Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Metabolic Changes in Mouse Plasma after Acute Diquat Poisoning by UPLC-MS/MS

Author(s): Lianguo Chen, Zuoquan Zhong, Jiawen Liu, Congcong Wen, Yongxi Jin and Xianqin Wang*

Volume 17, Issue 7, 2021

Published on: 24 June, 2020

Page: [903 - 907] Pages: 5

DOI: 10.2174/1573412916999200624160304

Price: $65

Abstract

Introduction: Diquat is a fast-acting contact herbicide and plant dehydrating agent. The oral lethal dose 50 (LD50) of diquat in mice is about 125 mg/kg. The purpose of this study is to research the metabolomics in mouse plasma after acute diquat poisoning.

Methods: The mice were divided into two groups (the control group and acute diquat poisoning group). The control group was given normal saline by gavage. The acute diquat poisoning group was given 50 mg/kg diquat. UPLC-MS/MS was used to determinate the small molecule organic acid in mouse plasma.

Results: Compared to the control group, the L-lysine, Adenine, L-Alanine, L-Valine, Lactic acid, Inosine, Adenosine, L-Tryptophan, L-Tyrosine, L-Arginine, L-Phenylalanine, L-Methionine, Citric acid, Fructose, L-Glutamine, Malic acid, L-Aspartic acid and Pyruvic acid increased in the acute diquat poisoning group (p<0.05); while the L-Histidine decreased (p<0.05).

Conclusion: The results of metabolites increased or decreased, indicating that acute diquat poisoning induced amino acid metabolism and energy metabolism perturbations in mice.

Keywords: Diquat, plasma, UPLC-MS/MS, amino acid, mouse, metabolomics.

Graphical Abstract
[1]
Suleiman, S.A.; Stevens, J.B. Bipyridylium herbicide toxicity: effects of paraquat and diquat on isolated rat hepatocytes. J. Environ. Pathol. Toxicol. Oncol., 1987, 7(3), 73-84.
[PMID: 3559919]
[2]
Manabe, J.; Ogata, T. The toxic effect of diquat on the rat lung after intratracheal administration. Toxicol. Lett., 1986, 30(1), 7-12.
[http://dx.doi.org/10.1016/0378-4274(86)90172-4] [PMID: 3952774]
[3]
Pratt, I.S.; Keeling, P.L.; Smith, L.L. The effect of high concentrations of oxygen on paraquat and diquat toxicity in rats. Arch. Toxicol. Suppl., 1980, 4, 415-418.
[http://dx.doi.org/10.1007/978-3-642-67729-8_95]
[4]
Kehrer, J.P.; Haschek, W.M.; Witschi, H. The influence of hyperoxia on the acute toxicity of paraquat and diquat. Drug Chem. Toxicol., 1979, 2(4), 397-408.
[http://dx.doi.org/10.3109/01480547909016033] [PMID: 540539]
[5]
Lock, E.A.; Ishmael, J. The acute toxic effects of paraquat and diquat on the rat kidney. Toxicol. Appl. Pharmacol., 1979, 50(1), 67-76.
[http://dx.doi.org/10.1016/0041-008X(79)90493-9] [PMID: 158856]
[6]
Chen, Z.R.; Xue, J.Y.; Du, S.M. Determination of diquat in human plasma by ultraviolet spectrophotometry. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2019, 37(4), 307-309.
[PMID: 31177704]
[7]
Attallah, E.R.; Soliman, M.; Abo-Aly, M.M. Determination of diquat residues in potato using reversed-phase liquid chromatography with tandem mass spectrometry. J. AOAC Int., 2017, 100(3), 789-795.
[http://dx.doi.org/10.5740/jaoacint.16-0315] [PMID: 28150573]
[8]
Kawase, S.; Kanno, S.; Skai, S. Determination of the herbicides paraquat and diquat in blood and urine by gas chromatography. J. Chromatogr, 1984, 283, 231-240.
[9]
Kamel, A.H.; Amr, A.E.E.; Abdalla, N.S.; El-Naggar, M.; Al-Omar, M.A.; Almehizia, A.A. Modified screen-printed potentiometric sensors based on man-tailored biomimetics for diquat herbicide determination. Int. J. Environ. Res. Public Health, 2020, 17(4), E1138.
[http://dx.doi.org/10.3390/ijerph17041138] [PMID: 32053930]
[10]
Zaitsu, K.; Hayashi, Y.; Kusano, M.; Tsuchihashi, H.; Ishii, A. Application of metabolomics to toxicology of drugs of abuse: A mini review of metabolomics approach to acute and chronic toxicity studies. Drug Metab. Pharmacokinet., 2016, 31(1), 21-26.
[http://dx.doi.org/10.1016/j.dmpk.2015.10.002] [PMID: 26613805]
[11]
Yi, L.; Dong, N.; Yun, Y. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Anal. Chim. Acta, 2016, 914, 17-34.
[http://dx.doi.org/10.1016/j.aca.2016.02.001]
[12]
Pallares-Méndez, R.; Aguilar-Salinas, C.A.; Cruz-Bautista, I.; Del Bosque-Plata, L. Metabolomics in diabetes, a review. Ann. Med., 2016, 48(1-2), 89-102.
[http://dx.doi.org/10.3109/07853890.2015.1137630] [PMID: 26883715]
[13]
Li, S.; Dunlop, A.L.; Jones, D.P.; Corwin, E.J. High-resolution metabolomics: review of the field and implications for nursing science and the study of preterm birth. Biol. Res. Nurs., 2016, 18(1), 12-22.
[http://dx.doi.org/10.1177/1099800415595463] [PMID: 26183181]
[14]
Guasch-Ferré, M.; Hruby, A.; Toledo, E. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care, 2016, 39(5), 833-846.
[http://dx.doi.org/10.2337/dc15-2251] [PMID: 27208380]
[15]
Fu, Y.; Cheng, W.H.; Ross, D.A.; Lei, X.G. Cellular glutathione peroxidase protects mice against lethal oxidative stress induced by various doses of diquat. Proc. Soc. Exp. Biol. Med., 1999, 222(2), 164-169.
[http://dx.doi.org/10.1046/j.1525-1373.1999.d01-127.x] [PMID: 10564541]
[16]
Bus, J.S.; Preache, M.M, Cagen SZ, et al. Fetal toxicity and distribution of paraquat and diquat in mice and rats. Toxicol. Appl. Pharmacol., 1975, 33(3), 450-60.
[http://dx.doi.org/10.1016/0041-008X(75)90071-X] [PMID: 1188943]
[17]
Xu, J.; Sun, S.; Wei, W. Melatonin reduces mortality and oxidatively mediated hepatic and renal damage due to diquat treatment. J. Pineal Res., 2007, 42(2), 166-171.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00401.x] [PMID: 17286749]
[18]
Qiao, L.; Dou, X.; Yan, S.; Zhang, B.; Xu, C. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food Funct., 2020, 11(4), 3020-3031.
[http://dx.doi.org/10.1039/D0FO00132E] [PMID: 32243488]
[19]
Wang, S.; Wu, H.; Geng, P. Pharmacokinetic study of dendrobine in rat plasma by ultra-performance liquid chromatography tandem mass spectrometry. Biomed. Chromatogr., 2016, 30(7), 1145-1149.
[http://dx.doi.org/10.1002/bmc.3641] [PMID: 26525040]
[20]
Wen, C.; Wang, S.; Huang, X. Determination and validation of hupehenine in rat plasma by UPLC-MS/MS and its application to pharmacokinetic study. Biomed. Chromatogr., 2015, 29(12), 1805-1810.
[http://dx.doi.org/10.1002/bmc.3499] [PMID: 26033449]
[21]
Wen, C.; Zhang, Q.; He, Y.; Deng, M.; Wang, X.; Ma, J. Gradient elution LC-MS determination of dasatinib in rat plasma and its pharmacokinetic study. Acta Chromatogr., 2015, 27(1), 81-91.
[http://dx.doi.org/10.1556/AChrom.27.2015.1.7]
[22]
Wang X, Wang S, Ma J, et al. Pharmacokinetics in rats and tissue distribution in mouse of berberrubine by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2015, 115, 368-374.
[23]
Wang, S.H. Wu, H.Y.; Huang, X.L. Determination of N-methylcytisine in rat plasma by UPLC-MS/MS and its application to pharmacokinetic study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2015, 990, 118-124.
[24]
Jiang, X.; Bao, X.; Ma, J.; Wen, C.; Wang, X.; Ye, Y. Effect of curcumin on acute paraquat poisoning by metabolomics. Curr. Pharm. Anal., 2018, 14(6), 635-643.
[http://dx.doi.org/10.2174/1573412914666180627142952]
[25]
Chen, L.; Tu, X.; Chen, B.; Zhang, J.; Ma, J.; Wang, X. Effect of pirfenidone on rats with acute paraquat poisoning by urine metabolomics. Lat. Am. J. Pharm., 2018, 37(2), 420-424.
[26]
Zhang, M.; Wen, C.; Zhang, Y. Serum metabolomics in rats models of ketamine abuse by gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2015, 1006, 99-103.
[http://dx.doi.org/10.1016/j.jchromb.2015.10.037]
[27]
Wen, C.; Zhang, M.; Ma, J.; Hu, L.; Wang, X.; Lin, G. Urine metabolomics in rats after administration of ketamine. Drug Des. Devel. Ther., 2015, 9, 717-722.
[28]
Wang, Z.; Ma, J.; Zhang, M. Serum metabolomics in rats after acute paraquat poisoning. Biol. Pharm. Bull., 2015, 38(7), 1049-1053.
[http://dx.doi.org/10.1248/bpb.b15-00147] [PMID: 26133715]
[29]
Zhang ZN, Hu LM, Wang QQ, et al. Tissue metabolic changes in rats after administration of Aidi injection by GC-MS. Int. J. Clin. Exp. Med., 2019, 12(4), 3879-3887.
[30]
Wen, C.; Lin, F.; Huang, B. Metabolomics analysis in acute paraquat poisoning patients based on UPLC-Q-TOF-MS and machine learning approach. Chem. Res. Toxicol., 2019, 32(4), 629-637.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00328] [PMID: 30807114]
[31]
Wu, Q.; Hu, Q.P.; Sun, F. Brain metabolic changes in rats after dextromethorphan. Lat. Am. J. Pharm., 2017, 36(9), 1882-1886.
[32]
Magalhães, N.; Carvalho, F.; Dinis-Oliveira, R.J. Human and experimental toxicology of diquat poisoning: Toxicokinetics, mechanisms of toxicity, clinical features, and treatment. Hum. Exp. Toxicol., 2018, 37(11), 1131-1160.
[http://dx.doi.org/10.1177/0960327118765330] [PMID: 29569487]
[33]
Jones, G.M.; Vale, J.A. Mechanisms of toxicity, clinical features, and management of diquat poisoning: a review. J. Toxicol. Clin. Toxicol., 2000, 38(2), 123-128.
[http://dx.doi.org/10.1081/CLT-100100926] [PMID: 10778908]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy