Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Systematic Review Article

Clinical, Immunologic and Molecular Spectrum of Patients with Immunodeficiency, Centromeric Instability, and Facial Anomalies (ICF) Syndrome: A Systematic Review

Author(s): Fatemeh Kiaee, Majid Zaki-Dizaji, Nasim Hafezi, Amir Almasi-Hashiani, Haleh Hamedifar, Araz Sabzevari*, Afshin Shirkani, Zeineb Zian, Farhad Jadidi-Niaragh, Fatemeh Aghamahdi, Mahdi Goudarzvand, Reza Yazdani, Hassan Abolhassani, Asghar Aghamohammadi and Gholamreza Azizi*

Volume 21, Issue 4, 2021

Published on: 13 June, 2020

Page: [664 - 672] Pages: 9

DOI: 10.2174/1871530320666200613204426

Price: $65

Abstract

Background: Immunodeficiency, centromeric instability and facial dysmorphism (ICF) syndrome is a rare autosomal recessive immune disorder presenting with hypogammaglobulinemia, developmental delay, and facial anomalies. The ICF type 1, type 2, type 3 and type 4 are characterized by mutations in DNMT3B, ZBTB24, CDCA7 or HELLS gene, respectively. This study aimed to present a comprehensive description of the clinical, immunologic and genetic features of patients with ICF syndrome.

Methods: PubMed, Web of Science, and Scopus were searched systemically to find eligible studies.

Results: Forty-eight studies with 118 ICF patients who met the inclusion criteria were included in our study. Among these patients, 60% reported with ICF-1, 30% with ICF-2, 4% with ICF-3, and 6% with ICF-4. The four most common symptoms reported in patients with ICF syndrome were: delay in motor development, low birth weight, chronic infections, and diarrhea. Intellectual disability and preterm birth among patients with ICF-2 and failure to thrive, sepsis and fungal infections among patients with ICF-1 were also more frequent. Moreover, the median levels of all three immunoglobulins (IgA, IgG, IgM) were markedly reduced within four types of ICF syndrome.

Conclusion: The frequency of diagnosed patients with ICF syndrome has increased. Early diagnosis of ICF is important since immunoglobulin supplementation or allogeneic stem cell transplantation can improve the disease-free survival rate.

Keywords: Immunodeficiency, centromeric instability, facial dysmorphism syndrome, ICF syndrome, primary immunodeficiency, DNMT3B, ZBTB24, CDCA7, HELLS.

Graphical Abstract
[1]
Heyn, H.; Vidal, E.; Sayols, S.; Sanchez-Mut, J.V.; Moran, S.; Medina, I.; Sandoval, J.; Simó-Riudalbas, L.; Szczesna, K.; Huertas, D.; Gatto, S.; Matarazzo, M.R.; Dopazo, J.; Esteller, M. Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient. Epigenetics, 2012, 7(6), 542-550.
[http://dx.doi.org/10.4161/epi.20523] [PMID: 22595875]
[2]
Ehrlich, M.; Sanchez, C.; Shao, C.; Nishiyama, R.; Kehrl, J.; Kuick, R.; Kubota, T.; Hanash, S.M. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity, 2008, 41(4), 253-271.
[http://dx.doi.org/10.1080/08916930802024202] [PMID: 18432406]
[3]
Tavakol, M.; Jamee, M.; Azizi, G.; Sadri, H.; Bagheri, Y.; Zaki-Dizaji, M.; Mahdavi, F.S.; Jadidi-Niaragh, F.; Tajfirooz, S.; Kamali, A.N.; Aghamahdi, F.; Noorian, S.; Kojidi, H.T.; Mosavian, M.; Matani, R.; Dolatshahi, E.; Porrostami, K.; Elahimehr, N.; Fatemi-Abhari, M.; Sharifi, L.; Arjmand, R.; Haghi, S.; Zainaldain, H.; Yazdani, R.; Shaghaghi, M.; Abolhassani, H.; Aghamohammadi, A. Diagnostic approach to the patients with suspected primary immunodeficiency. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(2), 157-171.
[http://dx.doi.org/10.2174/1871530319666190828125316] [PMID: 31456526]
[4]
Maraschio, P.; Zuffardi, O.; Dalla Fior, T.; Tiepolo, L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J. Med. Genet., 1988, 25(3), 173-180.
[http://dx.doi.org/10.1136/jmg.25.3.173] [PMID: 3351904]
[5]
Hansen, R.S.; Wijmenga, C.; Luo, P.; Stanek, A.M.; Canfield, T.K.; Weemaes, C.M.; Gartler, S.M. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA, 1999, 96(25), 14412-14417.
[http://dx.doi.org/10.1073/pnas.96.25.14412] [PMID: 10588719]
[6]
Weemaes, C.M.; van Tol, M.J.; Wang, J.; van Ostaijen-ten Dam, M.M.; van Eggermond, M.C.; Thijssen, P.E.; Aytekin, C.; Brunetti-Pierri, N.; van der Burg, M.; Graham Davies, E.; Ferster, A.; Furthner, D.; Gimelli, G.; Gennery, A.; Kloeckener-Gruissem, B.; Meyn, S.; Powell, C.; Reisli, I.; Schuetz, C.; Schulz, A.; Shugar, A.; van den Elsen, P.J.; van der Maarel, S.M. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur. J. Hum. Genet., 2013, 21(11), 1219-1225.
[http://dx.doi.org/10.1038/ejhg.2013.40] [PMID: 23486536]
[7]
de Greef, J.C.; Wang, J.; Balog, J.; den Dunnen, J.T.; Frants, R.R.; Straasheijm, K.R.; Aytekin, C.; van der Burg, M.; Duprez, L.; Ferster, A.; Gennery, A.R.; Gimelli, G.; Reisli, I.; Schuetz, C.; Schulz, A.; Smeets, D.F.C.M.; Sznajer, Y.; Wijmenga, C.; van Eggermond, M.C.; van Ostaijen-Ten Dam, M.M.; Lankester, A.C.; van Tol, M.J.D.; van den Elsen, P.J.; Weemaes, C.M.; van der Maarel, S.M. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am. J. Hum. Genet., 2011, 88(6), 796-804.
[http://dx.doi.org/10.1016/j.ajhg.2011.04.018] [PMID: 21596365]
[8]
Thijssen, P.E.; Ito, Y.; Grillo, G.; Wang, J.; Velasco, G.; Nitta, H.; Unoki, M.; Yoshihara, M.; Suyama, M.; Sun, Y.; Lemmers, R.J.; de Greef, J.C.; Gennery, A.; Picco, P.; Kloeckener-Gruissem, B.; Güngör, T.; Reisli, I.; Picard, C.; Kebaili, K.; Roquelaure, B.; Iwai, T.; Kondo, I.; Kubota, T.; van Ostaijen-Ten Dam, M.M.; van Tol, M.J.; Weemaes, C.; Francastel, C.; van der Maarel, S.M.; Sasaki, H. Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat. Commun., 2015, 6, 7870.
[http://dx.doi.org/10.1038/ncomms8870] [PMID: 26216346]
[9]
Al-Herz, W.; Bousfiha, A.; Casanova, J.L.; Chapel, H.; Conley, M.E.; Cunningham-Rundles, C.; Etzioni, A.; Fischer, A.; Franco, J.L.; Geha, R.S.; Hammarström, L.; Nonoyama, S.; Notarangelo, L.D.; Ochs, H.D.; Puck, J.M.; Roifman, C.M.; Seger, R.; Tang, M.L. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol., 2011, 2, 54.
[PMID: 22566844]
[10]
Hagleitner, M.M.; Lankester, A.; Maraschio, P.; Hultén, M.; Fryns, J.P.; Schuetz, C.; Gimelli, G.; Davies, E.G.; Gennery, A.; Belohradsky, B.H.; de Groot, R.; Gerritsen, E.J.; Mattina, T.; Howard, P.J.; Fasth, A.; Reisli, I.; Furthner, D.; Slatter, M.A.; Cant, A.J.; Cazzola, G.; van Dijken, P.J.; van Deuren, M.; de Greef, J.C.; van der Maarel, S.M.; Weemaes, C.M. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J. Med. Genet., 2008, 45(2), 93-99.
[http://dx.doi.org/10.1136/jmg.2007.053397] [PMID: 17893117]
[11]
Ehrlich, M.; Jackson, K.; Weemaes, C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J. Rare Dis., 2006, 1, 2.
[http://dx.doi.org/10.1186/1750-1172-1-2] [PMID: 16722602]
[12]
Thompson, J.J.; Kaur, R.; Sosa, C.P.; Lee, J.H.; Kashiwagi, K.; Zhou, D.; Robertson, K.D. ZBTB24 is a transcriptional regulator that coordinates with DNMT3B to control DNA methylation. Nucleic Acids Res., 2018, 46(19), 10034-10051.
[http://dx.doi.org/10.1093/nar/gky682] [PMID: 30085123]
[13]
Jho, E.H.; Zhang, T.; Domon, C.; Joo, C.K.; Freund, J.N.; Costantini, F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol., 2002, 22(4), 1172-1183.
[http://dx.doi.org/10.1128/MCB.22.4.1172-1183.2002] [PMID: 11809808]
[14]
Ikeda, S.; Kishida, S.; Yamamoto, H.; Murai, H.; Koyama, S.; Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J., 1998, 17(5), 1371-1384.
[http://dx.doi.org/10.1093/emboj/17.5.1371] [PMID: 9482734]
[15]
Mulligan, K.A.; Cheyette, B.N. Wnt signaling in vertebrate neural development and function. J. Neuroimmune Pharmacol., 2012, 7(4), 774-787.
[http://dx.doi.org/10.1007/s11481-012-9404-x] [PMID: 23015196]
[16]
Dao, D.Y.; Yang, X.; Flick, L.M.; Chen, D.; Hilton, M.J.; O’Keefe, R.J. Axin2 regulates chondrocyte maturation and axial skeletal development. J. Orthop. Res., 2010, 28(1), 89-95.
[PMID: 19623616]
[17]
Tucci, V.; Kleefstra, T.; Hardy, A.; Heise, I.; Maggi, S.; Willemsen, M.H.; Hilton, H.; Esapa, C.; Simon, M.; Buenavista, M.T.; McGuffin, L.J.; Vizor, L.; Dodero, L.; Tsaftaris, S.; Romero, R.; Nillesen, W.N.; Vissers, L.E.; Kempers, M.J.; Vulto-van Silfhout, A.T.; Iqbal, Z.; Orlando, M.; Maccione, A.; Lassi, G.; Farisello, P.; Contestabile, A.; Tinarelli, F.; Nieus, T.; Raimondi, A.; Greco, B.; Cantatore, D.; Gasparini, L.; Berdondini, L.; Bifone, A.; Gozzi, A.; Wells, S.; Nolan, P.M. Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features. J. Clin. Invest., 2014, 124(4), 1468-1482.
[http://dx.doi.org/10.1172/JCI70372] [PMID: 24614104]
[18]
Brault, V.; Moore, R.; Kutsch, S.; Ishibashi, M.; Rowitch, D.H.; McMahon, A.P.; Sommer, L.; Boussadia, O.; Kemler, R. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development, 2001, 128(8), 1253-1264.
[PMID: 11262227]
[19]
Yu, H.M.; Jerchow, B.; Sheu, T.J.; Liu, B.; Costantini, F.; Puzas, J.E.; Birchmeier, W.; Hsu, W. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development, 2005, 132(8), 1995-2005.
[http://dx.doi.org/10.1242/dev.01786] [PMID: 15790973]
[20]
Mafra, F.; Catto, M.; Bianco, B.; Barbosa, C.P.; Christofolini, D. Association of WNT4 polymorphisms with endometriosis in infertile patients. J. Assist. Reprod. Genet., 2015, 32(9), 1359-1364.
[http://dx.doi.org/10.1007/s10815-015-0523-1] [PMID: 26139156]
[21]
Zhang, G.; Srivastava, A.; Bacelis, J.; Juodakis, J.; Jacobsson, B.; Muglia, L.J. Genetic studies of gestational duration and preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol., 2018, 52, 33-47.
[http://dx.doi.org/10.1016/j.bpobgyn.2018.05.003] [PMID: 30007778]
[22]
Sjaastad, F.V.; Condotta, S.A.; Kotov, J.A.; Pape, K.A.; Dail, C.; Danahy, D.B.; Kucaba, T.A.; Tygrett, L.T.; Murphy, K.A.; Cabrera-Perez, J.; Waldschmidt, T.J.; Badovinac, V.P.; Griffith, T.S. Polymicrobial sepsis chronic immunoparalysis is defined by diminished Ag-specific T cell-dependent B cell responses. Front. Immunol., 2018, 9, 2532.
[http://dx.doi.org/10.3389/fimmu.2018.02532] [PMID: 30429857]
[23]
Elluru, S.R.; Kaveri, S.V.; Bayry, J. The protective role of immunoglobulins in fungal infections and inflammation. Semin. Immunopathol., 2015, 37(2), 187-197.
[http://dx.doi.org/10.1007/s00281-014-0466-0] [PMID: 25404121]
[24]
Casadevall, A.; Pirofski, L.A. Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases. Cell Host Microbe, 2012, 11(5), 447-456.
[http://dx.doi.org/10.1016/j.chom.2012.04.004] [PMID: 22607798]
[25]
Montagnoli, C.; Bozza, S.; Bacci, A.; Gaziano, R.; Mosci, P.; Morschhäuser, J.; Pitzurra, L.; Kopf, M.; Cutler, J.; Romani, L. A role for antibodies in the generation of memory antifungal immunity. Eur. J. Immunol., 2003, 33(5), 1193-1204.
[http://dx.doi.org/10.1002/eji.200323790] [PMID: 12731044]
[26]
Rodrigues, M.L.; Travassos, L.R.; Miranda, K.R.; Franzen, A.J.; Rozental, S.; de Souza, W.; Alviano, C.S.; Barreto-Bergter, E. Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect. Immun., 2000, 68(12), 7049-7060.
[http://dx.doi.org/10.1128/IAI.68.12.7049-7060.2000] [PMID: 11083830]
[27]
Rachini, A.; Pietrella, D.; Lupo, P.; Torosantucci, A.; Chiani, P.; Bromuro, C.; Proietti, C.; Bistoni, F.; Cassone, A.; Vecchiarelli, A. An anti-beta-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vivo. Infect. Immun., 2007, 75(11), 5085-5094.
[http://dx.doi.org/10.1128/IAI.00278-07] [PMID: 17606600]
[28]
McClelland, E.E.; Nicola, A.M.; Prados-Rosales, R.; Casadevall, A. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J. Clin. Invest., 2010, 120(4), 1355-1361.
[http://dx.doi.org/10.1172/JCI38322] [PMID: 20335660]
[29]
Kamae, C.; Imai, K.; Kato, T.; Okano, T.; Honma, K.; Nakagawa, N.; Yeh, T.W.; Noguchi, E.; Ohara, A.; Shigemura, T.; Takahashi, H.; Takakura, S.; Hayashi, M.; Honma, A.; Watanabe, S.; Shigemori, T.; Ohara, O.; Sasaki, H.; Kubota, T.; Morio, T.; Kanegane, H.; Nonoyama, S. Clinical and immunological characterization of ICF syndrome in Japan. Clinical and immunological characterization of ICF syndrome in Japan. J. Clin. Immunol., 2018, 38(8), 927-937.
[http://dx.doi.org/10.1007/s10875-018-0559-y] [PMID: 30353301]
[30]
von Bernuth, H.; Ravindran, E.; Du, H.; Fröhler, S.; Strehl, K.; Krämer, N.; Issa-Jahns, L.; Amulic, B.; Ninnemann, O.; Xiao, M.S.; Eirich, K.; Kölsch, U.; Hauptmann, K.; John, R.; Schindler, D.; Wahn, V.; Chen, W.; Kaindl, A.M. Combined immunodeficiency develops with age in Immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2). Orphanet J. Rare Dis., 2014, 9, 116.
[http://dx.doi.org/10.1186/s13023-014-0116-6] [PMID: 25330735]
[31]
Liang, J.; Yan, R.; Chen, G.; Feng, J.; Wu, W.W.; Ren, W.; Zhu, C.; Zhao, Y.; Gao, X.M.; Wang, J. Downregulation of ZBTB24 hampers the G0/1- to S-phase cell-cycle transition via upregulating the expression of IRF-4 in human B cells. Genes Immun., 2016, 17(5), 276-282.
[http://dx.doi.org/10.1038/gene.2016.18] [PMID: 27098601]
[32]
Zhu, C.; Chen, G.; Zhao, Y.; Gao, X.M.; Wang, J. Regulation of the development and function of B cells by ZBTB transcription factors. Front. Immunol., 2018, 9, 580.
[http://dx.doi.org/10.3389/fimmu.2018.00580] [PMID: 29616049]
[33]
Blanco-Betancourt, C.E.; Moncla, A.; Milili, M.; Jiang, Y.L.; Viegas-Péquignot, E.M.; Roquelaure, B.; Thuret, I.; Schiff, C. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood, 2004, 103(7), 2683-2690.
[http://dx.doi.org/10.1182/blood-2003-08-2632] [PMID: 14645008]
[34]
Vukic, M.; Daxinger, L. DNA methylation in disease: immunodeficiency, centromeric instability, facial anomalies syndrome. Essays Biochem., 2019, 63(6), 773-783.
[http://dx.doi.org/10.1042/EBC20190035] [PMID: 31724723]
[35]
Scheer, S.; Zaph, C. The lysine methyltransferase G9a in immune cell differentiation and function. Front. Immunol., 2017, 8, 429.
[http://dx.doi.org/10.3389/fimmu.2017.00429] [PMID: 28443098]
[36]
Velasco, G.; Walton, E.L.; Sterlin, D.; Hédouin, S.; Nitta, H.; Ito, Y.; Fouyssac, F.; Mégarbané, A.; Sasaki, H.; Picard, C.; Francastel, C. Germline genes hypomethylation and expression define a molecular signature in peripheral blood of ICF patients: implications for diagnosis and etiology. Orphanet J. Rare Dis., 2014, 9, 56.
[http://dx.doi.org/10.1186/1750-1172-9-56] [PMID: 24742017]
[37]
Sterlin, D.; Velasco, G.; Moshous, D.; Touzot, F.; Mahlaoui, N.; Fischer, A.; Suarez, F.; Francastel, C.; Picard, C. Genetic, cellular and clinical features of ICF syndrome: a French national survey. J. Clin. Immunol., 2016, 36(2), 149-159.
[http://dx.doi.org/10.1007/s10875-016-0240-2] [PMID: 26851945]
[38]
Cerbone, M.; Wang, J.; Van der Maarel, S.M.; D’Amico, A.; D’Agostino, A.; Romano, A.; Brunetti-Pierri, N. Immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome, due to ZBTB24 mutations, presenting with large cerebral cyst. Am. J. Med. Genet. A., 2012, 158A(8), 2043-2046.
[http://dx.doi.org/10.1002/ajmg.a.35486] [PMID: 22786748]
[39]
Nitta, H.; Unoki, M.; Ichiyanagi, K.; Kosho, T.; Shigemura, T.; Takahashi, H.; Velasco, G.; Francastel, C.; Picard, C.; Kubota, T.; Sasaki, H. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J. Hum. Genet., 2013, 58(7), 455-460.
[http://dx.doi.org/10.1038/jhg.2013.56] [PMID: 23739126]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy