Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Advances on the Protective Effects of Ginsenosides on Myocardial Ischemia and Ischemia-Reperfusion Injury

Author(s): Jiazhen Wang, Huiyun Wang, Xiaodong Mou, Mingzhu Luan, Xiaofan Zhang, Xiuting He, Fenglan Zhao and Qingguo Meng*

Volume 20, Issue 16, 2020

Page: [1610 - 1618] Pages: 9

DOI: 10.2174/1389557520666200619115444

Price: $65

Abstract

Ginseng is a traditional medicine with a complex chemical composition, wide bioactivity and unique pharmacological action. Many studies have confirmed that ginsenosides are the active ingredients of ginseng, and ginsenosides have always been the focus of different researchers. With the development of modern separation and analysis technology, more than 150 kinds of ginsenosides have been isolated. The ginsenosides Rb1, Rb2, Rc, Rg1 and Re account for more than 80% of total ginsenosides, and other saponins, such as Rd, Rg3 and Rh2, which are minor constituents, accounting for only a small portion of the total amount. In recent years, ginsenosides have been found to possess strong pharmacological activities, such as antioxidation, clearing of oxygen free radicals, reducing calcium overload and anti-apoptosis. Ginsenosides play a protective role in ischemia-reperfusion injury. This paper reviews the protective effects of ginsenosides on myocardial ischemia and ischemiareperfusion injury.

Keywords: Ginsenoside, protective effect, pharmacological action, myocardial ischemia, ischemia-reperfusion injury, MIRI.

Graphical Abstract
[1]
Lu, Z.Q.; Zhang, Y.J.; Cui, G.Z.; Zhuang, P.W.; Zhang, J.B. Advances in the fabrication methods of myocardial ischemia models. Zhongguo Yaolixue Tongbao, 2012, 28, 1053-1057.
[2]
Ye, M.; Wu, H. Recent advances in myocardial ischemia reperfusion injury. Chin. J. Geriatr. Heart Brain Vessel Dis., 2016, 18, 434-436.
[3]
Turer, A.T.; Hill, J.A. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am. J. Cardiol., 2010, 106(3), 360-368.
[http://dx.doi.org/10.1016/j.amjcard.2010.03.032] [PMID: 20643246]
[4]
Fang, P. Progress in mechanism and prevention of myocardial ischemia-reperfusion injury. Henan Med. Res., 2009, 18, 271-275.
[5]
Li, G.; Cui, Y.; Wang, H.; Kwon, W.S.; Yang, D.C. Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region. J. Ginseng Res., 2017, 41(3), 326-329.
[http://dx.doi.org/10.1016/j.jgr.2016.06.003] [PMID: 28701873]
[6]
Lee, C.H.; Kim, J.H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J. Ginseng Res., 2014, 38(3), 161-166.
[http://dx.doi.org/10.1016/j.jgr.2014.03.001] [PMID: 25378989]
[7]
Mancuso, C.; Santangelo, R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem. Toxicol., 2017, 107(Pt A), 362-372.
[http://dx.doi.org/10.1016/j.fct.2017.07.019] [PMID: 28698154]
[8]
Gwathmey, J.K.; Slawsky, M.T.; Briggs, G.M.; Morgan, J.P. Role of intracellular sodium in the regulation of intracellular calcium and contractility. Effects of DPI 201-106 on excitation-contraction coupling in human ventricular myocardium. J. Clin. Invest., 1988, 82(5), 1592-1605.
[http://dx.doi.org/10.1172/JCI113771] [PMID: 2460503]
[9]
Christensen, L.P. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res., 2009, 55, 1-99.
[PMID: 18772102]
[10]
Liu, J.; Xu, Y.; Yang, J.; Wang, W.; Zhang, J.; Zhang, R.; Meng, Q. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J. Ginseng Res., 2017, 41(3), 373-378.
[http://dx.doi.org/10.1016/j.jgr.2017.01.001] [PMID: 28701880]
[11]
Liu, Y.L. Progress in the study of protective effect of Ginsenoside on organ ischemia reperfusion injury. Journal of Jilin Medical, 2014, 35, 2195-2197.
[12]
Kim, B.G.; Choi, S.Y.; Kim, M.R.; Park, H.J. Changes of ginsenosides in Korean red ginseng (Panax ginseng) fermented by Lactobacillus plantarum M1. Process Biochem., 2010, 45, 1319-1324.
[http://dx.doi.org/10.1016/j.procbio.2010.04.026]
[13]
Mohanan, P.; Subramaniyam, S.; Mathiyalagan, R.; Yang, D.C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J. Ginseng Res., 2018, 42(2), 123-132.
[http://dx.doi.org/10.1016/j.jgr.2017.01.008] [PMID: 29719458]
[14]
Xu, B.H.; Xu, L. A review on mechanism of Chinese herbal medicine against myocardial ischemia. Zhongguo Shiyan Fangjixue Zazhi, 2011, 17, 265-269.
[15]
Xu, M. Research on main mechanisms of MIRI and related drug therapy. Shiyong Yaowu Yu Linchuang, 2014, 17, 1052-1055.
[16]
Yu, H. T.; Zhen, J.; Pang, B.; Gu, J. N.; Wu, S. S. Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats. J. Zhejiang Univ.-SCI. B (Biomed & Biotechnol), 2015, 16, 344-354.
[http://dx.doi.org/10.1631/jzus.B1400204]
[17]
Fu, W.W.; Yu, X.F.; Lu, Z.Y. Protective effects of ginsenoside Rb2 on myocardial ischemia in vivo and in vitro. Int. J. Clin. Exp. Med., 2016, 9, 9843-9855.
[18]
Wang, Y.; Hu, Z.; Sun, B.; Xu, J.; Jiang, J.; Luo, M. Ginsenoside Rg3 attenuates myocardial ischemia/reperfusion injury via Akt/endothelial nitric oxide synthase signaling and the B-cell lymphoma/B-cell lymphoma-associated X protein pathway. Mol. Med. Rep., 2015, 11(6), 4518-4524.
[http://dx.doi.org/10.3892/mmr.2015.3336] [PMID: 25672441]
[19]
Scott, G.I.; Colligan, P.B.; Ren, B.H.; Ren, J. Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Br. J. Pharmacol., 2001, 134(6), 1159-1165.
[http://dx.doi.org/10.1038/sj.bjp.0704377] [PMID: 11704635]
[20]
Wang, Z.; Li, M.; Wu, W.K.; Tan, H.M.; Geng, D.F. Ginsenoside Rb1 preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3-kinase signal transduction. Cardiovasc. Drugs Ther., 2008, 22(6), 443-452.
[http://dx.doi.org/10.1007/s10557-008-6129-4] [PMID: 18679782]
[21]
Xia, R.; Zhao, B.; Wu, Y.; Hou, J.B.; Zhang, L.; Xu, J.J.; Xia, Z.Y. Ginsenoside Rb1 preconditioning enhances eNOS expression and attenuates myocardial ischemia/reperfusion injury in diabetic rats. J. Biomed. Biotechnol., 2011, 2011767930
[http://dx.doi.org/10.1155/2011/767930] [PMID: 22013385]
[22]
Gomez, L.; Li, B.; Mewton, N.; Sanchez, I.; Piot, C.; Elbaz, M.; Ovize, M. Inhibition of mitochondrial permeability transition pore opening: Translation to patients. Cardiovasc. Res., 2009, 83(2), 226-233.
[http://dx.doi.org/10.1093/cvr/cvp063] [PMID: 19221132]
[23]
Imahashi, K.; Pott, C.; Goldhaber, J.I.; Steenbergen, C.; Philipson, K.D.; Murphy, E. Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ. Res., 2005, 97(9), 916-921.
[http://dx.doi.org/10.1161/01.RES.0000187456.06162.cb] [PMID: 16179590]
[24]
Guan, Y.Y.; Zhou, J.G.; Zhang, Z.; Wang, G.L.; Cai, B.X.; Hong, L.; Qiu, Q.Y.; He, H. Ginsenoside-Rd from panax notoginseng blocks Ca2+ influx through receptor- and store-operated Ca2+ channels in vascular smooth muscle cells. Eur. J. Pharmacol., 2006, 548(1-3), 129-136.
[http://dx.doi.org/10.1016/j.ejphar.2006.08.001] [PMID: 16973156]
[25]
Lu, C.; Sun, Z.; Wang, L. Inhibition of L-type Ca(2+) current by ginsenoside Rd in rat ventricular myocytes. J. Ginseng Res., 2015, 39(2), 169-177.
[http://dx.doi.org/10.1016/j.jgr.2014.11.003] [PMID: 26045691]
[26]
Zhang, W.J.; Li, L.; Zhao, C.Y.; Li, X.; Zhao, M.; Zhong, G.G. Effect of panaxadiol saponins monomer Rb1 on action potential and L-type calcium channel in ischemic cardiomyocytes. J. Jilin Univ. (Medicine Edition), 2007, 2007(33), 978-981.
[27]
Cao, X. Experimental study on the protective effect of ginsenoside Re on myocardial ischemia reperfusion injury; D Jilin University: Jilin, 2004.
[28]
Kim, H.K. Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract. J. Ginseng Res., 2013, 37(4), 451-456.
[http://dx.doi.org/10.5142/jgr.2013.37.451] [PMID: 24235859]
[29]
Tsutsumi, Y.M.; Tsutsumi, R.; Mawatari, K.; Nakaya, Y.; Kinoshita, M.; Tanaka, K.; Oshita, S. Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway. Life Sci., 2011, 88(15-16), 725-729.
[http://dx.doi.org/10.1016/j.lfs.2011.02.011] [PMID: 21338613]
[30]
Huang, Y.; Liu, H.M.; Zhang, Y.X.; Li, J.; Wang, C.P.; Zhou, L.; Jia, Y.; Li, X.H. Synthesis and biological evaluation of ginsenoside compound k derivatives as a novel class of LXRα activator. Molecules, 2017, 22, 1232.
[http://dx.doi.org/10.3390/molecules22071232]
[31]
Shin, D.H.; Leem, D.G.; Shin, J.S.; Kim, J.I.; Kim, K.T.; Choi, S.; Lee, M.H.; Choi, J.H.; Lee, K.T. Compound K induced apoptosis via endoplasmic reticulum Ca2+ releasethrough ryanodine receptor in human lung cancer cells. J. Ginseng Res., 2017.
[http://dx.doi.org/10.1016/j.jgr.2017.01.015] [PMID: 29719463]
[32]
Gottlieb, R.A.; Burleson, K.O.; Kloner, R.A.; Babior, B.M.; Engler, R.L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest., 1994, 94(4), 1621-1628.
[http://dx.doi.org/10.1172/JCI117504] [PMID: 7929838]
[33]
Fliss, H.; Gattinger, D. Apoptosis in ischemic and reperfused rat myocardium. Circ. Res., 1996, 79(5), 949-956.
[http://dx.doi.org/10.1161/01.RES.79.5.949] [PMID: 8888687]
[34]
Garlick, P.B.; Davies, M.J.; Hearse, D.J.; Slater, T.F. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ. Res., 1987, 61(5), 757-760.
[http://dx.doi.org/10.1161/01.RES.61.5.757] [PMID: 2822281]
[35]
Wu, J.B.; Wu, P.S. myocardial ischemia/reperfusion injury and myocardial apoptosis. Medical Recapitulate, 2011, 17, 2961-2963.
[PMID: 20586665]
[36]
Pan, Z.; Sun, X.; Ren, J.; Li, X.; Gao, X.; Lu, C.; Zhang, Y.; Sun, H.; Wang, Y.; Wang, H.; Wang, J.; Xie, L.; Lu, Y.; Yang, B. miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models. PLoS One, 2012, 7(11)e50515
[http://dx.doi.org/10.1371/journal.pone.0050515] [PMID: 23226300]
[37]
Park, S.Y.; Lee, J.H.; Ha, M.; Nam, J.W.; Kim, V.N. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat. Struct. Mol. Biol., 2009, 16(1), 23-29.
[http://dx.doi.org/10.1038/nsmb.1533] [PMID: 19079265]
[38]
Yan, X.; Xue, J.R.; Wu, H.J.; Wang, S.Q.; Liu, Y.N.; Zheng, S.D.; Zhang, C.Y.; Yang, C. Ginsenoside-Rb1 Protects Hypoxic-and Ischemic-Damaged Cardiomyocytes by Regulating Expression of miRNAs. In: Evid. Based Complement. Alternat. Med; , 2015; pp. 171-306.
[39]
Liu, C.E.; Wu, S.X.; Ye, G. Mechanism of Ginsenoside Rb1 Against Mycardial Apoptosis during Ischemia-reperfusion Injury in Diabetic rats. J. Emergency Trad. Chin. Med., 2012, 21, 1080-1081.
[40]
Li, G.; Qian, W.; Zhao, C. Analyzing the anti-ischemia-reperfusion injury effects of ginsenoside Rb1 mediated through the inhibition of p38α MAPK. Can. J. Physiol. Pharmacol., 2016, 94(1), 97-103.
[http://dx.doi.org/10.1139/cjpp-2014-0164] [PMID: 26550918]
[41]
Danial, N.N.; Korsmeyer, S.J. Cell death: Critical control points. Cell, 2004, 116(2), 205-219.
[http://dx.doi.org/10.1016/S0092-8674(04)00046-7] [PMID: 14744432]
[42]
Wang, Y.; Li, X.; Wang, X.; Lau, W.; Wang, Y.; Xing, Y.; Zhang, X.; Ma, X.; Gao, F. Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway. PLoS One, 2013, 8(8)e70956
[http://dx.doi.org/10.1371/journal.pone.0070956] [PMID: 23976968]
[43]
Han, D.R. Research progress in the protective effect of ginsenosides on myocardial ischemia and reperfusion injury. J. Med. Theor. Prac., 2011, 24, 637-638.
[44]
Kim, J.H.; Yi, Y.S.; Kim, M.Y.; Cho, J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J. Ginseng Res., 2017, 41(4), 435-443.
[http://dx.doi.org/10.1016/j.jgr.2016.08.004] [PMID: 29021688]
[45]
Ma, L.; Liu, H.; Xie, Z.; Yang, S.; Xu, W.; Hou, J.; Yu, B. Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-κB pathway: A mouse cardiomyocyte model. PLoS One, 2014, 9(8)e103628
[http://dx.doi.org/10.1371/journal.pone.0103628] [PMID: 25084093]
[46]
Lim, K.H.; Lim, D.J.; Kim, J.H. Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: A hemodynamics approach. J. Ginseng Res., 2013, 37(3), 283-292.
[http://dx.doi.org/10.5142/jgr.2013.37.283] [PMID: 24198653]
[47]
Zhang, L.P.; Jiang, Y.C.; Yu, X.F.; Xu, H.L.; Li, M.; Zhao, X.Z.; Sui, D.Y. Ginsenoside Rg3 Improves Cardiac Function after Myocardial Ischemia/Reperfusion via Attenuating Apoptosis and Inflammation. Evid. Based Complement. Alternat. Med., 2016, 20166967853
[http://dx.doi.org/10.1155/2016/6967853] [PMID: 28105061]
[48]
Zhang, M. Progress in the treatment of energy metabolism of myocardial ischemia. Chin. Heart J., 2016, 18, 467-468.
[49]
Xiao, H.; Tan, C.; Yang, G.; Dou, D. The effect of red ginseng and ginseng leaves on the substance and energy metabolism in hypothyroidism rats. J. Ginseng Res., 2017, 41(4), 556-565.
[http://dx.doi.org/10.1016/j.jgr.2016.11.005] [PMID: 29021704]
[50]
Jeong, K.J.; Kim, G.W.; Chung, S.H. AMP-activated protein kinase: An emerging target for ginseng. J. Ginseng Res., 2014, 38(2), 83-88.
[http://dx.doi.org/10.1016/j.jgr.2013.11.014] [PMID: 24748831]
[51]
Lee, S.; Lee, M.S.; Kim, C.T.; Kim, I.H.; Kim, Y. Ginsenoside Rg3 reduces lipid accumulation with AMP-Activated Protein Kinase (AMPK) activation in HepG2 cells. Int. J. Mol. Sci., 2012, 13(5), 5729-5739.
[http://dx.doi.org/10.3390/ijms13055729] [PMID: 22754327]
[52]
Yang, Y.L.; Li, J.; Liu, K.; Zhang, L.; Liu, Q.; Liu, B.; Qi, L.W. Ginsenoside Rg5 increases cardiomyocyte resistance to ischemic injury through regulation of mitochondrial hexokinase-II and dynamin-related protein 1. Cell Death Dis., 2017, 8(2)e2625
[http://dx.doi.org/10.1038/cddis.2017.43] [PMID: 28230856]
[53]
Li, L.; Pan, C.S.; Yan, L.; Cui, Y.C.; Liu, Y.Y.; Mu, H.N.; He, K.; Hu, B.H.; Chang, X.; Sun, K.; Fan, J.Y.; Huang, L.; Han, J.Y. Ginsenoside Rg1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways. Front. Physiol., 2018, 9, 78.
[http://dx.doi.org/10.3389/fphys.2018.00078] [PMID: 29467677]
[54]
Tan, S.J.; Li, N.; Zhou, F.; Dong, Q.T.; Zhang, X.D.; Chen, B.C.; Yu, Z. Ginsenoside Rb1 improves energy metabolism in the skeletal muscle of an animal model of postoperative fatigue syndrome. J. Surg. Res., 2014, 191(2), 344-349.
[http://dx.doi.org/10.1016/j.jss.2014.04.042] [PMID: 24881470]
[55]
Cui, Y.C.; Pan, C.S.; Yan, L.; Li, L.; Hu, B.H.; Chang, X.; Liu, Y.Y.; Fan, J.Y.; Sun, K. -Li, Q.; Han, J.Y. Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway. Sci. Rep., 2017, 7, 44579.
[http://dx.doi.org/10.1038/srep44579] [PMID: 28327605]
[56]
Yao, H.; Li, X.; Liu, Y.; Wu, Q.; Jin, Y. An optimized microwave-assisted extraction method for increasing yields of rare ginsenosides from Panax quinquefolius L. J. Ginseng Res., 2016, 40.415e22
[57]
Shen, R.; Cao, X.; Laval, S.; Sun, J.; Yu, B. Synthesis of Ocotillol-type ginsenosides. J. Org. Chem., 2016, 81(21), 10279-10294.
[http://dx.doi.org/10.1021/acs.joc.6b01265] [PMID: 27400182]
[58]
Xu, Y.R.; Yang, J.J.; Liu, J.; Hou, G.G.; Meng, Q.G. Synthesis and crystal structure of ocotillol-type metabolites driven from 20(R)-protopanaxadiol. Acta Crystallogr., 2016, C72, 498-e503.
[59]
Yang, J.J.; Xu, Y.R.; Li, X.L.; Zhang, K.X.; Zhang, R.M.; Wang, W.Z.; He, X.Y.; Meng, Q.G.; Hou, G.G. Synthesis and crystal structures of two C24 epimeric 3-acetyled 20(R)-ocotillol type sapogenins obtained from 20(R)-protopanaxadiol. J. Chem. Res., 2016, 40, 235-e238.
[60]
Liu, J.; Xu, Y.R.; An, X.S.; Hou, G.G.; Meng, Q.G. Synthesis and crystal structures of a 3-acetylated (20S,24S)-ocotillol-type saponin and its C-24 epimmer. Acta Crystallogr. C Struct. Chem., 2017, 73, 464-469.
[PMID: 28579568]
[61]
Zhang, J.Q.; Zhang, Q.; Xu, Y.R.; Li, H.X.; Zhao, F.L.; Wang, C.M.; Liu, Z.; Liu, P.; Liu, Y.Y.; Meng, Q.G.; Zhao, F. Synthesis and in vitro anti-inflammatory activity of C20 epimeric ocotillol-type triterpenes and protopanaxadiol. Planta Med., 2019, 85(4), 292-301.
[http://dx.doi.org/10.1055/a-0770-0994] [PMID: 30380571]
[62]
Bi, Y.; Yang, J.; Ma, C.; Liu, Z.Y.; Zhang, T.T.; Zhang, X.C.; Lu, J.; Meng, Q.G. Design, synthesis and in vitro NO-releasing activities of ocotillol-type furoxans. Pharmazie, 2015, 70(4), 213-218.
[PMID: 26012249]
[63]
Yu, C.; Fu, F.; Yu, X.; Han, B.; Zhu, M. Cardioprotective effect of ocotillol, a derivate of pseudoginsenoside F11, on myocardial injury induced by isoproterenol in rats. Arzneimittelforschung, 2007, 57(9), 568-572.
[PMID: 17966755]
[64]
Wang, T.; Meng, Q. G.; Zhang, J. F.; Bi, Y.; Jiang, N. C. Study on the structureefunction relationship of 20(S)-panaxadiol and its epimeric derivatives in myocardial injury induced by isoproterenol. Fitoterapia, 2010, 81783e7
[65]
Chen, L.; Yang, S.J.; Chen, X. Preliminary observation on Cardiovascular effects of saponins PF11 from stems and leaves of Panax quinquefolium L. J. Norman Bethune Univ. Med. Sci., 1995, 21, 20-22.
[66]
Zhang, W.J.; Li, H.; Zhao, Z.H. Effects of panax quinquefolium saponins monomer PF11 on action potential of hemodynamic ventricular myocytes in rats. Ginseng Res., 2002, 14, 21-23.
[67]
Yang, S.J.; Chen, X.; Zhang, W.J. Effect of panax quinquefolium saponins monomer PF11 on action potential of cultured rat cardiomyocytes. Zhongguo Yaolixue Tongbao, 1994, 10, 284-287.
[68]
Xue, P.; Yao, Y.; Yang, X.S.; Feng, J.; Ren, G.X. Improved antimicrobial effect of ginseng extract by heat transformation. J. Ginseng Res., 2017, 41(2), 180-187.
[http://dx.doi.org/10.1016/j.jgr.2016.03.002] [PMID: 28413322]
[69]
Wang, C.; Liu, J.; Deng, J.; Wang, J.; Weng, W.; Chu, H.; Meng, Q.; Meng, Q.G. Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins. J. Ginseng Res., 2020, 44(1), 14-23.
[http://dx.doi.org/10.1016/j.jgr.2019.01.005] [PMID: 32095093]
[70]
Nabavi, S.F.; Sureda, A.; Habtemariam, S.; Nabavi, S.M. Ginsenoside Rd and ischemic stroke; A short review of literatures. J. Ginseng Res., 2015, 39(4), 299-303.
[http://dx.doi.org/10.1016/j.jgr.2015.02.002] [PMID: 26869821]
[71]
Mu, J.S. Xanthine oxidase and myocardial ischemia-reperfusion injury. Foreign Med. Sci. (Anesthesilolgy and Resuscitation), 1997, 18, 179-181.
[72]
Zhong, G. G.; Sun, C. W.; Li, Y. Y.; Qi, H.; Zhao, C. Y.; Jiang, Y.; Wang, X. M.; Yang, S. J. Calcium channel blockade and anti-freeradical actions of panaxadiol saponins Rb1, Rb2, Rb3, Rc and Rd. Acta Pharmacologica since, 1995, 16, 255-260.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy