Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

The Application of Nanomaterials in Cell Autophagy

Author(s): Yang Gao and Tao Zhang*

Volume 16, Issue 1, 2021

Published on: 01 May, 2020

Page: [23 - 35] Pages: 13

DOI: 10.2174/1574888X15666200502000807

Price: $65

Abstract

Autophagy is defined as separation and degradation of cytoplasmic components through autophagosomes, which plays an essential part in physiological and pathological events. Hence it is also essential for cellular homeostasis. Autophagy disorder may bring about the failure of stem cells to maintain the fundamental transformation and metabolism of cell components. However, for cancer cells, the disorder of autophagy is a feasible antitumor idea. Nanoparticles, referring to particles of the size range 1-100 nanometers, are appearing as a category of autophagy regulators. These nanoparticles may revolutionize and broaden the therapeutic strategies of many diseases, including neurodegenerative diseases, tumors, muscle disease, and so on. Researches of autophagy-induced nanomaterials mainly focus on silver particles, gold particles, silicon particles, and rare earth oxides. But in recent years, more and more materials have been found to regulate autophagy, such as nano-nucleic acid materials, nanofiber scaffolds, quantum dots, and so on. The review highlights that various kinds of nanoparticles have the power to regulate autophagy intensity in stem cells of interest and further control biological behaviors, which may become a reliable treatment choice for disease therapy.

Keywords: Autophagy, nanostructure, stem cells, cancer stem cells, neurodegenerative diseases, combination therapy.

[1]
Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab 2017; 25(5): 1037-43.
[http://dx.doi.org/10.1016/j.cmet.2017.04.004] [PMID: 28467923]
[2]
Anozie UC, Dalhaimer P. Molecular links among non-biodegradable nanoparticles, reactive oxygen species, and autophagy. Adv Drug Deliv Rev 2017; 122: 65-73.
[http://dx.doi.org/10.1016/j.addr.2017.01.001] [PMID: 28065863]
[3]
Tanida I. Autophagy basics. Microbiol Immunol 2011; 55(1): 1-11.
[http://dx.doi.org/10.1111/j.1348-0421.2010.00271.x] [PMID: 21175768]
[4]
Shintani T, Klionsky DJ. Autophagy in health and disease: A double-edged sword. Science 2004; 306(5698): 990-5.
[http://dx.doi.org/10.1126/science.1099993] [PMID: 15528435]
[5]
Hurley JH, Young LN. Mechanisms of autophagy initiation. Annu Rev Biochem 2017; 86(10): 225-44.
[http://dx.doi.org/10.1146/annurev-biochem-061516-044820] [PMID: 28301741]
[6]
Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer 2017; 17(9): 528-42.
[http://dx.doi.org/10.1038/nrc.2017.53] [PMID: 28751651]
[7]
Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-6.
[http://dx.doi.org/10.1126/science.8493529] [PMID: 8493529]
[8]
Guo T, Li Y, Cao G, et al. Fluorapatite-modified scaffold on dental pulp stem cell mineralization. J Dent Res 2014; 93(12): 1290-5.
[http://dx.doi.org/10.1177/0022034514547914] [PMID: 25139361]
[9]
Guo T, Cao G, Li Y, et al. Signals in stem cell differentiation on fluorapatite-modified scaffolds. J Dent Res 2018; 97(12): 1331-8.
[http://dx.doi.org/10.1177/0022034518788037] [PMID: 29995454]
[10]
Li Y, Guo T, Zhang Z, et al. Autophagy modulates cell mineralization on fluorapatite-modified scaffolds. J Dent Res 2016; 95(6): 650-6.
[http://dx.doi.org/10.1177/0022034516636852] [PMID: 26961490]
[11]
Zabirnyk O, Yezhelyev M, Seleverstov O. Nanoparticles as a novel class of autophagy activators. Autophagy 2007; 3(3): 278-81.
[http://dx.doi.org/10.4161/auto.3916] [PMID: 17351332]
[12]
Li JJ, Hartono D, Ong CN, Bay BH, Yung LY. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 2010; 31(23): 5996-6003.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.014] [PMID: 20466420]
[13]
Pantovic A, Krstic A, Janjetovic K, et al. Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone 2013; 52(1): 524-31.
[http://dx.doi.org/10.1016/j.bone.2012.10.024] [PMID: 23111315]
[14]
Liu F, Fang F, Yuan H, et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res 2013; 28(11): 2414-30.
[http://dx.doi.org/10.1002/jbmr.1971] [PMID: 23633228]
[15]
Zhang Y, Kong N, Zhang Y, Yang W, Yan F. Size-dependent effects of gold nanoparticles on osteogenic differentiation of human periodontal ligament progenitor cells. Theranostics 2017; 7(5): 1214-24.
[http://dx.doi.org/10.7150/thno.17252] [PMID: 28435460]
[16]
Ko WK, Heo DN, Moon HJ, et al. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci 2015; 438(438): 68-76.
[http://dx.doi.org/10.1016/j.jcis.2014.08.058] [PMID: 25454427]
[17]
Li J, Li JJ, Zhang J, Wang X, Kawazoe N, Chen G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale 2016; 8(15): 7992-8007.
[http://dx.doi.org/10.1039/C5NR08808A] [PMID: 27010117]
[18]
Zhang D, Liu D, Zhang J, Fong C, Yang M. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater Sci Eng C 2014; 42: 70-7.
[http://dx.doi.org/10.1016/j.msec.2014.04.042] [PMID: 25063094]
[19]
De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[20]
Wang CH, Pun SH. Substrate-mediated nucleic acid delivery from self-assembled monolayers. Trends Biotechnol 2011; 29(3): 119-26.
[http://dx.doi.org/10.1016/j.tibtech.2010.11.005] [PMID: 21208672]
[21]
Seleverstov O, Zabirnyk O, Zscharnack M, et al. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett 2006; 6(12): 2826-32.
[http://dx.doi.org/10.1021/nl0619711] [PMID: 17163713]
[22]
Guo D, Zhao Y, Zhang Y, et al. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J Biomed Nanotechnol 2014; 10(4): 669-78.
[http://dx.doi.org/10.1166/jbn.2014.1625] [PMID: 24734519]
[23]
Pyo JO, Yoo SM, Ahn HH, et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 2013; 4: 2300.
[http://dx.doi.org/10.1038/ncomms3300] [PMID: 23939249]
[24]
Nowak JS, Mehn D, Nativo P, et al. Silica nanoparticle uptake induces survival mechanism in A549 cells by the activation of autophagy but not apoptosis. Toxicol Lett 2014; 224(1): 84-92.
[http://dx.doi.org/10.1016/j.toxlet.2013.10.003] [PMID: 24140553]
[25]
Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: When the cleaning crew goes on strike. Lancet Neurol 2007; 6(4): 352-61.
[http://dx.doi.org/10.1016/S1474-4422(07)70076-5] [PMID: 17362839]
[26]
Scrivo A, Bourdenx M, Pampliega O, Cuervo AM. Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol 2018; 17(9): 802-15.
[http://dx.doi.org/10.1016/S1474-4422(18)30238-2] [PMID: 30129476]
[27]
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20(11): 1242-53.
[http://dx.doi.org/10.1038/nm.3739] [PMID: 25375928]
[28]
Nunes A, Al-Jamal K, Nakajima T, Hariz M, Kostarelos K. Application of carbon nanotubes in neurology: Clinical perspectives and toxicological risks. Arch Toxicol 2012; 86(7): 1009-20.
[http://dx.doi.org/10.1007/s00204-012-0860-0] [PMID: 22547313]
[29]
Liu G, Men P, Kudo W, Perry G, Smith MA. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease. Neurosci Lett 2009; 455(3): 187-90.
[http://dx.doi.org/10.1016/j.neulet.2009.03.064] [PMID: 19429118]
[30]
Liu HL, Zhang YL, Yang N, et al. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling Cell Death Dis 2011.2e159
[http://dx.doi.org/10.1038/cddis.2011.27] [PMID: 21593791]
[31]
Xue X, Wang LR, Sato Y, et al. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer’s disease. Nano Lett 2014; 14(9): 5110-7.
[http://dx.doi.org/10.1021/nl501839q] [PMID: 25115676]
[32]
Park EJ, Zahari NE, Lee EW, et al. SWCNTs induced autophagic cell death in human bronchial epithelial cells. Toxicol In Vitro 2014; 28(3): 442-50.
[http://dx.doi.org/10.1016/j.tiv.2013.12.012] [PMID: 24389112]
[33]
Solerte SB, Ceresini G, Ferrari E, Fioravanti M. Hemorheological changes and overproduction of cytokines from immune cells in mild to moderate dementia of the Alzheimer’s type: Adverse effects on cerebromicrovascular system. Neurobiol Aging 2000; 21(2): 271-81.
[http://dx.doi.org/10.1016/S0197-4580(00)00105-6] [PMID: 10867211]
[34]
Pantoni L. Treatment of vascular dementia: Evidence from trials with non-cholinergic drugs. J Neurol Sci 2004; 226(1-2): 67-70.
[http://dx.doi.org/10.1016/j.jns.2004.09.014] [PMID: 15537523]
[35]
Sitharaman B, Zakharian TY, Saraf A, et al. Water-soluble fullerene (C60) derivatives as nonviral gene-delivery vectors. Mol Pharm 2008; 5(4): 567-78.
[http://dx.doi.org/10.1021/mp700106w] [PMID: 18505267]
[36]
Lee CM, Huang ST, Huang SH, et al. C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the β-amyloid peptide. Nanomedicine (Lond) 2011; 7(1): 107-14.
[http://dx.doi.org/10.1016/j.nano.2010.06.009] [PMID: 20620236]
[37]
Song W, Soo Lee S, Savini M, Popp L, Colvin VL, Segatori L. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS Nano 2014; 8(10): 10328-42.
[http://dx.doi.org/10.1021/nn505073u] [PMID: 25315655]
[38]
Dehay B, Bové J, Rodríguez-Muela N, et al. Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 2010; 30(37): 12535-44.
[http://dx.doi.org/10.1523/JNEUROSCI.1920-10.2010] [PMID: 20844148]
[39]
Usenovic M, Tresse E, Mazzulli JR, Taylor JP, Krainc D. Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity. J Neurosci 2012; 32(12): 4240-6.
[http://dx.doi.org/10.1523/JNEUROSCI.5575-11.2012] [PMID: 22442086]
[40]
Sánchez-Danés A, Richaud-Patin Y, Carballo-Carbajal I, et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 2012; 4(5): 380-95.
[http://dx.doi.org/10.1002/emmm.201200215] [PMID: 22407749]
[41]
Dehay B, Ramirez A, Martinez-Vicente M, et al. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc Natl Acad Sci USA 2012; 109(24): 9611-6.
[http://dx.doi.org/10.1073/pnas.1112368109] [PMID: 22647602]
[42]
Bourdenx M, Daniel J, Genin E, et al. Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases. Autophagy 2016; 12(3): 472-83.
[http://dx.doi.org/10.1080/15548627.2015.1136769] [PMID: 26761717]
[43]
Lee JH, McBrayer MK, Wolfe DM, et al. Presenilin 1 maintains lysosomal Ca(2+) homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Rep 2015; 12(9): 1430-44.
[http://dx.doi.org/10.1016/j.celrep.2015.07.050] [PMID: 26299959]
[44]
Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31(5): 1095-108.
[http://dx.doi.org/10.1038/emboj.2012.32] [PMID: 22343943]
[45]
Dehay B, Martinez-Vicente M, Caldwell GA, et al. Lysosomal impairment in Parkinson’s disease. Mov Disord 2013; 28(6): 725-32.
[http://dx.doi.org/10.1002/mds.25462] [PMID: 23580333]
[46]
Galluzzi L, Pietrocola F, Bravo-San Pedro JM, et al. Autophagy in malignant transformation and cancer progression. EMBO J 2015; 34(7): 856-80.
[http://dx.doi.org/10.15252/embj.201490784] [PMID: 25712477]
[47]
Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10(1): 51-64.
[http://dx.doi.org/10.1016/j.ccr.2006.06.001] [PMID: 16843265]
[48]
Guo JY, Karsli-Uzunbas G, Mathew R, et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 2013; 27(13): 1447-61.
[http://dx.doi.org/10.1101/gad.219642.113] [PMID: 23824538]
[49]
Zhu L, Guo D, Sun L, et al. Activation of autophagy by elevated reactive oxygen species rather than released silver ions promotes cytotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in hematopoietic cells. Nanoscale 2017; 9(17): 5489-98.
[http://dx.doi.org/10.1039/C6NR08188F] [PMID: 28401217]
[50]
Wu YN, Yang LX, Shi XY, et al. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 2011; 32(20): 4565-73.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.006] [PMID: 21458061]
[51]
Lin J, Shi SS, Zhang JQ, et al. Giant cellular vacuoles induced by rare earth oxide nanoparticles are abnormally enlarged endo/lysosomes and promote mTOR-dependent TFEB nucleus translocation. Small 2016; 12(41): 5759-68.
[http://dx.doi.org/10.1002/smll.201601903] [PMID: 27593892]
[52]
Wei P, Zhang L, Lu Y, Man N, Wen L. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology 2010; 21(49): 495101
[http://dx.doi.org/10.1088/0957-4484/21/49/495101] [PMID: 21071824]
[53]
Tomić S, Janjetović K, Mihajlović D, et al. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials 2017; 146: 13-28.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.040] [PMID: 28892752]
[54]
Qin Y, Zhou ZW, Pan ST, et al. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages. Toxicology 2015; 327: 62-76.
[http://dx.doi.org/10.1016/j.tox.2014.10.011] [PMID: 25446327]
[55]
Zhou W, Miao Y, Zhang Y, et al. Induction of cyto-protective autophagy by paramontroseite VO2 nanocrystals. Nanotechnology 2013; 24(16)165102
[http://dx.doi.org/10.1088/0957-4484/24/16/165102] [PMID: 23535229]
[56]
Zhang X, Zhang H, Liang X, et al. Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: lysosome Impairment, mitochondrial damage, and ER stress. Mol Pharm 2016; 13(7): 2578-87.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00405] [PMID: 27287467]
[57]
Liang D, Yun L, Yang L, et al. Tuning magnetic property and autophagic response for self-assembled Ni-Co alloy nanocrystals. Adv Funct Mater 2013; 23: 5930-40.
[http://dx.doi.org/10.1002/adfm.201203767]
[58]
Yang L, Li Z, Jing L, et al. MnO nanocrystals: A platform for integration of mri and genuine autophagy induction for chemotherapy. Adv Funct Mater 2013; 23: 1534-46.
[http://dx.doi.org/10.1002/adfm.201202233]
[59]
Song W, Ma Z, Zhang Y, Yang C. Autophagy plays a dual role during intracellular siRNA delivery by lipoplex and polyplex nanoparticles. Acta Biomater 2017; 58: 196-204.
[http://dx.doi.org/10.1016/j.actbio.2017.05.038] [PMID: 28528119]
[60]
Raju GSR, Pavitra E, Merchant N, et al. Targeting autophagy in gastrointestinal malignancy by using nanomaterials as drug delivery systems. Cancer Lett 2018; 419: 222-32.
[http://dx.doi.org/10.1016/j.canlet.2018.01.044] [PMID: 29355658]
[61]
Wang Y, Lin YX, Qiao ZY, et al. Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo. Adv Mater 2015; 27(16): 2627-34.
[http://dx.doi.org/10.1002/adma.201405926] [PMID: 25786652]
[62]
Henry SM, El-Sayed ME, Pirie CM, Hoffman AS, Stayton PS. pH-responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules 2006; 7(8): 2407-14.
[http://dx.doi.org/10.1021/bm060143z] [PMID: 16903689]
[63]
Lin KC, Lin MW, Hsu MN, et al. Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Theranostics 2018; 8(9): 2477-87.
[http://dx.doi.org/10.7150/thno.24173] [PMID: 29721093]
[64]
Arya BD, Mittal S, Joshi P, Pandey AK, Ramirez-Vick JE, Singh SP. Graphene oxide-chloroquine nanoconjugate induce necroptotic death in A549 cancer cells through autophagy modulation. Nanomedicine (Lond) 2018; 13(18): 2261-82.
[http://dx.doi.org/10.2217/nnm-2018-0086] [PMID: 30284495]
[65]
Ding L, Wang Q, Shen M, et al. Thermoresponsive nanocomposite gel for local drug delivery to suppress the growth of glioma by inducing autophagy. Autophagy 2017; 13(7): 1176-90.
[http://dx.doi.org/10.1080/15548627.2017.1320634] [PMID: 28594260]
[66]
Barhoumi A, Wang W, Zurakowski D, Langer RS, Kohane DS. Photothermally targeted thermosensitive polymer-masked nanoparticles. Nano Lett 2014; 14(7): 3697-701.
[http://dx.doi.org/10.1021/nl403733z] [PMID: 24884872]
[67]
Shanmugam V, Selvakumar S, Yeh CS. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 2014; 43(17): 6254-87.
[http://dx.doi.org/10.1039/C4CS00011K] [PMID: 24811160]
[68]
Zhang Z, Wang J, Chen C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv Mater 2013; 25(28): 3869-80.
[http://dx.doi.org/10.1002/adma.201301890] [PMID: 24048973]
[69]
Wang X, Zhang J, Wang Y, et al. Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials 2016; 81: 114-24.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.037] [PMID: 26731575]
[70]
Zhou Z, Yan Y, Hu K, et al. Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials 2017; 141: 116-24.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.030] [PMID: 28675807]
[71]
Zhang Y, Sha R, Zhang L, et al. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat Commun 2018; 9(1): 4236.
[http://dx.doi.org/10.1038/s41467-018-06529-y] [PMID: 30315154]
[72]
Zhang X, Liang X, Gu J, et al. Investigation and intervention of autophagy to guide cancer treatment with nanogels. Nanoscale 2017; 9(1): 150-63.
[http://dx.doi.org/10.1039/C6NR07866D] [PMID: 27910983]
[73]
Lin J, Huang Z, Wu H, et al. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy 2014; 10(11): 2006-20.
[http://dx.doi.org/10.4161/auto.36293] [PMID: 25484080]
[74]
Wang Y, Qiu Y, Yin S, et al. A functional nanocarrier that copenetrates extracellular matrix and multiple layers of tumor cells for sequential and deep tumor autophagy inhibitor and chemotherapeutic delivery. Autophagy 2017; 13(2): 359-70.
[http://dx.doi.org/10.1080/15548627.2016.1256523] [PMID: 27911136]
[75]
Cui Z, Zhang Y, Xia K, et al. Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nat Commun 2018; 9(1): 4347.
[http://dx.doi.org/10.1038/s41467-018-06749-2] [PMID: 30341298]
[76]
Lee SS, Song W, Cho M, et al. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 2013; 7(11): 9693-703.
[http://dx.doi.org/10.1021/nn4026806] [PMID: 24079896]
[77]
Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5(9): 726-34.
[http://dx.doi.org/10.1038/nrc1692] [PMID: 16148885]
[78]
Yang Z, Goronzy JJ, Weyand CM. Autophagy in autoimmune disease. J Mol Med (Berl) 2015; 93(7): 707-17.
[http://dx.doi.org/10.1007/s00109-015-1297-8] [PMID: 26054920]
[79]
Bianco A, Muller S. Nanomaterials, Autophagy, and Lupus Disease. ChemMedChem 2016; 11(2): 166-74.
[http://dx.doi.org/10.1002/cmdc.201500233] [PMID: 26194870]
[80]
Roggers R, Kanvinde S, Boonsith S, Oupický D. The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. AAPS PharmSciTech 2014; 15(5): 1163-71.
[http://dx.doi.org/10.1208/s12249-014-0142-7] [PMID: 24871552]
[81]
Napierska D, Thomassen LC, Rabolli V, et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 2009; 5(7): 846-53.
[http://dx.doi.org/10.1002/smll.200800461] [PMID: 19288475]
[82]
Thomassen LC, Aerts A, Rabolli V, et al. Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir 2010; 26(1): 328-35.
[http://dx.doi.org/10.1021/la902050k] [PMID: 19697952]
[83]
Ha SW, Weitzmann MN, Beck GR Jr. Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS Nano 2014; 8(6): 5898-910.
[http://dx.doi.org/10.1021/nn5009879] [PMID: 24806912]
[84]
Bibee KP, Cheng YJ, Ching JK, et al. Rapamycin nanoparticles target defective autophagy in muscular dystrophy to enhance both strength and cardiac function. FASEB J 2014; 28(5): 2047-61.
[http://dx.doi.org/10.1096/fj.13-237388] [PMID: 24500923]
[85]
Li L, Yang S, Xu L, et al. Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin. Acta Biomater 2019; 96: 674-85.
[http://dx.doi.org/10.1016/j.actbio.2019.07.007] [PMID: 31284094]
[86]
Shi S, Lin S, Li Y, et al. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem Commun (Camb) 2018; 54(11): 1327-30.
[http://dx.doi.org/10.1039/C7CC09397G] [PMID: 29349457]
[87]
Gao W, Sun Y, Cai M, et al. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat Commun 2018; 9(1): 231.
[http://dx.doi.org/10.1038/s41467-017-02657-z] [PMID: 29335450]
[88]
Li Y, Zhou Y, Wang HY, et al. Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew Chem Int Ed Engl 2011; 50(26): 5860-4.
[http://dx.doi.org/10.1002/anie.201008206] [PMID: 21567671]
[89]
Chen L, Miao Y, Chen L, et al. The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots. Biomaterials 2013; 34(38): 10172-81.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.048] [PMID: 24094936]
[90]
Jin P, Wei P, Zhang Y, et al. Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide. Nanoscale 2016; 8(44): 18740-50.
[http://dx.doi.org/10.1039/C6NR07255K] [PMID: 27790650]
[91]
Chen GY, Chen CL, Tuan HY, et al. Graphene oxide triggers toll-like receptors/autophagy responses in vitro and inhibits tumor growth in vivo. Adv Healthc Mater 2014; 3(9): 1486-95.
[http://dx.doi.org/10.1002/adhm.201300591] [PMID: 24652749]
[92]
Wu L, Zhang Y, Zhang C, et al. Tuning cell autophagy by diversifying carbon nanotube surface chemistry. ACS Nano 2014; 8(3): 2087-99.
[http://dx.doi.org/10.1021/nn500376w] [PMID: 24552177]
[93]
Tian J, Zeng X, Xie X, et al. Intracellular adenosine triphosphate deprivation through lanthanide-doped nanoparticles. J Am Chem Soc 2015; 137(20): 6550-8.
[http://dx.doi.org/10.1021/jacs.5b00981] [PMID: 25923914]
[94]
Li R, Ji Z, Qin H, et al. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing inflammasome. ACS Nano 2014; 8(10): 10280-92.
[http://dx.doi.org/10.1021/nn505002w] [PMID: 25251502]
[95]
Zhang Y, Zheng F, Yang T, et al. Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat Mater 2012; 11(9): 817-26.
[http://dx.doi.org/10.1038/nmat3363] [PMID: 22797828]
[96]
Li H, Li Y, Jiao J, Hu HM. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol 2011; 6(10): 645-50.
[http://dx.doi.org/10.1038/nnano.2011.153] [PMID: 21926980]
[97]
Zhao Y, Howe JL, Yu Z, et al. Exposure to titanium dioxide nanoparticles induces autophagy in primary human keratinocytes. Small 2013; 9(3): 387-92.
[http://dx.doi.org/10.1002/smll.201201363] [PMID: 23090781]
[98]
Ma X, Wu Y, Jin S, et al. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 2011; 5(11): 8629-39.
[http://dx.doi.org/10.1021/nn202155y] [PMID: 21974862]
[99]
Lee YH, Cheng FY, Chiu HW, et al. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 2014; 35(16): 4706-15.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.021] [PMID: 24630838]
[100]
Xu Y, Wang L, Bai R, Zhang T, Chen C. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Nanoscale 2015; 7(38): 16100-9.
[http://dx.doi.org/10.1039/C5NR04200C] [PMID: 26372376]
[101]
Park JH, Jeong H, Hong J, et al. The effect of silica nanoparticles on human corneal epithelial cells. Sci Rep 2016; 6: 37762.
[http://dx.doi.org/10.1038/srep37762] [PMID: 27876873]
[102]
Dalzon B, Aude-Garcia C, Collin-Faure V, et al. Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles. Nanoscale 2017; 9(27): 9641-58.
[http://dx.doi.org/10.1039/C7NR02140B] [PMID: 28671223]
[103]
Yang EJ, Kim S, Kim JS, Choi IH. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials 2012; 33(28): 6858-67.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.016] [PMID: 22770526]
[104]
Sahu SC, Zheng J, Yourick JJ, Sprando RL, Gao X. Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. J Appl Toxicol 2015; 35(10): 1160-8.
[http://dx.doi.org/10.1002/jat.3170] [PMID: 26014281]
[105]
Hackenberg S, Scherzed A, Kessler M, et al. Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 2011; 201(1): 27-33.
[http://dx.doi.org/10.1016/j.toxlet.2010.12.001] [PMID: 21145381]
[106]
Lin J, Liu Y, Wu H, et al. Key role of TFEB nucleus translocation for silver nanoparticle-induced cytoprotective autophagy. Small 2018; 14(13): e1703711
[http://dx.doi.org/10.1002/smll.201703711] [PMID: 29457340]
[107]
Villeret B, Dieu A, Straube M, et al. Silver nanoparticles impair retinoic acid-inducible gene I-mediated mitochondrial antiviral immunity by blocking the autophagic flux in lung epithelial cells. ACS Nano 2018; 12(2): 1188-202.
[http://dx.doi.org/10.1021/acsnano.7b06934] [PMID: 29357226]
[108]
Liu P, Huang Z, Chen Z, et al. Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale 2013; 5(23): 11829-36.
[http://dx.doi.org/10.1039/c3nr01351k] [PMID: 24126539]
[109]
Wu H, Lin J, Liu P, et al. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs. Biomaterials 2016; 101: 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.031] [PMID: 27254247]
[110]
Wan J, Wang JH, Liu T, Xie Z, Yu XF, Li W. Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo. Sci Rep 2015; 5: 11398.
[http://dx.doi.org/10.1038/srep11398] [PMID: 26096816]
[111]
Li S, Zhang C, Cao W, et al. Anchoring effects of surface chemistry on gold nanorods: Modulates autophagy. J Mater Chem B Mater Biol Med 2015; 3(16): 3324-30.
[http://dx.doi.org/10.1039/C5TB00076A] [PMID: 26301093]
[112]
Ma N, Liu P, He N, Gu N, Wu FG, Chen Z. Action of gold nanospikes-based nanoradiosensitizers: Cellular internalization, radiotherapy, and autophagy. ACS Appl Mater Interfaces 2017; 9(37): 31526-42.
[http://dx.doi.org/10.1021/acsami.7b09599] [PMID: 28816044]
[113]
Sun H, Jia J, Jiang C, Zhai S. Gold nanoparticle-induced cell death and potential applications in nanomedicine. Int J Mol Sci 2018; 19(3): 754.
[http://dx.doi.org/10.3390/ijms19030754] [PMID: 29518914]
[114]
Seip CT, O’Connor CJ. The fabrication and organization of self-assembled metallic nanoparticles formed in reverse micelles. Nanostruct Mater 1999; 12: 183-6.
[http://dx.doi.org/10.1016/S0965-9773(99)00094-X]
[115]
Zhang Y, Yu C, Huang G, Wang C, Wen L. Nano rare-earth oxides induced size-dependent vacuolization: An independent pathway from autophagy. Int J Nanomedicine 2010; 5: 601-9.
[http://dx.doi.org/10.2147/IJN.S11513] [PMID: 20856835]
[116]
Yu L, Lu Y, Man N, Yu SH, Wen LP. Rare earth oxide nanocrystals induce autophagy in HeLa cells. Small 2009; 5(24): 2784-7.
[http://dx.doi.org/10.1002/smll.200901714] [PMID: 19885892]
[117]
Yang T, Wu T, Lv L, et al. Ceria oxide nanoparticles an ideal carrier given little stress to cells and rats. J Nanosci Nanotechnol 2018; 18(6): 3865-9.
[http://dx.doi.org/10.1166/jnn.2018.15018] [PMID: 29442720]
[118]
Lu VM, Crawshay-Williams F, White B, Elliot A, Hill MA, Townley HE. Cytotoxicity, dose-enhancement and radiosensitization of glioblastoma cells with rare earth nanoparticles. Artif Cells Nanomed Biotechnol 2019; 47(1): 132-43.
[http://dx.doi.org/10.1080/21691401.2018.1544564] [PMID: 30663430]
[119]
Wang J, Li Y, Duan J, et al. Silica nanoparticles induce autophagosome accumulation via activation of the EIF2AK3 and ATF6 UPR pathways in hepatocytes. Autophagy 2018; 14(7): 1185-200.
[http://dx.doi.org/10.1080/15548627.2018.1458174] [PMID: 29940794]
[120]
Menzies FM, Fleming A, Caricasole A, et al. Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron 2017; 93(5): 1015-34.
[http://dx.doi.org/10.1016/j.neuron.2017.01.022] [PMID: 28279350]
[121]
Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer. Genes Dev 2016; 30(17): 1913-30.
[http://dx.doi.org/10.1101/gad.287524.116] [PMID: 27664235]
[122]
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008; 451(7182): 1069-75.
[http://dx.doi.org/10.1038/nature06639] [PMID: 18305538]
[123]
Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell 2011; 146(5): 682-95.
[http://dx.doi.org/10.1016/j.cell.2011.07.030] [PMID: 21884931]
[124]
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013; 13(10): 722-37.
[http://dx.doi.org/10.1038/nri3532] [PMID: 24064518]
[125]
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132(1): 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[126]
Karantza-Wadsworth V, Patel S, Kravchuk O, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 2007; 21(13): 1621-35.
[http://dx.doi.org/10.1101/gad.1565707] [PMID: 17606641]
[127]
Liu L, Yang M, Kang R, et al. DAMP-mediated autophagy contributes to drug resistance. Autophagy 2011; 7(1): 112-4.
[http://dx.doi.org/10.4161/auto.7.1.14005] [PMID: 21068541]
[128]
Fageria L, Pareek V, Dilip RV, et al. Biosynthesized protein-capped silver nanoparticles induce ROS-dependent proapoptotic signals and prosurvival autophagy in cancer cells. ACS Omega 2017; 2(4): 1489-504.
[http://dx.doi.org/10.1021/acsomega.7b00045] [PMID: 30023637]
[129]
Fu CC, Lee HY, Chen K, et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 2007; 104(3): 727-32.
[http://dx.doi.org/10.1073/pnas.0605409104] [PMID: 17213326]
[130]
Liang XJ, Meng H, Wang Y, et al. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Sci USA 2010; 107(16): 7449-54.
[http://dx.doi.org/10.1073/pnas.0909707107] [PMID: 20368438]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy