Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Review Article

Snake Venom Proteins Isolated from Tunisian Vipers: Pharmacological and Therapeutic Overview

Author(s): Maram Morjen, Zaineb Abdelkafi-Koubaa, Jed Jebali, Erij Messadi, Najet Srairi-Abid, José Luis* and Naziha Marrakchi

Volume 1, Issue 1, 2021

Published on: 11 July, 2020

Page: [6 - 14] Pages: 9

DOI: 10.2174/2666121701999200711180926

Abstract

The venoms of Tunisian wildlife snakes are complex mixtures containing proteins/ peptides and non-protein molecules. Proteins and peptides are the most abundant compounds responsible for the biological effects of venoms. Snake venoms proteins have enzymatic or nonenzymatic activities, which are grouped into different families, including C-type lectin proteins, disintegrins (long, medium and short disintegrins), Kunitz-type serine protease inhibitors, natriuretic- like peptides, vascular endothelial growth factor-related proteins, L-amino acid oxidases, phospholipases A2 and serine proteinases. With technological advancements, the toxic effects of venoms were turned into potential benefits for clinical diagnosis, basic research and development of new research tools and drugs of potential clinical use. Our research team has shown that Macrovipera lebetina and Cerastes cerastes venom components of Tunisian wildlife snakes had great potential for the development of new drugs for the treatment of cancer, angiogenesis disorders or cardiovascular diseases. This review is an overview of snake venom proteins from Macrovipera lebetina and Cerastes cerastes and their biochemical, pharmacological and molecular characterization and their importance as protein resources with therapeutic potential.

Keywords: Cancer, angiogenesis, cardiovascular disease, disintegrin, phospholipase A2, C-type lectin protein, kunitz-type inhibitor, L-amino acid oxidase.

Graphical Abstract
[1]
Mohamed Abd El-Aziz T, Garcia Soares A, Stockand JD. Snake venoms in drug discovery: valuable therapeutic tools for life saving. Toxins (Basel) 2019; 11(10)E564
[http://dx.doi.org/10.3390/toxins11100564] [PMID: 31557973]
[2]
Ullah A, Ullah K, Ali H, Betzel C, Rehman S. The Sequence and a Three-Dimensional Structural Analysis Reveal Substrate Specificity among Snake Venom Phosphodiesterases Toxins 2019; 11(11): 625.
[3]
Fox JW. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon 2013; 62: 75-82.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.009] [PMID: 23010165]
[4]
King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 2011; 11(11): 1469-84.
[http://dx.doi.org/10.1517/14712598.2011.621940] [PMID: 21939428]
[5]
Marcinkiewicz C. Applications of snake venom components to modulate integrin activities in cell-matrix interactions. Int J Biochem Cell Biol 2013; 45(9): 1974-86.
[http://dx.doi.org/10.1016/j.biocel.2013.06.009] [PMID: 23811033]
[6]
Qiu Y, Choo YM, Yoon HJ, et al. Molecular cloning and fibrin(ogen)olytic activity of a bumblebee (Bombus hypocrita sapporoensis) venom serine protease. J Asia Pac Entomol 2012; 15(1): 79-82.
[http://dx.doi.org/10.1016/j.aspen.2011.09.002]
[7]
Bazaa A, Marrakchi N, El Ayeb M, Sanz L, Calvete JJ. Snake venomics: comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina. Proteomics 2005; 5(16): 4223-35.
[http://dx.doi.org/10.1002/pmic.200402024] [PMID: 16206329]
[8]
Drickamer K. C-type lectin-like domains. Curr Opin Struct Biol 1999; 9(5): 585-90.
[http://dx.doi.org/10.1016/S0959-440X(99)00009-3] [PMID: 10508765]
[9]
Jebali J, Bazaa A, Sarray S, et al. C-type lectin protein isoforms of Macrovipera lebetina: cDNA cloning and genetic diversity. Toxicon 2009; 53(2): 228-37.
[http://dx.doi.org/10.1016/j.toxicon.2008.11.006] [PMID: 19059426]
[10]
Sarray S, Berthet V, Calvete JJ, et al. Lebectin, a novel C-type lectin from Macrovipera lebetina venom, inhibits integrin-mediated adhesion, migration and invasion of human tumour cells. Lab Invest 2004; 84(5): 573-81.
[http://dx.doi.org/10.1038/labinvest.3700088] [PMID: 15048137]
[11]
Sarray S, Delamarre E, Marvaldi J, El Ayeb M, Marrakchi N, Luis J. Lebectin and lebecetin, two C-type lectins from snake venom, inhibit alpha5beta1 and alphaV-containing integrins. Matrix Biol 2007; 26(4): 306-13.
[http://dx.doi.org/10.1016/j.matbio.2007.01.001] [PMID: 17300927]
[12]
Sarray S, Siret C, Lehmann M, et al. Lebectin increases N-cadherin-mediated adhesion through PI3K/AKT pathway. Cancer Lett 2009; 285(2): 174-81.
[http://dx.doi.org/10.1016/j.canlet.2009.05.012] [PMID: 19501458]
[13]
Pilorget A, Conesa M, Sarray S, et al. Lebectin, a Macrovipera lebetina venom-derived C-type lectin, inhibits angiogenesis both in vitro and in vivo. J Cell Physiol 2007; 211(2): 307-15.
[http://dx.doi.org/10.1002/jcp.20935] [PMID: 17323383]
[14]
Jebali J, Fakhfekh E, Morgen M, et al. Lebecin, a new C-type lectin like protein from Macrovipera lebetina venom with anti-tumor activity against the breast cancer cell line MDA-MB231. Toxicon 2014; 86: 16-27.
[http://dx.doi.org/10.1016/j.toxicon.2014.04.010] [PMID: 24814013]
[15]
Sarray S, Srairi N, Hatmi M, et al. Lebecetin, a potent antiplatelet C-type lectin from Macrovipera lebetina venom. Biochim Biophys Acta 2003; 1651(1-2): 30-40.
[http://dx.doi.org/10.1016/S1570-9639(03)00232-2] [PMID: 14499586]
[16]
Montassar F, Darche M, Blaizot A, et al. Lebecetin, a C-type lectin, inhibits choroidal and retinal neovascularization. FASEB J 2017; 31(3): 1107-19.
[http://dx.doi.org/10.1096/fj.201600351R] [PMID: 27974593]
[17]
Olfa KZ, José L, Salma D, et al. Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis. Lab Invest 2005; 85(12): 1507-16.
[http://dx.doi.org/10.1038/labinvest.3700350] [PMID: 16200076]
[18]
Kallech-Ziri O, Luis J, Faljoun Z, et al. Structure function relationships of KTS disintegrins and design of antiangiogenic drugs. Lett Drug Des Discov 2010; 7(1): 36-40.
[http://dx.doi.org/10.2174/157018010789869325]
[19]
Calvete JJ, Fox JW, Agelan A, Niewiarowski S, Marcinkiewicz C. The presence of the WGD motif in CC8 heterodimeric disintegrin increases its inhibitory effect on alphaII(b)beta3, alpha(v)beta3, and alpha5beta1 integrins. Biochemistry 2002; 41(6): 2014-21.
[http://dx.doi.org/10.1021/bi015627o] [PMID: 11827548]
[20]
Ben-Mabrouk H, Zouari-Kessentini R, Montassar F, et al. CC5 and CC8, two homologous disintegrins from Cerastes cerastes venom, inhibit in vitro and ex vivo angiogenesis. Int J Biol Macromol 2016; 86: 670-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.008] [PMID: 26853827]
[21]
Schaff M, Gachet C, Mangin PH. Anti-platelets without a bleeding risk: novel targets and strategies Biol Aujourdhui 2015; 209(3): 211-28.
[http://dx.doi.org/10.1051/jbio/2015023] [PMID: 26820829]
[22]
Limam I, Bazaa A, Srairi-Abid N, et al. Leberagin-C, A disintegrin-like/cysteine-rich protein from Macrovipera lebetina transmediterranea venom, inhibits alphavbeta3 integrin-mediated cell adhesion. Matrix Biol 2010; 29(2): 117-26.
[http://dx.doi.org/10.1016/j.matbio.2009.09.009] [PMID: 19808093]
[23]
He Y-Y, Liu S-B, Lee W-H, Qian JQ, Zhang Y. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom. Peptides 2008; 29(10): 1692-9.
[http://dx.doi.org/10.1016/j.peptides.2008.05.025] [PMID: 18582511]
[24]
Meta A, Nakatake H, Imamura T, Nozaki C, Sugimura K. High-yield production and characterization of biologically active recombinant aprotinin expressed in Saccharomyces cerevisiae. Protein Expr Purif 2009; 66(1): 22-7.
[http://dx.doi.org/10.1016/j.pep.2009.02.005] [PMID: 19233283]
[25]
Yuan C-H, He Q-Y, Peng K, et al. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS One 2008; 3(10)e3414
[http://dx.doi.org/10.1371/journal.pone.0003414] [PMID: 18923708]
[26]
Chou W-M, Liu W-H, Chen K-C, Chang LS. Structure-function studies on inhibitory activity of Bungarus multicinctus protease inhibitor-like protein on matrix metalloprotease-2, and invasion and migration of human neuroblastoma SK-N-SH cells. Toxicon 2010; 55(2-3): 353-60.
[http://dx.doi.org/10.1016/j.toxicon.2009.08.012] [PMID: 19706303]
[27]
Morjen M, Kallech-Ziri O, Bazaa A, et al. PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells. Matrix Biol 2013; 32(1): 52-62.
[http://dx.doi.org/10.1016/j.matbio.2012.11.015] [PMID: 23262217]
[28]
Morjen M, Honoré S, Bazaa A, et al. PIVL, a snake venom Kunitz-type serine protease inhibitor, inhibits in vitro and in vivo angiogenesis. Microvasc Res 2014; 95: 149-56.
[http://dx.doi.org/10.1016/j.mvr.2014.08.006] [PMID: 25173589]
[29]
Santaguida PL, Don-Wauchope AC, Oremus M, et al. BNP and NT-proBNP as prognostic markers in persons with acute decompensated heart failure: a systematic review. Heart Fail Rev 2014; 19(4): 453-70.
[http://dx.doi.org/10.1007/s10741-014-9442-y] [PMID: 25062653]
[30]
Mitaka C, Kudo T, Haraguchi G, Tomita M. Cardiovascular and renal effects of carperitide and nesiritide in cardiovascular surgery patients: a systematic review and meta-analysis. Crit Care 2011; 15(5): R258.
[http://dx.doi.org/10.1186/cc10519] [PMID: 22032777]
[31]
Schweitz H, Vigne P, Moinier D, Frelin C, Lazdunski M. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem 1992; 267(20): 13928-32.
[PMID: 1352773]
[32]
Lee ML, Fung SY, Chung I, Pailoor J, Cheah SH, Tan NH. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model. Int J Med Sci 2014; 11(6): 593-601.
[http://dx.doi.org/10.7150/ijms.8096] [PMID: 24782648]
[33]
Barbouche R, Marrakchi N, Mansuelle P, et al. Novel anti-platelet aggregation polypeptides from Vipera lebetina venom: isolation and characterization. FEBS Lett 1996; 392(1): 6-10.
[http://dx.doi.org/10.1016/0014-5793(96)00774-0] [PMID: 8769304]
[34]
Vink S, Jin AH, Poth KJ, Head GA, Alewood PF. Natriuretic peptide drug leads from snake venom. Toxicon 2012; 59(4): 434-45.
[http://dx.doi.org/10.1016/j.toxicon.2010.12.001] [PMID: 21147145]
[35]
Tourki B, Matéo P, Morand J, et al. Lebetin 2, a snake venom-derived natriuretic peptide, attenuates acute myocardial ischemic injury through the modulation of mitochondrial permeability transition pore at the time of reperfusion. PLoS One 2016; 11(9)e0162632
[http://dx.doi.org/10.1371/journal.pone.0162632] [PMID: 27618302]
[36]
Tourki B, Dumesnil A, Belaidi E, et al. Lebetin 2, a snake venom-derived b-type natriuretic peptide, provides immediate and prolonged protection against myocardial ischemia-reperfusion injury via modulation of post-ischemic inflammatory response. Toxins (Basel) 2019; 11(9)E524
[http://dx.doi.org/10.3390/toxins11090524] [PMID: 31510060]
[37]
Serafino A, Pierimarchi P. Atrial natriuretic peptide: a magic bullet for cancer therapy targeting Wnt signaling and cellular pH regulators. Curr Med Chem 2014; 21(21): 2401-9.
[http://dx.doi.org/10.2174/0929867321666140205140152] [PMID: 24524761]
[38]
Vesely DL. Heart peptide hormones: adjunct and primary treatments of cancer. Anticancer Res 2016; 36(11): 5693-700.
[http://dx.doi.org/10.21873/anticanres.11152] [PMID: 27793890]
[39]
Vesely DL, Eichelbaum EJ, Sun Y, et al. Elimination of up to 80% of human pancreatic adenocarcinomas in athymic mice by cardiac hormones. In Vivo 2007; 21(3): 445-51.
[PMID: 17591353]
[40]
Eichelbaum EJ, Sun Y, Alli AA, Gower WR Jr, Vesely DL. Cardiac and kidney hormones cure up to 86% of human small-cell lung cancers in mice. Eur J Clin Invest 2008; 38(8): 562-70.
[http://dx.doi.org/10.1111/j.1365-2362.2008.01978.x] [PMID: 18717826]
[41]
Vesely BA, Song S, Sanchez-Ramos J, et al. Four peptide hormones decrease the number of human breast adenocarcinoma cells. Eur J Clin Invest 2005; 35(1): 60-9.
[http://dx.doi.org/10.1111/j.1365-2362.2005.01444.x] [PMID: 15638821]
[42]
Vesely BA, Eichelbaum EJ, Alli AA, Sun Y, Gower WR Jr, Vesely DL. Four cardiac hormones eliminate 4-fold more human glioblastoma cells than the green mamba snake peptide. Cancer Lett 2007; 254(1): 94-101.
[http://dx.doi.org/10.1016/j.canlet.2007.02.015] [PMID: 17399891]
[43]
Morjen M, Othman H, Abdelkafi-Koubaa Z, et al. Targeting α1 inserted domain (I) of α1β1 integrin by Lebetin 2 from M. lebetina transmediterranea venom decreased tumorigenesis and angiogenesis. Int J Biol Macromol 2018; 117: 790-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.230] [PMID: 29870815]
[44]
Yamazaki Y, Takani K, Atoda H, Morita T. Snake venom vascular endothelial growth factors (VEGFs) exhibit potent activity through their specific recognition of KDR (VEGF receptor 2). J Biol Chem 2003; 278(52): 51985-8.
[http://dx.doi.org/10.1074/jbc.C300454200] [PMID: 14600159]
[45]
Gasmi A, Abidi F, Srairi N, Oijatayer A, Karoui H, Elayeb M. Purification and characterization of a growth factor-like which increases capillary permeability from Vipera lebetina venom. Biochem Biophys Res Commun 2000; 268(1): 69-72.
[http://dx.doi.org/10.1006/bbrc.2000.2078] [PMID: 10652214]
[46]
Gasmi A, Bourcier C, Aloui Z, et al. Complete structure of an increasing capillary permeability protein (ICPP) purified from Vipera lebetina venom. ICPP is angiogenic via vascular endothelial growth factor receptor signalling. J Biol Chem 2002; 277(33): 29992-8.
[http://dx.doi.org/10.1074/jbc.M202202200] [PMID: 12021274]
[47]
Messadi E, Aloui Z, Belaidi E, et al. Cardioprotective effect of VEGF and venom VEGF-like protein in acute myocardial ischemia in mice: effect on mitochondrial function. J Cardiovasc Pharmacol 2014; 63(3): 274-81.
[http://dx.doi.org/10.1097/FJC.0000000000000045] [PMID: 24220315]
[48]
Zouari-Kessentini R, Luis J, Karray A, et al. Two purified and characterized phospholipases A2 from Cerastes cerastes venom, that inhibit cancerous cell adhesion and migration. Toxicon 2009; 53(4): 444-53.
[http://dx.doi.org/10.1016/j.toxicon.2009.01.003] [PMID: 19708222]
[49]
Kessentini-Zouari R, Jebali J, Taboubi S, et al. CC-PLA2-1 and CC-PLA2-2, two Cerastes cerastes venom-derived phospholipases A2, inhibit angiogenesis both in vitro and in vivo. Lab Invest 2010; 90(4): 510-9.
[http://dx.doi.org/10.1038/labinvest.2009.137] [PMID: 20142800]
[50]
Bazaa A, Luis J, Srairi-Abid N, et al. MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration. Matrix Biol 2009; 28(4): 188-93.
[http://dx.doi.org/10.1016/j.matbio.2009.03.007] [PMID: 19351557]
[51]
Bazaa A, Pasquier E, Defilles C, et al. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PLoS One 2010; 5(4)e10124
[http://dx.doi.org/10.1371/journal.pone.0010124] [PMID: 20405031]
[52]
Baîram D, Aissa I, Louati H, et al. Biochemical and monolayer characterization of Tunisian snake venom phospholipases. Int J Biol Macromol 2016; 89: 640-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.020] [PMID: 27164498]
[53]
Abdelkafi-Koubaa Z, Jebali J, Othman H, et al. A thermoactive L-amino acid oxidase from Cerastes cerastes snake venom: purification, biochemical and molecular characterization. Toxicon 2014; 89: 32-44.
[http://dx.doi.org/10.1016/j.toxicon.2014.06.020] [PMID: 25009089]
[54]
Abdelkafi-Koubaa Z, Aissa I, Morjen M, et al. Interaction of a snake venom L-amino acid oxidase with different cell types membrane. Int J Biol Macromol 2016; 82: 757-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.065] [PMID: 26433175]
[55]
Marrakchi N, Zingali RB, Karoui H, Bon C, el Ayeb M. Cerastocytin, a new thrombin-like platelet activator from the venom of the Tunisian viper Cerastes cerastes. Biochim Biophys Acta 1995; 1244(1): 147-56.
[http://dx.doi.org/10.1016/0304-4165(94)00216-K] [PMID: 7766651]
[56]
Marrakchi N, Barbouche R, Guermazi S, Karoui H, Bon C, El Ayeb M. Cerastotin, a serine protease from Cerastes cerastes venom, with platelet-aggregating and agglutinating properties. Eur J Biochem 1997; 247(1): 121-8.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00121.x] [PMID: 9249017]
[57]
Marrakchi N, Barbouche R, Bon C, el Ayeb M. Cerastatin, a new potent inhibitor of platelet aggregation from the venom of the Tunisian viper, Cerastes cerastes. Toxicon 1997; 35(1): 125-35.
[http://dx.doi.org/10.1016/S0041-0101(96)00020-7] [PMID: 9028015]
[58]
Waheed H, Moin SF, Choudhary MI. Snake venom: from deadly toxins to life-saving therapeutics. Curr Med Chem 2017; 24(17): 1874-91.
[http://dx.doi.org/10.2174/0929867324666170605091546] [PMID: 28578650]
[59]
Jebali J, Jeanneau C, Morjen M, et al. Expression of a functional recombinant C-type lectin-like protein lebecetin in the human embryonic kidney cells. Biotechnol Prog 2012; 28(6): 1560-5.
[http://dx.doi.org/10.1002/btpr.1632] [PMID: 22961812]

© 2024 Bentham Science Publishers | Privacy Policy