Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and Anti-Proliferative Evaluations of New Heterocyclic Derivatives Using 5,6,8,9-Tetrahydropyrazolo[5,1-b]quinazolin-7(3H)-one Derivatives Derived from Cyclohexa-1,4-dione

Author(s): Mahmoud A.A. Mahmoud*, Meshari A. Alsharif and Rafat M. Mohareb

Volume 21 , Issue 4 , 2021

Published on: 23 May, 2020

Page: [468 - 486] Pages: 19

DOI: 10.2174/1871520620666200523162549

Price: $65

Abstract

Background: Recentlty, pyrazoloquinazoline derivatives acquired a special attention due to their wide range of pharmacological activities, especially therapeutic. Through the market, it was found that many pharmacological drugs containing the quinazoline nucleus were known.

Objective: The aim of this work is to synthesize target molecules possessing not only anti-tumor activities but also kinase inhibitors. The target molecules were obtained through the synthesis of a series of 5,6,8,9- tetrahydropyrazolo[5,1-b]quinazolin-7(3H)-one derivatives 4a-i using the multi-component reactions of cyclohexane- 1,4-dione (1), the 5-amino-4-(2-arylhydrazono)-4H-pyrazol-3-ol derivatives 2a-c, the aromatic aldehydes 3a-c, respectively. The synthesized compounds were evaluated against c-Met kinase, PC-3 cell line, and different kinds of cancer cell lines together with normal cell line, tyrosine kinases, and Pim-1 kinase.

Methods: Multi-component reactions were adopted using compound 1 to get different 5,6,8,9- tetrahydropyrazolo[5,1-b]quinazolin-7(3H)-one derivatives which underwent further heterocyclization reactions. The c-Met kinase activity of all compounds was evaluated using Homogeneous Time-Resolved Fluorescence (HTRF) assay, taking foretinib as the positive control. The anti-proliferative activity of all target compounds against the human prostatic cancer PC-3 cell line was measured using MTT assay using SGI-1776 as the reference drug. All the synthesized compounds were assessed for inhibitory activities against A549 (non-small cell lung cancer), H460 (human lung cancer), HT-29 (human colon cancer), and MKN-45 (human gastric cancer) cancer cell lines together with foretinib as the positive control by an MTT assay.

Results: Antiproliferative evaluations and c-Met kinase, Pim-1 kinase inhibitions were performed for the synthesized compounds, where the varieties of substituents through the aryl ring and the thiophene moiety afforded compounds with high activities.

Conclusion: The compounds with high antiproliferative activity were tested towards c-Met and the results showed that compounds 4e, 4f, 4g, 4i, 6i, 6k, 6l, 8f, 8i, 10d, 10e, 10f, 10h, 12e, 12f, 12g, 12h, 12i, 14f, 14g, 14h, and 14i were the most potent compounds. A further selection of compounds for the Pim-1 kinase inhibition activity showed that compounds 4f, 6i, 6l, 8h, 8i, 8g, 10d, 12i, and 14f were the most active compounds to inhibit Pim-1.

Keywords: Quinazoline, multi-component reactions, pyran, pyridine, kinase inhibitors, antiproliferative activity.

Graphical Abstract
[1]
Das, D.; Hong, J. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur. J. Med. Chem., 2019, 170, 55-72.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.004] [PMID: 30878832]
[2]
Nagaraju, B.; Kovvuri, J.; Kumar, C.G.; Routhu, S.R.; Shareef, M.A.; Kadagathur, M.; Adiyala, P.R.; Alavala, S.; Nagesh, N.; Kamal, A. Synthesis and biological evaluation of pyrazole linked benzothiazole-β-naphthol derivatives as topoisomerase I inhibitors with DNA binding ability. Bioorg. Med. Chem., 2019, 27(5), 708-720.
[http://dx.doi.org/10.1016/j.bmc.2019.01.011] [PMID: 30679134]
[3]
Thomas, R.; Mary, Y.S.; Resmi, L.S.; Narayana, B.; Sarojini, S.B.; Armaković, S.; Armaković, S.J.; Vijayakumar, G.; Alsenoy, C.V.; Mohan, B.J. Synthesis and spectroscopic study of two new pyrazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J. Mol. Struct., 2019, 1181, 599-612.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.014]
[4]
Valiey, E.; Dekamin, M.G.; Alirezvani, Z. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives. Int. J. Biol. Macromol., 2019, 129, 407-421.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.027] [PMID: 30658146]
[5]
Abdel-Aziz, M. Abuo-Rahma, Gel-D.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[6]
Hassan, G.S.; Abdel Rahman, D.E.; Abdelmajeed, E.A.; Refaey, R.H.; Alaraby Salem, M.; Nissan, Y.M. New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. Eur. J. Med. Chem., 2019, 171, 332-342.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.052] [PMID: 30928706]
[7]
Sayed, G.H.; Azab, M.E.; Anwer, K.E.; Raouf, M.A.; Negm, N.A. Pyrazole, pyrazolone and enaminonitrile pyrazole derivatives: Synthesis, characterization and potential in corrosion inhibition and antimicrobial applications. J. Mol. Liq., 2018, 252, 329-338.
[http://dx.doi.org/10.1016/j.molliq.2017.12.156]
[8]
Yang, H.Y.; Tae, J.; Seo, Y.W.; Kim, Y.J.; Im, H.Y.; Choi, G.D.; Cho, H.; Park, W.K.; Kwon, O.S.; Cho, Y.S.; Ko, M.; Jang, H.; Lee, J.; Choi, K.; Kim, C.H.; Lee, J.; Pae, A.N. Novel pyrimidoazepine analogs as serotonin 5-HT(2A) and 5-HT(2C) receptor ligands for the treatment of obesity. Eur. J. Med. Chem., 2013, 63, 558-569.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.020] [PMID: 23537943]
[9]
Monge, A.; Aldana, I.; Alvarez, T.; Losa, M.J.; Font, M.; Cenarruzabeitia, E.; Lasheras, B.; Frechilla, D.; Castiella, E.; Alvarez, E.F. 1-Hydrazino-4-(3,5-dimethyl-1-pyrazolyl)-5H-pyridazino[4,5-b]indole. A new antihypertensive agent. Eur. J. Med. Chem., 1991, 26, 655-658.
[http://dx.doi.org/10.1016/0223-5234(91)90202-X]
[10]
Abdellatif, K.R.A.; Fadaly, W.A.A.; Kamel, G.M.; Elshaier, Y.A.M.M.; El-Magd, M.A. Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR-γ agonists and anti-inflammatory COX-2 selective inhibitors. Bioorg. Chem., 2019, 82, 86-99.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.034] [PMID: 30278282]
[11]
Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem., 2018, 77, 106-124.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.007] [PMID: 29353728]
[12]
Shamsuzzaman, S.T.; Alam, M.G.; Dar, A.M. Synthesis, characterization and anticancer studies of new steroidal oxadiazole, pyrrole and pyrazole derivatives. J. Saudi Chem. Soc., 2015, 19, 387-391.
[http://dx.doi.org/10.1016/j.jscs.2012.04.009]
[13]
Alanine, A.; Gobbi, L.C.; Kolczewski, S.; Luebbers, T.; Peters, J.U.; Steward, L. Preparation of 8-alkoxy or cycloalkoxy-4-methyl-3,4-dihydro-quinazolin-2-ylamines for treating 5-HT5A receptor related diseases. U.S. Patent 2,006,293,350A1, , 2006.
[14]
Chaturvedula, P.V.; Chen, L.; Civiello, R.; Degnan, A.P.; Dubowchik, G.M.; Han, X.; Jiang, X.J.; Macor, J.E.; Poindexter, G.S.; Tora, G.O.; Luo, G.U.S. Preparation of piperidine-1-carboxamide derivatives and spirocycles thereof as antagonists of calcitonin gene-related peptide receptors. U.S. Patent 2,007,149,503A1, 2007.
[15]
Alagarsamy, V.; Raja Solomon, V.; Dhanabal, K. Synthesis and pharmacological evaluation of some 3-phenyl-2-substituted-3H-quinazolin-4-one as analgesic, anti-inflammatory agents. Bioorg. Med. Chem., 2007, 15(1), 235-241.
[http://dx.doi.org/10.1016/j.bmc.2006.09.065] [PMID: 17079148]
[16]
Briguglio, I.; Loddo, R.; Laurini, E.; Fermeglia, M.; Piras, S.; Corona, P.; Giunchedi, P.; Gavini, E.; Sanna, G.; Giliberti, G.; Ibba, C.; Farci, P.; La Colla, P.; Pricl, S.; Carta, A. Synthesis, cytotoxicity and antiviral evaluation of new series of imidazo[4,5-g]quinoline and pyrido[2,3-g]quinoxalinone derivatives. Eur. J. Med. Chem., 2015, 105, 63-79.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.002] [PMID: 26479028]
[17]
Safaei, H.R.; Shekouhy, M.; Khademi, S.; Rahmanian, V.; Safaei, M. Diversity-oriented synthesis of quinazoline derivatives using zirconium tetrakis(dodecylsulfate) [Zr(DS)4] as a reusable Lewis acid-surfactant-combined catalyst in tap water. J. Induct. Engin. Chem., 2014, 20, 3019-3024.
[http://dx.doi.org/10.1016/j.jiec.2013.11.037]
[18]
Alagarsamy, V.; Pathak, U.S. Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-ones. Bioorg. Med. Chem., 2007, 15(10), 3457-3462.
[http://dx.doi.org/10.1016/j.bmc.2007.03.007] [PMID: 17391966]
[19]
Murugan, V.; Kulkarni, M.; Anand, R.M.; Kumar, E.P.; Suresh, B.; Reddy, V.M. Synthesis of 2-[bis-2(chloroethyl)amino}me.thyl]-6,8-dinitro-1-(4-substituted phenyl)-1H-quinazolin-4-one derivatives as possible antineoplastic agents. Asian J. Chem., 2006, 18, 900-906.
[20]
Grasso, S.; Micale, N.; Monforte, A.M.; Monforte, P.; Polimeni, S.; Zappalà, M. Synthesis and in vitro antitumour activity evaluation of 1-aryl-1H,3H-thiazolo[4,3-b]quinazolines. Eur. J. Med. Chem., 2000, 35(12), 1115-1119.
[http://dx.doi.org/10.1016/S0223-5234(00)01195-8] [PMID: 11248410]
[21]
Testard, A.; Picot, L.; Lozach, O.; Blairvacq, M.; Meijer, L.; Murillo, L.; Piot, J.M.; Thiéry, V.; Besson, T. Synthesis and evaluation of the antiproliferative activity of novel thiazoloquinazolinone kinases inhibitors. J. Enzyme Inhib. Med. Chem., 2005, 20(6), 557-568.
[http://dx.doi.org/10.1080/14756360500212399] [PMID: 16408791]
[22]
Letourneau, J.; Riviello, C.; Ho, K.K.; Chan, J.H.; Ohlmeyer, M.; Jokiel, P.; Neagu, I.; Morphy, J.R.; Napier, S.E. Preparation of 2-(4-Oxo-4H-quinazolin-3-yl)acetamides as vasopressin V3 receptor antagonists. WO Patent 2,006,095,014A1,, 2006.
[23]
El-Sayed, N.N.E.; Abdelaziz, M.A.; Wardakhan, W.W.; Mohareb, R.M. The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno[2,3-d]pyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities. Steroids, 2016, 107, 98-111.
[http://dx.doi.org/10.1016/j.steroids.2015.12.023] [PMID: 26772772]
[24]
Mohareb, R.M.; Abdo, N.Y.M.; Al-Farouk, F.O. Synthesis, cytotoxic and anti-proliferative activity of novel thiophene, thieno[2,3-b]pyridine and pyran derivatives derived from 4,5,6,7-tetrahydrobenzo[b]thiophene derivative. Acta Chim. Slov., 2017, 64(1), 117-128.
[http://dx.doi.org/10.17344/acsi.2016.2920] [PMID: 28380235]
[25]
Mohareb, R.M.; Al-fourouk, F.O. Uses of dimedone for the synthesis of new heterocyclic derivatives with anti-tumor, c-Met, tyrosine, and Pim-1 kinases inhibitions. Med. Chem. Res., 2018, 27, 1984-2003.
[http://dx.doi.org/10.1007/s00044-018-2208-7]
[26]
Mohareb, R.M.; Al-Omran, F.; Ibrahim, R.A. The uses of cyclohexan-1,4-dione for the synthesis of thiophene derivatives as new anti-proliferative, prostate anticancer, c-Met and tyrosine kinase inhibitors. Med. Chem. Res., 2018, 27, 618-633.,
[http://dx.doi.org/10.1007/s00044-017-2087-3]
[27]
Liu, L.; Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Chen, A.; Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.; Teffera, Y.; Yang, Y.; Zhang, Y.; Bellon, S.F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M.H.; Harmange, J.C.; Dussault, I.; Kim, T.S. Discovery of a potent, selective, and orally bioavailable c-Met inhibitor: 1-(2-hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J. Med. Chem., 2008, 51(13), 3688-3691.
[http://dx.doi.org/10.1021/jm800401t] [PMID: 18553959]
[28]
Peach, M.L.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R., Jr; Nicklaus, M.C.; Bottaro, D.P.; Bottaro, D.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J. Med. Chem., 2009, 52(4), 943-951.
[http://dx.doi.org/10.1021/jm800791f] [PMID: 19199650]
[29]
Knudsen, B.S.; Gmyrek, G.A.; Inra, J.; Scherr, D.S.; Vaughan, E.D.; Nanus, D.M.; Kattan, M.W.; Gerald, W.L.; Vande Woude, G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60(6), 1113-1117.
[http://dx.doi.org/10.1016/S0090-4295(02)01954-4] [PMID: 12475693]
[30]
Humphrey, P.A.; Zhu, X.; Zarnegar, R.; Swanson, P.E.; Ratliff, T.L.; Vollmer, R.T.; Day, M.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol., 1995, 147(2), 386-396.
[PMID: 7639332]
[31]
Verras, M.; Lee, J.; Xue, H.; Li, T.H.; Wang, Y.; Sun, Z. The androgen receptor negatively regulates the expression of c-Met: Implications for a novel mechanism of prostate cancer progression. Cancer Res., 2007, 67(3), 967-975.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3552] [PMID: 17283128]
[32]
De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103(8), 645-661.
[http://dx.doi.org/10.1093/jnci/djr093] [PMID: 21464397]
[33]
Zhu, W.; Wang, W.; Xu, S.; Wang, J.; Tang, Q.; Wu, C.; Zhao, Y.; Zheng, P. Synthesis, and docking studies of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety as c-Met inhibitors. Bioorg. Med. Chem., 2016, 24(8), 1749-1756.
[http://dx.doi.org/10.1016/j.bmc.2016.02.046] [PMID: 26964675]
[34]
Zhang, Z.; Lee, J.C.; Lin, L.; Olivas, V.; Au, V.; LaFramboise, T.; Abdel-Rahman, M.; Wang, X.; Levine, A.D.; Rho, J.K.; Choi, Y.J.; Choi, C.M.; Kim, S.W.; Jang, S.J.; Park, Y.S.; Kim, W.S.; Lee, D.H.; Lee, J.S.; Miller, V.A.; Arcila, M.; Ladanyi, M.; Moonsamy, P.; Sawyers, C.; Boggon, T.J.; Ma, P.C.; Costa, C.; Taron, M.; Rosell, R.; Halmos, B.; Bivona, T.G. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet., 2012, 44(8), 852-860.
[http://dx.doi.org/10.1038/ng.2330] [PMID: 22751098]
[35]
Tiedt, R.; Degenkolbe, E.; Furet, P.; Appleton, B.A.; Wagner, S.; Schoepfer, J.; Buck, E.; Ruddy, D.A.; Monahan, J.E.; Jones, M.D.; Blank, J.; Haasen, D.; Drueckes, P.; Wartmann, M.; McCarthy, C.; Sellers, W.R.; Hofmann, F. A drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. Cancer Res., 2011, 71(15), 5255-5264.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4433] [PMID: 21697284]
[36]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411(6835), 355-365.
[http://dx.doi.org/10.1038/35077225] [PMID: 11357143]
[37]
DiSalvo, J.; Bayne, M.L.; Conn, G.; Kwok, P.W.; Trivedi, P.G.; Soderman, D.D.; Palisi, T.M.; Sullivan, K.A.; Thomas, K.A. Purification and characterization of a naturally occurring vascular endothelial growth factor.placenta growth factor heterodimer. J. Biol. Chem., 1995, 270(13), 7717-7723.
[http://dx.doi.org/10.1074/jbc.270.13.7717] [PMID: 7706320]
[38]
Senger, D.R.; Galli, S.J.; Dvorak, A.M.; Perruzzi, C.A.; Harvey, V.S.; Dvorak, H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983, 219(4587), 983-985.
[http://dx.doi.org/10.1126/science.6823562] [PMID: 6823562]
[39]
Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer, 2002, 2(10), 795-803.
[http://dx.doi.org/10.1038/nrc909] [PMID: 12360282]
[40]
McKibben, B.P.; Cartwright, C.H.; Castelhano, A.L. Practical synthesis of tetrasubstituted thiophenes for use in compound libraries. Tetrahedron Lett., 1999, 40, 5471-5474.
[http://dx.doi.org/10.1016/S0040-4039(99)01108-9]
[41]
Wang, K.; Kim, D.; Dömling, A. Cyanoacetamide MCR (III): Three-component Gewald reactions revisited. J. Comb. Chem., 2010, 12(1), 111-118.
[http://dx.doi.org/10.1021/cc9001586] [PMID: 19958011]
[42]
Popiołek, Ł.; Piątkowska-Chmiel, I.; Gawrońska-Grzywacz, M.; Biernasiuk, A.; Izdebska, M.; Herbet, M.; Sysa, M.; Malm, A.; Dudka, J.; Wujec, M. New hydrazide-hydrazones and 1,3-thiazolidin-4-ones with 3-hydroxy-2-naphthoic moiety: Synthesis, in vitro and in vivo studies. Biomed. Pharmacother., 2018, 103, 1337-1347.
[http://dx.doi.org/10.1016/j.biopha.2018.04.163] [PMID: 29864916]
[43]
Popiołek, Ł.; Biernasiuk, A. Synthesis and investigation of antimicrobial activities of nitrofurazone analogues containing hydrazide-hydrazone moiety. Saudi Pharm. J., 2017, 25(7), 1097-1102.
[http://dx.doi.org/10.1016/j.jsps.2017.05.006] [PMID: 29158722]
[44]
Dehestani, L.; Ahangar, N.; Hashemi, S.M.; Irannejad, H.; Honarchian Masihi, P.; Shakiba, A.; Emami, S. Design, synthesis, in vivo and in silico evaluation of phenacyl triazole hydrazones as new anticonvulsant agents. Bioorg. Chem., 2018, 78, 119-129.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.001] [PMID: 29550532]
[45]
Pavan, F.R. da S Maia, P.I.; Leite, S.R.; Deflon, V.M.; Batista, A.A.; Sato, D.N.; Franzblau, S.G.; Leite, C.Q.; Clarice, Q.F.; Leite, C.Q.F. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: Anti-Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem., 2010, 45(5), 1898-1905.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.028] [PMID: 20163897]
[46]
Bartolomeu, A.A.; Brocksom, T.J.; Filho, L.C.S.; Oliveira, K.T. Multicomponent reactions mediated by NbCl5 for the synthesis of phthalonitrile-quinoline dyads: Methodology, scope, mechanistic insights and applications in phthalocyanine synthesis. Dyes Pigments, 2018, 151, 391-402.
[http://dx.doi.org/10.1016/j.dyepig.2017.12.065]
[47]
Oshiro, P.B.; Lima, S.S.G.; Menezes, M.L.; Filho, L.C.S. Synthesis of 4H-chromenes promoted by NbCl5 through multicomponent reaction. Tetrahedron Lett., 2015, 56, 4476-4479.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.099]
[48]
Filho, J.F.A.; Lemos, B.C.; Souza, A.S.; Sergio Pinheiro, S.; Sandro, J.; Greco, S.J. Multicomponent Mannich reactions: General aspects, methodologies and applications. Tetrahedron, 2017, 73, 6977-7004.
[http://dx.doi.org/10.1016/j.tet.2017.10.063]
[49]
Santos, W.H.; Filho, L.C.S. New method for the synthesis of chromeno[4,3-b]chromene derivatives via multicomponent reaction promoted by niobium pentachloride. Tetrahedron Lett., 2017, 58, 894-897.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.062]
[50]
Ilangovan, A.; Sakthivel, P.; Sivasankari, K.; Mercy, C.S.A.; Natarajaseenivasan, K. Discovery of 6,7-dihydro-3H-pyrano[4,3-c]isoxazol-3-ones as a new class of pathogen specific anti-leptospiral agents. Eur. J. Med. Chem., 2017, 125, 29-40.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.020] [PMID: 27643561]
[51]
Kumar, S.; Pratap, R.; Kumar, A.; Kumar, B.; Tandon, V.K.; Ram, V.J. Synthesis of dibenzo[d,f]diazepinones and alkenylindolinones through ring transformation of 2H-pyran-2-one-3-carbonitriles by indolin-2-ones. Tetrahedron, 2013, 69, 4857-4865.
[http://dx.doi.org/10.1016/j.tet.2013.04.053]
[52]
Smith, B.E.; Lash, T.D. Porphyrins with exocyclic rings. Part 25: synthesis of porphyrins with a fused cyclic ether subunit from tetrahydro-4H-pyan-4-one. Tetrahedron, 2010, 66, 4413-4422.
[http://dx.doi.org/10.1016/j.tet.2010.04.069]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy