Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article (Mini-Review)

Immunomodulatory Effects of Medicinal Plants used for Vitiligo in Traditional Persian Medicine

Author(s): Mohsen Haghir Ebrahimabadi, Seyede Nargess Sadati Lamardi and Laila Shirbeigi*

Volume 18 , Issue 2 , 2021

Published on: 17 May, 2020

Page: [160 - 178] Pages: 19

DOI: 10.2174/1570163817666200517115438

Price: $65

Abstract

Background: Vitiligo is a hypopigmentation disorder that affects 1% of the world's population. Vitiligo causes white spots on the skin, mucous membranes, or white hair by destroying skin melanocytes. The pathogenesis of vitiligo is unknown but autoimmune, autocytotoxic, and neural mechanisms are suggested. According to the autoimmune theory, in people with vitiligo, immune cells invade and damage melanocytes. T cells are more commonly present in vitiligo patients' skin and remain in the lesion site, which is composed of CD8 and CD4 T cells. Many studies have been conducted on the presence and role of cytokines such as interleukins and interferongamma (IFN-γ) in the vitiligo process.

Aim: This study aimed to introduce herbs effective against vitiligo from the perspective of Persian medicine and to investigate their possible therapeutic mechanisms with the possible effects of herbs on autoimmune mechanisms.

Methods: For this purpose, keywords were used to extract data from Persian medicine textbooks, and then relevant scientific databases, including Google Scholar, PubMed, Web of Science, and Scopus were examined.

Results: It was found that Persian medicine scholars used 50 different medicinal plants to treat and reduce the complications of vitiligo, and recent scientific studies have proven immune-regulating properties and reducing the effect of many of them on cytokines.

Conclusion: According to scientific evidence on immunomodulatory effects, new research into the effects of these plants on vitiligo can lead to the discovery of new drugs and approaches for treating this disease.

Keywords: Herbal medicine, interleukins, interferon-gamma (IFN-γ), persian medicine, vitiligo, tumor necrosis factor alpha (TNF-α).

[1]
Whitton ME, Pinart M, Batchelor J, et al. Interventions for vitiligo. Cochrane Database Syst Rev 2015; 24(2)CD003263
[http://dx.doi.org/10.1002/14651858.CD003263.pub5] [PMID: 25710794]
[2]
Parsad D, Pandhi R, Juneja A. Effectiveness of oral Ginkgo biloba in treating limited, slowly spreading vitiligo. Clin Exp Dermatol 2003; 28(3): 285-7.
[http://dx.doi.org/10.1046/j.1365-2230.2003.01207.x] [PMID: 12780716]
[3]
Sehgal VN, Srivastava G. Vitiligo: compendium of clinico-epidemiological features. Indian J Dermatol Venereol Leprol 2007; 73(3): 149-56.
[http://dx.doi.org/10.4103/0378-6323.32708] [PMID: 17558045]
[4]
Arican O, Kurutas EB. Oxidative stress in the blood of patients with active localized vitiligo. Acta Dermatovenerol Alp Panonica Adriat 2008; 17(1): 12.
[5]
Kakourou T. Vitiligo in children. World J Pediatr 2009; 5(4): 265-8.
[http://dx.doi.org/10.1007/s12519-009-0050-1] [PMID: 19911140]
[6]
Ahmed I, Ahmed S, Nasreen S. Frequency and pattern of psychiatric disorders in patients with vitiligo. J Ayub Med Coll Abbottabad 2007; 19(3): 19-21.
[PMID: 18444584]
[7]
Al-Mutairi N, Sharma A. Profile of vitiligo in Farwaniya region in Kuwait. Kuwait Med J 2006; 38(2): 128.
[8]
Bystryn J-C. Immune mechanisms in vitiligo. Clin Dermatol 1997; 15(6): 853-61.
[http://dx.doi.org/10.1016/S0738-081X(97)00126-0] [PMID: 9404688]
[9]
van den Boorn JG, Konijnenberg D, Dellemijn TA, et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol 2009; 129(9): 2220-32.
[http://dx.doi.org/10.1038/jid.2009.32] [PMID: 19242513]
[10]
Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin. J Invest Dermatol 2012; 132(7): 1869-76.
[http://dx.doi.org/10.1038/jid.2011.463] [PMID: 22297636]
[11]
Bromley SK, Mempel TR, Luster AD. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 2008; 9(9): 970-80.
[http://dx.doi.org/10.1038/ni.f.213] [PMID: 18711434]
[12]
Yang L, Wei Y, Sun Y, et al. Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: A pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol 2015; 95(6): 664-70.
[http://dx.doi.org/10.2340/00015555-2080] [PMID: 25721262]
[13]
Strassner JP, Harris JE. Understanding mechanisms of autoimmunity through translational research in vitiligo. Curr Opin Immunol 2016; 43: 81-8.
[http://dx.doi.org/10.1016/j.coi.2016.09.008] [PMID: 27764715]
[14]
Gomes IA, de Carvalho FO, de Menezes AF, et al. The role of interleukins in vitiligo: a systematic review. J Eur Acad Dermatol Venereol 2018; 32(12): 2097-111.
[http://dx.doi.org/10.1111/jdv.15016] [PMID: 29704266]
[15]
Szczurko O, Boon HS. A systematic review of natural health product treatment for vitiligo. BMC Dermatol 2008; 8(1): 2.
[http://dx.doi.org/10.1186/1471-5945-8-2] [PMID: 18498646]
[16]
Ranjbar M, Aliasl F, Nejatbakhsh F, Shirbegi L. Vitiligo and its. Medicine 2016; 82-6.
[17]
Ebadi N, Bagheri S, Manayi A, et al. Determination of scientific name of bitter “Qust”: an important controversial plant source in the Iranian medicinal plants market for neurological complications. In: Res J Pharmacognosy. 2018; 5: pp. (4)25-32.
[18]
Kumar A, Maurya AK, Chand G, Agnihotri VK. Comparative metabolic profiling of Costus speciosus leaves and rhizomes using NMR, GC-MS and UPLC/ESI-MS/MS. Nat Prod Res 2018; 32(7): 826-33.
[http://dx.doi.org/10.1080/14786419.2017.1365069] [PMID: 28814124]
[19]
Lim HS, Jin SE, Kim OS, Shin HK, Jeong SJ. Alantolactone from saussurea lappa exerts antiinflammatory effects by inhibiting chemokine production and STAT1 phosphorylation in TNF-α and IFN-γ-induced in HaCaT cells. Phytother Res 2015; 29(7): 1088-96.
[http://dx.doi.org/10.1002/ptr.5354] [PMID: 25881570]
[20]
Lee B-K, Park S-J, Nam S-Y, et al. Anti-allergic effects of sesquiterpene lactones from Saussurea costus (Falc.) Lipsch. determined using in vivo and in vitro experiments. J Ethnopharmacol 2018; 01213: 256-61.
[21]
El-Far AH, Shaheen HM, Alsenosy AW, El-Sayed YS, Al Jaouni SK, Mousa SA. Costus speciosus: traditional uses, phytochemistry, and therapeutic potentials. Pharmacogn Rev 2018; 12(23)
[http://dx.doi.org/10.4103/phrev.phrev_29_17]
[22]
Dioscorides P, Goodyer J, Gunther RWT. The Greek herbal of Dioscorides. New York: Hafner 1959.
[23]
Adams M, Berset C, Kessler M, Hamburger M. Medicinal herbs for the treatment of rheumatic disorders-a survey of European herbals from the 16th and 17th century. J Ethnopharmacol 2009; 121(3): 343-59.
[http://dx.doi.org/10.1016/j.jep.2008.11.010] [PMID: 19063957]
[24]
MH AK. Makhzan ol Advieh Tehran: Sabz arang publication 2008.
[25]
Sharifzadeh M, Ebadi N, Manayi A, et al. Effect of rubia tinctorum L. extractson carrageenan-induced paw edema in rats 2014.
[26]
Ford L, Rayner CM, Blackburn RS. Isolation and extraction of ruberythric acid from Rubia tinctorum L. and crystal structure elucidation. Phytochemistry 2015; 117: 168-73.
[http://dx.doi.org/10.1016/j.phytochem.2015.06.015] [PMID: 26091962]
[27]
Nam W, Kim SP, Nam SH, Friedman M. Structure-antioxidative and anti-inflammatory activity relationships of purpurin and related anthraquinones in chemical and cell assays. Molecules 2017; 22(2): 265.
[http://dx.doi.org/10.3390/molecules22020265] [PMID: 28208613]
[28]
Guarrera PM. Traditional antihelmintic, antiparasitic and repellent uses of plants in Central Italy. J Ethnopharmacol 1999; 1568(1): 183-92.
[http://dx.doi.org/10.1016/S0378-8741(99)00089-6]
[29]
Ruiz-López MA, Barrientos-Ramírez L, García-López PM, et al. Nutritional and bioactive compounds in Mexican lupin beans species: a mini-review. Nutrients 2019; 11(8)E1785
[http://dx.doi.org/10.3390/nu11081785] [PMID: 31382375]
[30]
del Carmen Millán-Linares M, Bermúdez B, del Mar Yust M, Millán F, Pedroche J. Anti-inflammatory activity of lupine (Lupinus angustifolius L.) protein hydrolysates in THP-1-derived macrophages. J Funct Foods 2014; 8: 224-33.
[http://dx.doi.org/10.1016/j.jff.2014.03.020]
[31]
Wei J, Bhatt S, Chang LM, Sampson HA, Masilamani M. Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PLoS One 2012; 7(10)e47979
[http://dx.doi.org/10.1371/journal.pone.0047979] [PMID: 23110148]
[32]
Sun J, Sun WJ, Li ZY, et al. Daidzein increases OPG/RANKL ratio and suppresses IL-6 in MG-63 osteoblast cells. Int Immunopharmacol 2016; 40: 32-40.
[http://dx.doi.org/10.1016/j.intimp.2016.08.014] [PMID: 27576059]
[33]
Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F. Nigella sativa L. (black cumin): a promising natural remedy for wide range of illnesses. Evid Based Complement Alternat Med 2019.
[34]
Oskouei Z, Akaberi M, Hosseinzadeh H. A glance at black cumin (Nigella sativa) and its active constituent, thymoquinone, in ischemia: a review. Iran J Basic Med Sci 2018; 21(12): 1200-9.
[PMID: 30627362]
[35]
Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F. Nigella sativa L. (Black Cumin): A promising natural remedy for wide range of illnesses. Evid Based Complement Alternat Med 2019.20191528635
[http://dx.doi.org/10.1155/2019/1528635] [PMID: 31214267]
[36]
Hadi V, Kheirouri S, Alizadeh M, Khabbazi A, Hosseini H. Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled clinical trial. Avicenna J Phytomed 2016; 6(1): 34-43.
[PMID: 27247920]
[37]
Boskabady M-H, Keyhanmanesh R, Khameneh S, Doostdar Y, Khakzad M-R. Potential immunomodulation effect of the extract of Nigella sativa on ovalbumin sensitized guinea pigs. J Zhejiang Univ Sci B 2011; 12(3): 201-9.
[http://dx.doi.org/10.1631/jzus.B1000163] [PMID: 21370505]
[38]
Arjumand S, Shahzad M, Shabbir A, Yousaf MZ. Thymoquinone attenuates rheumatoid arthritis by downregulating TLR2, TLR4, TNF-α, IL-1, and NFκB expression levels. Biomed Pharmacother 2019; 111: 958-63.
[http://dx.doi.org/10.1016/j.biopha.2019.01.006] [PMID: 30841475]
[39]
Ravindran PN, Divakaran M. Handbook of Herbs and Spices. 2nd ed. 2012.
[40]
Ratheesh M, Shyni GL, Helen A. Methanolic extract of Ruta graveolens L. inhibits inflammation and oxidative stress in adjuvant induced model of arthritis in rats. Inflammopharmacology 2009; 17(2): 100-5.
[http://dx.doi.org/10.1007/s10787-009-8044-0] [PMID: 19205849]
[41]
Raghav SK, Gupta B, Agrawal C, Goswami K, Das HR. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J Ethnopharmacol 2006; 104(1-2): 234-9.
[http://dx.doi.org/10.1016/j.jep.2005.09.008] [PMID: 16207519]
[42]
Mahmoud A, Germoush M, Soliman A. Ruta graveolens mitigates ammonium chloride-induced hyperammonemia by modulating antioxidant status and pro-inflammatory cytokines. Life Sci J 2014; 11(6): 269-75.
[43]
Raghav SK, Gupta B, Shrivastava A, Das HR. Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1beta through suppression of NF-kappaB activation by 3-(1′-1′-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L. Eur J Pharmacol 2007; 560(1): 69-80.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.002] [PMID: 17292351]
[44]
Sahu D, Raghav SK, Gautam H, Das HR. A novel coumarin derivative, 8-methoxy chromen-2-one alleviates collagen induced arthritis by down regulating nitric oxide, NFκB and proinflammatory cytokines. Int Immunopharmacol 2015; 29(2): 891-900.
[http://dx.doi.org/10.1016/j.intimp.2015.08.012] [PMID: 26440401]
[45]
Tesfaye A, Mengesha W. Traditional uses, phytochemistry and pharmacological properties of garlic (Allium Sativum) and its biological active compounds. Int J Sci Res Engin Technol 2015; 1(5): 142-8.
[46]
Keiss H-P, Dirsch VM, Hartung T, et al. Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NF-kappaB activity. J Nutr 2003; 133(7): 2171-5.
[http://dx.doi.org/10.1093/jn/133.7.2171] [PMID: 12840173]
[47]
Salman H, Bergman M, Bessler H, Punsky I, Djaldetti M. Effect of a garlic derivative (alliin) on peripheral blood cell immune responses. Int J Immunopharmacol 1999; 21(9): 589-97.
[http://dx.doi.org/10.1016/S0192-0561(99)00038-7] [PMID: 10501628]
[48]
Hodge G, Hodge S, Han P. Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry 2002; 48(4): 209-15.
[http://dx.doi.org/10.1002/cyto.10133] [PMID: 12210145]
[49]
Dosoky NS, Satyal P, Barata LM, da Silva JKR, Setzer WN. Volatiles of black pepper fruits (Piper nigrum L.). Molecules 2019; 24(23): 4244.
[http://dx.doi.org/10.3390/molecules24234244] [PMID: 31766491]
[50]
Liu Y, Yadev VR, Aggarwal BB, Nair MG. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B. Natural product communications 2010; 5(8)1934578X1000500822
[51]
Wang B, Zhang Y, Huang J, Dong L, Li T, Fu X. Anti-inflammatory activity and chemical composition of dichloromethane extract from Piper nigrum and P. longum on permanent focal cerebral ischemia injury in rats. Rev Bras Farmacogn 2017; 27(3): 369-74.
[http://dx.doi.org/10.1016/j.bjp.2017.02.003]
[52]
Ying X, Chen X, Cheng S, Shen Y, Peng L, Xu HZ. Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. Int Immunopharmacol 2013; 17(2): 293-9.
[http://dx.doi.org/10.1016/j.intimp.2013.06.025] [PMID: 23838114]
[53]
Lin T-K, Zhong L, Santiago JL. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int J Mol Sci 2017; 19(1): 70.
[http://dx.doi.org/10.3390/ijms19010070] [PMID: 29280987]
[54]
Souza PAL, Marcadenti A, Portal VL. Effects of olive oil phenolic compounds on inflammation in the prevention and treatment of coronary artery disease. Nutrients 2017; 9(10): 1087.
[http://dx.doi.org/10.3390/nu9101087]
[55]
Choi K-C, Hwang J-M, Bang S-J, et al. Methanol extract of the aerial parts of barley (Hordeum vulgare) suppresses lipopolysaccharide-induced inflammatory responses in vitro and in vivo. Pharm Biol 2013; 51(8): 1066-76.
[http://dx.doi.org/10.3109/13880209.2013.768274] [PMID: 23746221]
[56]
Gul S, Ahmed S, Kifli N, et al. Multiple pathways are responsible for anti-inflammatory and cardiovascular activities of Hordeum vulgare L. J Transl Med 2014; 12(1): 316.
[http://dx.doi.org/10.1186/s12967-014-0316-9] [PMID: 25428431]
[57]
Choi J, Kim J, Min DY, et al. Inhibition of TNFα-induced interleukin-6 gene expression by barley (Hordeum vulgare) ethanol extract in BV-2 microglia. Genes Genomics 2019; 41(5): 557-66.
[http://dx.doi.org/10.1007/s13258-018-00781-8] [PMID: 30796706]
[58]
Kumar KS, Bhowmik D, Chiranjib B, Tiwari P. Allium cepa: A traditional medicinal herb and its health benefits. J Chem Pharm Res 2010; 2(1): 283-91.
[59]
Sima Nasri MA, Khatami N. Evaluation of analgesic and anti- inflammatory effects of fresh onion juice in experimental animals. Afr J Pharm Pharmacol 2012; 6(23): 1679-84.
[http://dx.doi.org/10.5897/AJPP12.179]
[60]
Kang B-K, Kim K-B-W-R, Ahn N-K, et al. Anti-inflammatory effect of onion (Allium cepa) peel hot water extract in vitro and in vivo. KSBB J 2015; 30(4): 148-54.
[http://dx.doi.org/10.7841/ksbbj.2015.30.4.148]
[61]
Khan MF. Biomedicinal and chemical profile of cupressus sempervirens: A mini review. Archivos De Medicina 2017; 2(3): 16.
[62]
Aborehab NM, Waly NE. IL-6 and NFE2L2: A putative role for the hepatoprotective effect of N. Sativa, P. Ginseng and C. Sempervirens in AFB-1 induced hepatocellular carcinoma in rats. Toxicol Rep 2019; 6: 457-64.
[http://dx.doi.org/10.1016/j.toxrep.2019.05.008] [PMID: 31193706]
[63]
Park D-J, Lee J-C, Lee Y-C. Effect of Sinapis alba L. on expression of interferon-gamma and interleukin-4 production in anti-CD3/anti-CD28-stimulated CD4 (+) T cells. Korea J Herbol 2010; 25(2): 129-36.
[64]
Xian Y-F, Hu Z, Ip S-P, et al. Comparison of the anti-inflammatory effects of Sinapis alba and Brassica juncea in mouse models of inflammation. Phytomedicine 2018; 50: 196-204.
[http://dx.doi.org/10.1016/j.phymed.2018.05.010] [PMID: 30466979]
[65]
Wagner AE, Terschluesen AM, Rimbach G. Health promoting effects of brassica-derived phytochemicals: from chemopreventive and anti-inflammatory activities to epigenetic regulation. Oxid Med Cell Longev 2013.
[http://dx.doi.org/10.1155/2013/964539]
[66]
Lee Y, Kim S, Yang B, et al. Anti-inflammatory effects of Brassica oleracea Var. capitata L.(Cabbage) methanol extract in mice with contact dermatitis. Pharmacogn Mag 2018; 14(54): 174-9.
[http://dx.doi.org/10.4103/pm.pm_152_17] [PMID: 29720827]
[67]
Kook S-H, Choi K-C, Lee Y-H, Cho H-K, Lee J-C. Raphanus sativus L. seeds prevent LPS-stimulated inflammatory response through negative regulation of the p38 MAPK-NF-κB pathway. Int Immunopharmacol 2014; 23(2): 726-34.
[http://dx.doi.org/10.1016/j.intimp.2014.11.001] [PMID: 25467201]
[68]
Choi K-C, Cho S-W, Kook S-H, et al. Intestinal anti-inflammatory activity of the seeds of Raphanus sativus L. in experimental ulcerative colitis models. J Ethnopharmacol 2016; 179: 55-65.
[http://dx.doi.org/10.1016/j.jep.2015.12.045] [PMID: 26721217]
[69]
Park H-J, Song M. Leaves of Raphanus sativus L. shows anti-inflammatory activity in LPS-stimulated macrophages via suppression of COX-2 and iNOS expression. Prev Nutr Food Sci 2017; 22(1): 50-5.
[http://dx.doi.org/10.3746/pnf.2017.22.1.50] [PMID: 28401088]
[70]
Khosropour P, Sajjadi S-E, Talebi A, Minaiyan M. Anti-inflammatory effect of Myrtus communis hydroalcoholic extract and essential oil on acetic acid induced colitis in rats. J Rep Pharmaceutical Sciences 2019; 8(2): 204-10.
[http://dx.doi.org/10.4103/jrptps.JRPTPS_8_19]
[71]
Maxia A, Frau MA, Falconieri D, Karchuli MS, Kasture S. Essential oil of Myrtus communis inhibits inflammation in rats by reducing serum IL-6 and TNF-α. Nat Product Commun 2011; 6(10)1934578X1100601034
[72]
Surjushe A, Vasani R, Saple DG. Aloe vera: a short review. Indian J Dermatol 2008; 53(4): 163-6.
[http://dx.doi.org/10.4103/0019-5154.44785] [PMID: 19882025]
[73]
Budai MM, Varga A, Milesz S, Tőzsér J, Benkő S. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol Immunol 2013; 56(4): 471-9.
[http://dx.doi.org/10.1016/j.molimm.2013.05.005] [PMID: 23911403]
[74]
Sanadgol N, Najafi S, Ghasemi LV, Motalleb G, Estakhr J. A study of the inhibitory effects of Citrullus colocynthis (CCT) using hydro-alcoholic extract on the expression of cytokines: TNF-α and IL-6 in high fat diet-fed mice towards a cure for diabetes mellitus. J pharmacog phytother 2011; 3(6): 81-8.
[75]
Rajamanickam E, Gurudeeban S, Ramanathan T, Satyavani K. Evaluation of anti inflammatory activity of Citrullus colocynthis. Int J Curr Res 2010; 2: 67-9.
[76]
Marzouk B, Marzouk Z, Haloui E, Fenina N, Bouraoui A, Aouni M. Screening of analgesic and anti-inflammatory activities of Citrullus colocynthis from southern Tunisia. J Ethnopharmacol 2010; 128(1): 15-9.
[http://dx.doi.org/10.1016/j.jep.2009.11.027] [PMID: 19962436]
[77]
Akhzari M, Mirghiasi S, Vassaf M, Bidgoli M, Tari Z. The effect of Citrullus colocynthis on the reduction of inflammatory agents in osteoarthritis. Mol Biol 2015; 4: 147.
[78]
Pashmforosh M, Rajabi Vardanjani H, Rajabi Vardanjani H, Pashmforosh M, Khodayar MJ. Topical anti-inflammatory and analgesic activities of Citrullus colocynthis extract cream in rats. Medicina (Kaunas) 2018; 54(4): 51.
[http://dx.doi.org/10.3390/medicina54040051] [PMID: 30344282]
[79]
Yücekutlu AN, Bildacı I. Determination of plant saponins and some of gypsophila species: a review of the literature. Hacettepe J Biol Chem 2008; 36(2): 129-35.
[80]
Arslan I, Celik A, Chol JH. A cytotoxic triterpenoid saponin from under-ground parts of Gypsophila pilulifera Boiss Heldr Fitoterapia 2012; 0183(4): 699-703.
[81]
Lin X, Chen Y, Lv S, et al. Gypsophila elegans isoorientin attenuates CCl4-induced hepatic fibrosis in rats via modulation of NF-κB and TGF-β1/Smad signaling pathways. Int Immunopharmacol 2015; 28(1): 305-12.
[http://dx.doi.org/10.1016/j.intimp.2015.06.021] [PMID: 26118630]
[82]
Ittiyavirah SP, Cheriyan S. Evaluation of ethanolic extract of Cucumis melo L. for inflammation and hyperplasia of prostate. International Journal of Nutrition, Pharmacology. Neurol Dis 2014; 4(4): 224.
[http://dx.doi.org/10.4103/2231-0738.139403]
[83]
Wang P, Li J, Attia FAK, et al. A critical review on chemical constituents and pharmacological effects of Lilium. Food Sci Hum Wellness 2019; 8(4): 330-6.
[http://dx.doi.org/10.1016/j.fshw.2019.09.001]
[84]
Kim HJ, Lee W, Yun JM. Luteolin inhibits hyperglycemia-induced proinflammatory cytokine production and its epigenetic mechanism in human monocytes. Phytother Res 2014; 28(9): 1383-91.
[http://dx.doi.org/10.1002/ptr.5141] [PMID: 24623679]
[85]
Ahmad SF, Bani S, Sultan P, et al. TNF-α inhibitory effect of Euphorbia hirta in rats. Pharm Biol 2013; 51(4): 411-7.
[http://dx.doi.org/10.3109/13880209.2012.734315] [PMID: 23336701]
[86]
Bani S, Kaul A, Khan B, et al. Anti-arthritic activity of a biopolymeric fraction from Euphorbia tirucalli. J Ethnopharmacol 2007; 110(1): 92-8.
[http://dx.doi.org/10.1016/j.jep.2006.09.021] [PMID: 17088037]
[87]
Al-Nahain A, Jahan R, Rahmatullah M. Zingiber officinale: A potential plant against rheumatoid arthritis. Arthritis 2014; 2014
[http://dx.doi.org/10.1155/2014/159089]
[88]
Rusmana D, Elisabeth M, Widowati W, Fauziah N, Maesaroh M. Inhibition of inflammatory agent production by ethanol extract and eugenol of Syzygium aromaticum (L.) flower bud (clove) in LPS-stimulated Raw 264.7 cells. Res J Med Plant 2015; 9(6): 264-74.
[http://dx.doi.org/10.3923/rjmp.2015.264.274]
[89]
Han X, Parker TL. Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharm Biol 2017; 55(1): 1619-22.
[http://dx.doi.org/10.1080/13880209.2017.1314513] [PMID: 28407719]
[90]
Turkoglu M, Pekmezci E, Kilic S, Dundar C, Sevinc H. Effect of Ficus carica leaf extract on the gene expression of selected factors in HaCaT cells. J Cosmet Dermatol 2017; 16(4): e54-8.
[http://dx.doi.org/10.1111/jocd.12344] [PMID: 28432719]
[91]
Izadpanah S, Farjadmand F, Eftekhari M, et al. Beneficial effects of Trachyspermum ammi (L.) sprague on rat irritable bowel syndrome. Res J Pharmacog 2019; 6(2): 57-66.
[92]
Nathan AAASB. In-vitro Evaluation of thymol derived from Trachyspermum ammi against acetaminophen induced hepatotoxicity towards lymphatic filariasis therapeutics. J Bacteriol Parasitol 2017; 8(5)
[http://dx.doi.org/10.4172/2155-9597.1000322]
[93]
Asgarpanah J, Kazemivash N. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chin J Integr Med 2013; 19(2): 153-9.
[http://dx.doi.org/10.1007/s11655-013-1354-5] [PMID: 23371463]
[94]
Chang J-M, Hung L-M, Chyan Y-J, Cheng C-M, Wu R-Y. Carthamus tinctorius enhances the antitumor activity of dendritic cell vaccines via polarization toward Th1 cytokines and increase of cytotoxic T lymphocytes. Evidence-Based Complementary Alternative Med 2011; 2011
[95]
Gilca M, Gaman L, Panait E, Stoian I, Atanasiu V. Chelidonium majus--an integrative review: traditional knowledge versus modern findings. Forsch Komplement Med 2010; 17(5): 241-8.
[http://dx.doi.org/10.1159/000321397] [PMID: 20980763]
[96]
Lee Y-C, Kim S-H, Roh S-S, Choi H-Y, Seo Y-B. Suppressive effects of Chelidonium majus methanol extract in knee joint, regional lymph nodes, and spleen on collagen-induced arthritis in mice. J Ethnopharmacol 2007; 112(1): 40-8.
[http://dx.doi.org/10.1016/j.jep.2007.01.033] [PMID: 17353105]
[97]
Mikołajczak PŁ, Kędzia B, Ożarowski M, et al. Evaluation of anti-inflammatory and analgesic activities of extracts from herb of Chelidonium majus L. Cent Eur J Immunol 2015; 40(4): 400-10.
[http://dx.doi.org/10.5114/ceji.2015.54607] [PMID: 26862303]
[98]
Choi E-M, Hwang J-K. Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia 2004; 75(6): 557-65.
[http://dx.doi.org/10.1016/j.fitote.2004.05.005] [PMID: 15351109]
[99]
Ozbek H. The anti-inflammatory activity of the Foeniculum vulgare L. essential oil and investigation of its median lethal dose in rats and mice. Int J Pharmacol 2005; 1(4): 329-31.
[http://dx.doi.org/10.3923/ijp.2005.329.331]
[100]
Kooti W, Moradi M-T, Ali-Akbari S, Sharafi-Ahvazi N, Asadi-Samani M, Ashtary-Larky D. Therapeutic and pharmacological potential of Foeniculum vulgare Mill: a review. J HerbMed Pharmacol 2014; p. 4.
[101]
Razik A, Adly F, Moussaid M, et al. Antimicrobial, antioxidant and anti-inflammatory activities of the extract of a moroccan endemic narcissus: narcissus broussonetii. Int J Sci Res Sci Technol 2016; 2(1): 6-11.
[102]
Ooi LS, Ho W-S, Ngai KL, et al. Narcissus tazetta lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses. J Biosci 2010; 35(1): 95-103.
[http://dx.doi.org/10.1007/s12038-010-0012-8] [PMID: 20413914]
[103]
Koul B, Taak P, Kumar A, Kumar A, Sanyal I. Genus Psoralea: A review of the traditional and modern uses, phytochemistry and pharmacology. J Ethnopharmacol 2019; 232: 201-26.
[http://dx.doi.org/10.1016/j.jep.2018.11.036] [PMID: 30521980]
[104]
Chen Z-J, Yang Y-F, Zhang Y-T, Yang D-H. Dietary total prenylflavonoids from the fruits of Psoralea corylifolia L. prevents age-related cognitive deficits and down-regulates Alzheimer’s markers in SAMP8 mice. Molecules 2018; 23(1): 196.
[http://dx.doi.org/10.3390/molecules23010196] [PMID: 29346315]
[105]
Lee HH, Ahn EK, Hong SS, Oh JS. Anti-inflammatory effect of tribulusamide D isolated from Tribulus terrestris in lipopolysaccharide-stimulated RAW264.7 macrophages. Mol Med Rep 2017; 16(4): 4421-8.
[http://dx.doi.org/10.3892/mmr.2017.7208] [PMID: 28849109]
[106]
Kang SY, Jung HW, Lee M-Y, Lee HW, Chae SW, Park Y-K. Effect of the semen extract of Cuscuta chinensis on inflammatory responses in LPS-stimulated BV-2 microglia. Chin J Nat Med 2014; 12(8): 573-81.
[http://dx.doi.org/10.1016/S1875-5364(14)60088-1] [PMID: 25156282]
[107]
Dang GK, Parekar RR, Kamat SK, Scindia AM, Rege NN. Antiinflammatory activity of Phyllanthus emblica, Plumbago zeylanica and Cyperus rotundus in acute models of inflammation. Phytother Res 2011; 25(6): 904-8.
[http://dx.doi.org/10.1002/ptr.3345] [PMID: 21132843]
[108]
Poosarla A. D N R, Athota RR, Sunkara VG. Modulation of T cell proliferation and cytokine response by Plumbagin, extracted from Plumbago zeylanica in collagen induced arthritis. BMC Complement Altern Med 2011; 11(1): 114.
[http://dx.doi.org/10.1186/1472-6882-11-114] [PMID: 22085488]
[109]
Manouze H, Bouchatta O, Gadhi AC, Bennis M, Sokar Z, Ba-M’hamed S. Anti-inflammatory, antinociceptive, and antioxidant activities of methanol and aqueous extracts of Anacyclus pyrethrum roots. Front Pharmacol 2017; 8: 598.
[http://dx.doi.org/10.3389/fphar.2017.00598] [PMID: 28928658]
[110]
Zhang H, Ma ZF. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients 2018; 10(2): 116.
[http://dx.doi.org/10.3390/nu10020116] [PMID: 29364841]
[111]
El Azhary K, Tahiri Jouti N, El Khachibi M, et al. Anti-inflammatory potential of Capparis spinosa L. in vivo in mice through inhibition of cell infiltration and cytokine gene expression. BMC Complement Altern Med 2017; 17(1): 81.
[http://dx.doi.org/10.1186/s12906-017-1569-7] [PMID: 28143472]
[112]
Falana H, Nofal W, Nakhleh H. A review article lepidium sativum (Garden cress). Research Gate 2014.
[113]
Raish M, Ahmad A, Alkharfy KM, et al. Hepatoprotective activity of Lepidium sativum seeds against D-galactosamine/lipopolysaccharide induced hepatotoxicity in animal model. BMC Complement Altern Med 2016; 16(1): 501.
[http://dx.doi.org/10.1186/s12906-016-1483-4] [PMID: 27912738]
[114]
Mina CN, Farzaei MH, Gholamreza A. Medicinal properties of Peganum harmala L. in traditional Iranian medicine and modern phytotherapy: a review. J Tradit Chin Med 2015; 35(1): 104-9.
[http://dx.doi.org/10.1016/S0254-6272(15)30016-9] [PMID: 25842736]
[115]
Liu X, Li M, Tan S, Wang C, Fan S, Huang C. Harmine is an inflammatory inhibitor through the suppression of NF-κB signaling. Biochem Biophys Res Commun 2017; 489(3): 332-8.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.126] [PMID: 28551404]
[116]
Solanke MSB, Tawar M. Phytochemical information and pharmacological activities of eggplant (Solanum Melongena L): A Comprehensive Review 2019.
[117]
Im K, Lee JY, Byeon H, et al. In Vitro antioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena) stalks in macrophage RAW 264.7 cells. Food Agric Immunol 2016; 27(6): 758-71.
[http://dx.doi.org/10.1080/09540105.2016.1150427]
[118]
Tundis R, Loizzo MR, Bonesi M, Peruzzi L, Efferth T. Daphne striata Tratt. and D. Mezereum L.: A study of anti-proliferative activity towards human cancer cells and antioxidant properties. Nat Prod Res 2019; 33(12): 1809-12.
[http://dx.doi.org/10.1080/14786419.2018.1437432] [PMID: 29431466]
[119]
Balkan IA, Taşkın T, Doğan HT, Deniz I, Akaydın G, Yesilada E. A comparative investigation on the in vitro anti-inflammatory, antioxidant and antimicrobial potentials of subextracts from the aerial parts of Daphne oleoides Schreb. subsp. oleoides. Ind Crops Prod 2017; 95: 695-703.
[http://dx.doi.org/10.1016/j.indcrop.2016.11.038]
[120]
Salhab AS. Human exposure to Ecballium elaterium fruit juice: fatal toxicity and possible remedy. Pharmacol Pharm 2013.
[121]
Arslan D, Ekinci A, Arici A, Bozdemir E, Akil E, Ozdemir HH. Effects of Ecballium elaterium on brain in a rat model of sepsis-associated encephalopathy. Libyan J Med 2017; 12(1)1369834
[http://dx.doi.org/10.1080/19932820.2017.1369834] [PMID: 28859554]
[122]
Arslan MS, Basuguy E, Ibiloglu I, et al. Effects of Ecballium elaterium on proinflammatory cytokines in a rat model of sepsis. J Invest Surg 2016; 29(6): 399-404.
[http://dx.doi.org/10.1080/08941939.2016.1181230] [PMID: 27191817]
[123]
Xian YF, Hu Z, Ip SP, et al. Comparison of the anti-inflammatory effects of Sinapis alba and Brassica juncea in mouse models of inflammation. Phytomedicine Int J Phytother Phytopharmacol 2018; 1550: 196-204.
[PMID: 30466979]
[124]
Nathan AA, Balakrishnan AS. In-vitro evaluation of thymol derived from Trachyspermum ammi against acetaminophen induced hepatotoxicity towards lymphatic filariasis therapeutics. J Bacteriol Parasitol 2017; 8(5)
[http://dx.doi.org/10.4172/2155-9597.1000322]
[125]
Chang JM, Hung LM, Chyan YJ, Cheng CM, Wu RY. Carthamus tinctorius enhances the antitumor activity of dendritic cell vaccines via polarization toward Th1 cytokines and increase of cytotoxic T lymphocytes. eCAM 2011; 2011: 274858.
[PMCID: 3096489] [PMID: 19001481]
[126]
Im K, Lee JY, Byeon H, et al. In Vitroantioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena) stalks in macrophage RAW 264.7 cells. Food Agric Immunol 2016; 27(6): 758-71.
[http://dx.doi.org/10.1080/09540105.2016.1150427]
[127]
Gianfaldoni S, Wollina U, Tirant M, et al. Herbal compounds for the treatment of vitiligo: a review. Open Access Maced J Med Sci 2018; 6(1): 203-7.
[http://dx.doi.org/10.3889/oamjms.2018.048] [PMID: 29484024]
[128]
Chang Y, Zhang W, Li C. 444 Demethylzeylasteral inhibits the skin trafficking of CD8+ T cells in patients with vitiligo through the inactivation of IFN-γ-JAK-STAT1-CXCL10 signaling pathway in keratinocytes. J Invest Dermatol 2018; 138(5): S75.
[http://dx.doi.org/10.1016/j.jid.2018.03.451]
[129]
Yu H-S, Chang K-L, Yu C-L, et al. Alterations in IL-6, IL-8, GM-CSF, TNF-α, and IFN-γ release by peripheral mononuclear cells in patients with active vitiligo. J Invest Dermatol 1997; 108(4): 527-9.
[http://dx.doi.org/10.1111/1523-1747.ep12289743] [PMID: 9077486]
[130]
Wang Y, Li S, Li C. Perspectives of new advances in the pathogenesis of vitiligo: From oxidative stress to autoimmunity. Med Sci Monit 2019; 25: 1017-23.
[http://dx.doi.org/10.12659/MSM.914898] [PMID: 30723188]
[131]
Khan H, Sureda A, Belwal T, et al. Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev 2019; 18(7): 647-57.
[http://dx.doi.org/10.1016/j.autrev.2019.05.001] [PMID: 31059841]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy