Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Unveiling the Biodiversity of Hyperthermophilic Archaea in Jharia Coal Mines: Potential Threat to Methanogenesis?

Author(s): Priyanka Jha*, Joginder Singh, Ambarish S. Vidyarthi and Ram Prasad*

Volume 21, Issue 5, 2020

Page: [363 - 371] Pages: 9

DOI: 10.2174/1389202921999200605151722

Price: $65

Abstract

Aim: To examine the biodiversity of archaeal sulfate reducers and methanogens present in the underground coal mines of Jharia using metagenomics and pyrosequencing.

Objectives: 1) Bioinformatical analysis of the metagenomic data related to a taxonomic analysis obtained from the coal to investigate complete archaeal taxonomic features of the coal bed methane (CBM) microbiome. 2) Bioinformatical analysis of the metagenomic data related to a functional analysis obtained from the coal to investigate functional features relating to taxonomic diversity of the CBM microbiome. 3) The functional attributes have been examined specifically for ORFs related to sulfite reduction and methanogenesis.

The taxonomic and functional biodiversity related to euryarchaeota will help in a better understanding of the obstacles associated with methane production imposed by the sulfate reducers.

Background: The microbial methanogenesis in the coal microbiome is a resultant of substrate utilization by primarily fermentative bacteria and methanogens. The present work reveals the biodiversity of archaeal sulfate reducers and methanogens present in the underground coal mines of Jharia using metagenomics and pyrosequencing.

Methodology: Bioinformatical analysis for structural and functional attributes was accomplished using MG-RAST. The structural analysis was accomplished using RefSeq database, whereas the functional analysis was done via CoG database with a cut off value, a sequence percent identity, and sequence alignment length cut off of 1e−5, 60% and 45, respectively.

Results: Attained communities revealed the dominance of hyperthermophilic archaea Pyrococcus furiosus along with Thermococcus kodakarensis in the coal metagenome.The obtained results also suggest the presence of dissimilatory sulfite reductase and formylmethanofuran dehydrogenase, formylmethanofuran: tetrahydromethanopterin formyltransferase involved in sulfite reduction and methanogenesis, respectively, in the microbiome.

Conclusion: This report is the first attempt to showcase the existence of specific euryarchaeal diversity and their related functional attributes from Jharia coal mines through high throughput sequencing. The study helps in developing a better understanding of the presence of indigenous microbes (archaea) and their functions in the coal microbiome, which can be utilized further to resolve the energy crisis.

Keywords: Euryarchaeota, metagenomics, pyrosequencing, sulfite reductase, SRBs, thermococcales.

Graphical Abstract
[1]
Mazumder, S.; Wolf, K.H.-A.A. An overview of the potential and prospects of coal bed methane exploration and exploitation in the permo-carboniferous coal measures of the Barakar formation, Jharia basin India Geol. Belg., 2004, 7, 147-156.
[2]
Patra, T.C.; Pandey, A.K.; Dutta, H.C. Potential areas of coal seam methane in India. J. Geol. Soc. India, 1996, 47, 215-227.
[3]
Pophare, A.M.; Mendhe, V.A.; Varade, A. Evaluation of coal bed methane potential of coal seams of Sawang Colliery, Jharkhand, India. J. Earth Syst. Sci., 2008, 117, 121-132.
[http://dx.doi.org/10.1007/S12040-008-0003-4]
[4]
Jenkins, C.; Boyer, C. Coalbed and shale gas reservoirs. J. Pet. Technol., 2008, 60, 92-99.
[http://dx.doi.org/10.2118/103514-JPT]
[5]
Thielemann, T.; Cramer, B.; Schippers, A. Coalbed methane in the Ruhr Basin, Germany: a renewable energy source? Org. Geochem., 2004, 35, 1537-1549.
[http://dx.doi.org/10.1016/S0146-6380(04)00120-2]
[6]
Faiz, M.; Hendry, P. Significance of microbial activity in Australian coal bed methane reservoirs- a review Bull. Can. Pet. Geol., 2006, 54, 261-272.
[http://dx.doi.org/10.2113/GSCPGBULL.54.3.261]
[7]
Kleikemper, J.; Schroth, M.H.; Sigler, W.V.; Schmucki, M.; Bernasconi, S.M.; Zeyer, J. Activity and diversity of SRBs in a petroleum hydrocarbon-contaminated aquifer Appl. Environ. Microbiol., 2003, 68, 1516-1523.
[http://dx.doi.org/10.1128/AEM.68.4.1516-1523.2002] [PMID: 11916663]
[8]
So, C.M.; Young, L.Y. Isolation and characterization of a sulfatereducing bacterium that anaerobically degrades alkanes. Appl. Environ. Microbiol., 1999, 65(7), 2969-2976.
[http://dx.doi.org/10.1128/AEM.65.7.2969-2976.1999] [PMID: 10388691]
[9]
Shelswell, K.J. Metagenomics: The science of biological diversity. 2019. Available from: HTTP://NATAGRI.UFS.AC.ZA/DL/USERFILES/DOCU MENTS/00003/3736_ENG.PDF
[10]
Dinsdale, E.A.; Edwards, R.A.; Hall, D.; Angly, F.; Breitbart, M.; Brulc, J.M.; Furlan, M.; Desnues, C.; Haynes, M.; Li, L.; McDaniel, L.; Moran, M.A.; Nelson, K.E.; Nilsson, C.; Olson, R.; Paul, J.; Brito, B.R.; Ruan, Y.; Swan, B.K.; Stevens, R.; Valentine, D.L.; Thurber, R.V.; Wegley, L.; White, B.A.; Rohwer, F. Functional metagenomic profiling of nine biomes Nature, 2008, 452, 629-632.
[http://dx.doi.org/10.1038/NATURE06810] [PMID: 18337718]
[11]
Green, M.S.; Flanegan, K.C.; Gilcrease, P.C. Characterization of a methanogenic consortium enriched from a coal bed methane well in the Powder River Basin, U.S.A Int. J. Coal Geol., 2008, 76, 34-45.
[http://dx.doi.org/10.1016/J.COAL.2008.05.001]
[12]
Flores, R.M.; Rice, C.A.; Stricker, G.D.; Warden, A.; Ellis, M.S. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: the geologic factor Int. J. Coal Geol., 2008, 76, 52-75.
[http://dx.doi.org/10.1016/J.COAL.2008.02.005]
[13]
Ghosh, S.; Jha, P.; Vidyarthi, A.S. Unraveling the microbial interactions in coal organic fermentation for generation of methane- A classical to metagenomic approach Int. J. Coal Geol., 2014, 125, 36-44.
[http://dx.doi.org/10.1016/J.COAL.2014.02.005]
[14]
Sharma, A.; Jani, K.; Thite, V.; Dhar, S.K.; Shouche, Y. Geochemistry shapes bacterial communities and their metabolic potentials in tertiary coalbed. Geomicrobiol. J., 2018, 36, 179-187.
[http://dx.doi.org/10.1080/01490451.2018.1526987]
[15]
Kumar, H.; Mishra, M.K.; Mishra, S. Sorption capacity of Indian coal and its variation with rank parameters. J. Pet. Explor. Prod. Technol., 2019, 9, 2175-2184.
[http://dx.doi.org/10.1007/S13202-019-0621-1]
[16]
Keegan, K.P.; Glass, E.M.; Meyer, F. MG-RAST, A metagenomic service for analysis of microbial community structure and function. Methods Mol. Biol., 2016, 1399, 207-233.
[http://dx.doi.org/10.1007/978-1-4939-3369-3_13] [PMID: 26791506]
[17]
Schiffer, A.; Parey, K.; Warkentin, E.; Diederichs, K.; Huber, H.; Stetter, K.O.; Kroneck, P.M.; Ermler, U. Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J. Mol. Biol., 2008, 379(5), 1063-1074.
[http://dx.doi.org/10.1016/j.jmb.2008.04.027] [PMID: 18495156]
[18]
González, J.M.; Masuchi, Y.; Robb, F.T.; Ammerman, J.W.; Maeder, D.L.; Yanagibayashi, M.; Tamaoka, J.; Kato, C. Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles, 1998, 2(2), 123-130.
[http://dx.doi.org/10.1007/S007920050051] [PMID: 9672687]
[19]
Bredberg, K.; Persson, J.; Christiansson, M.; Stenberg, B.; Holst, O. Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus-a new method for rubber recycling. Appl. Microbiol. Biotechnol., 2001, 55(1), 43-48.
[http://dx.doi.org/10.1007/S002530000499] [PMID: 11234957]
[20]
Erauso, G.; Reysenbach, A.L.; Godfroy, A.; Meunier, J.-R.; Crump, B.; Partensky, F.; Baross, J.A.; Marteinsson, V.; Babrbier, G.; Pace, N.R.; Prieur, D. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch. Microbiol., 1993, 160, 338-349.
[http://dx.doi.org/10.1007/BF00252219]
[21]
Fiala, G.; Stetter, K.O. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C Arch. Microbiol., 1986, 145, 56-61.
[http://dx.doi.org/10.1007/BF00413027]
[22]
Morikawa, M.; Izawa, Y.; Rashid, N.; Hoaki, T.; Imanaka, T. Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl. Environ. Microbiol., 1994, 60(12), 4559-4566.
[http://dx.doi.org/10.1128/AEM.60.12.4559-4566.1994] [PMID: 7811092]
[23]
Marteinsson, V.T.; Birrien, J.L.; Reysenbach, A.L.; Vernet, M.; Marie, D.; Gambacorta, A.; Messner, P.; Sleytr, U.B.; Prieur, D. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol., 1999, 49(PT 2), 351-359.
[http://dx.doi.org/10.1099/00207713-49-2-351] [PMID: 10319455]
[24]
Yang, X.; Liang, Q.; Chen, Y.; Wang, B. Alteration of methanogenic archaeon by ethanol contribute to the enhancement of biogenic methane production of lignite. Front. Microbiol., 2019, 10, 2323.
[http://dx.doi.org/10.3389/FMICB.2019.02323] [PMID: 31649654]
[25]
Hatcher, P.G. Chemical structural models for coalified wood (vitrinite) in low rank coal. Org. Geochem., 1990, 16, 959-968.
[http://dx.doi.org/10.1016/0146-6380(90)90132-J]
[26]
Fukushima, E.; Shinka, Y.; Fukui, T.; Atomi, H.; Imanaka, T. Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures. J. Bacteriol., 2007, 189(19), 7134-7144.
[http://dx.doi.org/10.1128/JB.00751-06] [PMID: 17660280]
[27]
Lens, P.; De Poorter, M.P.; Cronenberg, C.C.; Verstraete, W.H. Sulfate reducing and methane producing bacteria in aerobic wastewater treatment. Water Res., 1995, 29, 871-880.
[http://dx.doi.org/10.1016/0043-1354(94)00195-D]
[28]
Harada, H.; Uemura, S.; Momonoi, K. Interaction between sulfatereducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res., 1994, 28, 355-367.
[http://dx.doi.org/10.1016/0043-1354(94)90273-9]
[29]
Zengler, K.; Richnow, H.H.; Rosselló-Mora, R.; Michaelis, W.; Widdel, F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 1999, 401(6750), 266-269.
[http://dx.doi.org/10.1038/45777] [PMID: 10499582]
[30]
Ritter, D.; Vinson, D.; Barnhart, E.; Akob, D.M.; Fields, M.W.; Cunningham, A.B. Enhanced microbial coalbed methane generation: a review of research, commercial activity, and remaining challenges. Int. J. Coal Geol., 2015, 146, 28-41.
[http://dx.doi.org/10.1016/J.COAL.2015.04.013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy