Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anlotinib Inhibits Cell Proliferation, Migration and Invasion via Suppression of c-Met Pathway and Activation of ERK1/2 Pathway in H446 Cells

Author(s): Xiali Tang, Ying Zheng, Demin Jiao, Jun Chen, Xibang Liu, Shan Xiong* and Qingyong Chen*

Volume 21 , Issue 6 , 2021

Published on: 18 July, 2020

Page: [747 - 755] Pages: 9

DOI: 10.2174/1871520620666200718235748

Price: $65

Abstract

Background: Small Cell Lung Cancer (SCLC) represents the most aggressive pulmonary neoplasm and is often diagnosed at late stage with limited survival, despite combined chemotherapies. The purpose of this study was to investigate the effect of anlotinib on SCLC and the potential molecular mechanisms.

Methods: Cell viability was assessed by CCK-8 assay to determine the adequate concentration of anlotinib. Then, effects of anlotinib on cell apoptosis, cell cycle distribution, migration and invasion were analyzed by flow cytometry, PI staining, wound healing assay and transwell assay, respectively. The protein expression of c-met and ERK1/2 pathways in H446 cells were assessed by western blot analysis.

Results: In this study, we found that anlotinib significantly reduced the cell viability of H446 cells, induced G2/M cell cycle arrest and decreased invasion and migration of H446 cells. Futhermore, we also found that anlotinib could suppress c-met signal transduction and activate the ERK1/2 pathway in H446 cells. More importantly, c-met was involved in the effects of anlotinib on migration and invasion in H446 cells.

Conclusion: Taken together, our results demonstrated that anlotinib was a potential anticancer agent that inhibited cell proliferation, migration and invasion via suppression of the c-met pathway and activation of the ERK1/2 pathway in H446 cells.

Keywords: Anlotinib, small cell lung cancer, H446, c-met, ERK1/2, cell proliferation.

Graphical Abstract
[1]
Xu, S.; Lam, S.K.; Cheng, P.N.; Ho, J.C. Recombinant human arginase induces apoptosis through oxidative stress and cell cycle arrest in small cell lung cancer. Cancer Sci., 2018, 109(11), 3471-3482.
[http://dx.doi.org/10.1111/cas.13782] [PMID: 30155941]
[2]
Gong, Q.; Cao, X.; Cao, J.; Yang, X.; Zeng, W. Casticin suppresses the carcinogenesis of small cell lung cancer H446 cells through activation of AMPK/FoxO3a signaling. Oncol. Rep., 2018, 40(3), 1401-1410.
[http://dx.doi.org/10.3892/or.2018.6547] [PMID: 30015975]
[3]
Guo, W.; Shen, F.; Xiao, W.; Chen, J.; Pan, F. Wnt inhibitor XAV939 suppresses the viability of small cell lung cancer NCI-H446 cells and induces apoptosis. Oncol. Lett., 2017, 14(6), 6585-6591.
[http://dx.doi.org/10.3892/ol.2017.7100] [PMID: 29344117]
[4]
Lau, J.K.; Brown, K.C.; Dom, A.M.; Witte, T.R.; Thornhill, B.A.; Crabtree, C.M.; Perry, H.E.; Brown, J.M.; Ball, J.G.; Creel, R.G.; Damron, C.L.; Rollyson, W.D.; Stevenson, C.D.; Hardman, W.E.; Valentovic, M.A.; Carpenter, A.B.; Dasgupta, P. Capsaicin induces apoptosis in human small cell lung cancer via the TRPV6 receptor and the calpain pathway. Apoptosis, 2014, 19(8), 1190-1201.
[http://dx.doi.org/10.1007/s10495-014-1007-y] [PMID: 24878626]
[5]
Liu, Z.; Wang, J.; Meng, Z.; Wang, X.; Zhang, C.; Qin, T.; Chen, J.; Jiang, X.; Wang, L.; Lin, L.; Zhang, X.; Chen, P.; Huang, C.; Jiang, R.; Li, K. CD31-labeled circulating endothelial cells as predictor in anlotinib-treated non-small-cell lung cancer: Analysis on ALTER-0303 study. Cancer Med., 2018, 7(7), 3011-3021.
[http://dx.doi.org/10.1002/cam4.1584] [PMID: 29856135]
[6]
Lin, B.; Song, X.; Yang, D.; Bai, D.; Yao, Y.; Lu, N. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRβ and FGFR1. Gene, 2018, 654, 77-86.
[http://dx.doi.org/10.1016/j.gene.2018.02.026] [PMID: 29454091]
[7]
He, C.; Wu, T.; Hao, Y. Anlotinib induces hepatocellular carcinoma apoptosis and inhibits proliferation via Erk and Akt pathway. Biochem. Biophys. Res. Commun., 2018, 503(4), 3093-3099.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.098] [PMID: 30146257]
[8]
Si, X.; Zhang, L.; Wang, H.; Zhang, X.; Wang, M.; Han, B.; Li, K.; Wang, Q.; Shi, J.; Wang, Z.; Cheng, Y.; He, J.; Shi, Y.; Chen, W.; Wang, X.; Luo, Y.; Nan, K.; Jin, F.; Li, B.; Chen, Y.; Zhou, J.; Wang, D. Quality of life results from a randomized, double-blinded, placebo-controlled, multi-center phase III trial of anlotinib in patients with advanced non-small cell lung cancer. Lung Cancer, 2018, 122, 32-37.
[http://dx.doi.org/10.1016/j.lungcan.2018.05.013] [PMID: 30032842]
[9]
Cao, H.H.; Cheng, C.Y.; Su, T.; Fu, X.Q.; Guo, H.; Li, T.; Tse, A.K.; Kwan, H.Y.; Yu, H.; Yu, Z.L. Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Mol. Cancer, 2015, 14, 103.
[http://dx.doi.org/10.1186/s12943-015-0367-4] [PMID: 25971889]
[10]
Santhana Kumar, K.; Tripolitsioti, D.; Ma, M.; Grählert, J.; Egli, K.B.; Fiaschetti, G.; Shalaby, T.; Grotzer, M.A.; Baumgartner, M. The Ser/Thr kinase MAP4K4 drives c-Met-induced motility and invasiveness in a cell-based model of SHH medulloblastoma. Springerplus, 2015, 4, 19.
[http://dx.doi.org/10.1186/s40064-015-0784-2] [PMID: 25625039]
[11]
Hu, J.; Che, L.; Li, L.; Pilo, M.G.; Cigliano, A.; Ribback, S.; Li, X.; Latte, G.; Mela, M.; Evert, M.; Dombrowski, F.; Zheng, G.; Chen, X.; Calvisi, D.F. Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci. Rep., 2016, 6, 20484.
[http://dx.doi.org/10.1038/srep20484] [PMID: 26857837]
[12]
Sun, C.; Li, C.; Li, X.; Zhu, Y.; Su, Z.; Wang, X.; He, Q.; Zheng, G.; Feng, B. Scutellarin induces apoptosis and autophagy in NSCLC cells through ERK1/2 and AKT signaling pathways in vitro and in vivo. J. Cancer, 2018, 9(18), 3247-3256.
[http://dx.doi.org/10.7150/jca.25921] [PMID: 30271483]
[13]
Liang, L.; Hui, K.; Hu, C.; Wen, Y.; Yang, S.; Zhu, P.; Wang, L.; Xia, Y.; Qiao, Y.; Sun, W.; Fei, J.; Chen, T.; Zhao, F.; Yang, B.; Jiang, X. Autophagy inhibition potentiates the anti-angiogenic property of multikinase inhibitor anlotinib through JAK2/STAT3/VEGFA signaling in non-small cell lung cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 71.
[http://dx.doi.org/10.1186/s13046-019-1093-3] [PMID: 30755242]
[14]
Fan, B.; Shi, S.; Shen, X.; Yang, X.; Liu, N.; Wu, G.; Guo, X.; Huang, N. Effect of HMGN2 on proliferation and apoptosis of MCF-7 breast cancer cells. Oncol. Lett., 2019, 17(1), 1160-1166.
[PMID: 30655878]
[15]
Chen, Q.Y.; Jiao, D.M.; Wang, J.; Hu, H.; Tang, X.; Chen, J.; Mou, H.; Lu, W. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget, 2016, 7(17), 24510-24526.
[http://dx.doi.org/10.18632/oncotarget.8229] [PMID: 27014910]
[16]
Syed, Y.Y. Anlotinib: First global approval. Drugs, 2018, 78(10), 1057-1062.
[http://dx.doi.org/10.1007/s40265-018-0939-x] [PMID: 29943374]
[17]
Sadava, D.; Kane, S.E. Silibinin reverses drug resistance in human small-cell lung carcinoma cells. Cancer Lett., 2013, 339(1), 102-106.
[http://dx.doi.org/10.1016/j.canlet.2013.07.017] [PMID: 23879966]
[18]
Taniguchi, H.; Yamada, T.; Takeuchi, S.; Arai, S.; Fukuda, K.; Sakamoto, S.; Kawada, M.; Yamaguchi, H.; Mukae, H.; Yano, S. Impact of MET inhibition on small-cell lung cancer cells showing aberrant activation of the hepatocyte growth factor/MET pathway. Cancer Sci., 2017, 108(7), 1378-1385.
[http://dx.doi.org/10.1111/cas.13268] [PMID: 28474864]
[19]
Gelsomino, F.; Rossi, G.; Tiseo, M. MET and small-cell lung cancer. Cancers (Basel), 2014, 6(4), 2100-2115.
[http://dx.doi.org/10.3390/cancers6042100] [PMID: 25314153]
[20]
Taurin, S.; Yang, C.H.; Reyes, M.; Cho, S.; Coombs, D.M.; Jarboe, E.A.; Werner, T.L.; Peterson, C.M.; Janát-Amsbury, M.M. Endometrial cancers harboring mutated fibroblast growth factor receptor 2 protein are successfully treated with a new small tyrosine kinase inhibitor in an orthotopic mouse model. Int. J. Gynecol. Cancer, 2018, 28(1), 152-160.
[http://dx.doi.org/10.1097/IGC.0000000000001129] [PMID: 28953502]
[21]
Piao, X.Y.; Li, W.; Li, Z.; Zhang, N.; Fang, H.; Zahid, D.; Qu, Q. Forced FoxO1:S249V expression suppressed glioma cell proliferation through G2/M cell cycle arrests and increased apoptosis. Neurol. Res., 2019, 41(2), 189-198.
[http://dx.doi.org/10.1080/01616412.2018.1548724] [PMID: 30453847]
[22]
Li, Q.; Zhang, Y.; Jiang, Q. MFAP5 suppression inhibits migration/invasion, regulates cell cycle and induces apoptosis via promoting ROS production in cervical cancer. Biochem. Biophys. Res. Commun., 2018, 507(1-4), 51-58.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.146] [PMID: 30454902]
[23]
Zeng, J.; Zhang, H.; Tan, Y.; Sun, C.; Liang, Y.; Yu, J.; Zou, H. Aggregation of lipid rafts activates c-met and c-Src in non-small cell lung cancer cells. BMC Cancer, 2018, 18(1), 611.
[http://dx.doi.org/10.1186/s12885-018-4501-8] [PMID: 29848294]
[24]
Tang, X.L.; Yan, L.; Zhu, L.; Jiao, D.M.; Chen, J.; Chen, Q.Y. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway. J. Pharmacol. Sci., 2017, 135(1), 1-7.
[http://dx.doi.org/10.1016/j.jphs.2017.06.006] [PMID: 28939129]
[25]
Arriola, E.; Cañadas, I.; Arumí-Uría, M.; Dómine, M.; Lopez-Vilariño, J.A.; Arpí, O.; Salido, M.; Menéndez, S.; Grande, E.; Hirsch, F.R.; Serrano, S.; Bellosillo, B.; Rojo, F.; Rovira, A.; Albanell, J. MET phosphorylation predicts poor outcome in small cell lung carcinoma and its inhibition blocks HGF-induced effects in MET mutant cell lines. Br. J. Cancer, 2011, 105(6), 814-823.
[http://dx.doi.org/10.1038/bjc.2011.298] [PMID: 21847116]
[26]
Rolle, C.E.; Kanteti, R.; Surati, M.; Nandi, S.; Dhanasingh, I.; Yala, S.; Tretiakova, M.; Arif, Q.; Hembrough, T.; Brand, T.M.; Wheeler, D.L.; Husain, A.N.; Vokes, E.E.; Bharti, A.; Salgia, R. Combined MET inhibition and topoisomerase I inhibition block cell growth of small cell lung cancer. Mol. Cancer Ther., 2014, 13(3), 576-584.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0109] [PMID: 24327519]
[27]
Xu, M.; Cao, F.L.; Li, N.; Gao, X.; Su, X.; Jiang, X. Leptin induces epithelial-to-mesenchymal transition via activation of the ERK signaling pathway in lung cancer cells. Oncol. Lett., 2018, 16(4), 4782-4788.
[http://dx.doi.org/10.3892/ol.2018.9230] [PMID: 30250542]
[28]
Jiao, Y.N.; Wu, L.N.; Xue, D.; Liu, X.J.; Tian, Z.H.; Jiang, S.T.; Han, S.Y.; Li, P.P. Marsdenia tenacissima extract induces apoptosis and suppresses autophagy through ERK activation in lung cancer cells. Cancer Cell Int., 2018, 18, 149.
[http://dx.doi.org/10.1186/s12935-018-0646-4] [PMID: 30275772]
[29]
Xu, X.; Wang, G.; Ai, L.; Shi, J.; Zhang, J.; Chen, Y.X. Melatonin suppresses TLR9-triggered proinflammatory cytokine production in macrophages by inhibiting ERK1/2 and AKT activation. Sci. Rep., 2018, 8(1), 15579.
[http://dx.doi.org/10.1038/s41598-018-34011-8] [PMID: 30349079]
[30]
Zhang, L.; Zhang, W. Knockdown of NUDT21 inhibits proliferation and promotes apoptosis of human K562 leukemia cells through ERK pathway. Cancer Manag. Res., 2018, 10, 4311-4323.
[http://dx.doi.org/10.2147/CMAR.S173496] [PMID: 30349365]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy