 10(1), 2188.
[http://dx.doi.org/10.1038/s41467-019-09937-w] [PMID: 31097695]
[30]
Russo, V.; Bernabò, N.; Di Giacinto, O.; Martelli, A.; Mauro, A.; Berardinelli, P.; Curini, V.; Nardinocchi, D.; Mattioli, M.; Barboni, B. H3K9 trimethylation precedes DNA methylation during sheep oogenesis: HDAC1, SUV39H1, G9a, HP1, and Dnmts are involved in these epigenetic events. J. Histochem. Cytochem., 2013, 61(1), 75-89.,
[http://dx.doi.org/10.1369/0022155412463923] [PMID: 23019017]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy