Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Albumin-based Nanoparticles as Promising Drug Delivery Systems for Cancer Treatment

Author(s): Ozge Esim and Canan Hascicek*

Volume 17, Issue 3, 2021

Published on: 21 April, 2020

Page: [346 - 359] Pages: 14

DOI: 10.2174/1573412916999200421142008

Price: $65

Abstract

Albumin is an ideal material for the production of drug carrier nanoparticular systems since it is a versatile and functional protein that has been proven to be biodegradable and biocompatible, non-toxic, and immunogenic. Albumin nanoparticles are of great interest as they have the high binding capacity to many drugs with different physicochemical and structural properties and are well tolerated without any side effects. In this review, different types of albumin, special nanotechnological techniques for the production of albumin nanoparticles, such as desolvation, emulsification, thermal gelation, nano-spray drying, and self-assembly, as well as the characterization of albumin nanoparticles, such as particle size, surface charge, morphological properties, drug content, and release profile have been discussed. In addition, the in vitro and in vivo studies of albumin nanoparticles intended both diagnostic and therapeutic usage have been investigated.

Keywords: Albumin, cancer treatment, characterization of nanoparticles, drug delivery systems, drug release, nanoparticle.

Graphical Abstract
[1]
Loureiro, A.; Azoia, N.G.; Gomes, A.C.; Cavaco-Paulo, A. Albumin-based nanodevices as drug carriers. Curr. Pharm. Des., 2016, 22(10), 1371-1390.
[http://dx.doi.org/10.2174/1381612822666160125114900] [PMID: 26806342]
[2]
Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv., 2016, 13(11), 1609-1623.
[http://dx.doi.org/10.1080/17425247.2016.1193149] [PMID: 27216915]
[3]
Lee, E.S.; Youn, Y.S. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J. Pharm. Investig., 2016, 46, 305-315.
[http://dx.doi.org/10.1007/s40005-016-0250-3]
[4]
Chen, Q.; Liu, Z. Albumin Carriers for Cancer Theranostics: A conventional platform with new promise. Adv. Mater., 2016, 28(47), 10557-10566.
[http://dx.doi.org/10.1002/adma.201600038] [PMID: 27111654]
[5]
Yu, X.; Jin, C. Application of albumin-based nanoparticles in the management of cancer. J. Mater. Sci. Mater. Med., 2016, 27(1), 4.
[http://dx.doi.org/10.1007/s10856-015-5618-9] [PMID: 26610927]
[6]
Lohcharoenkal, W.; Wang, L.; Chen, Y.C.; Rojanasakul, Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int., 2014.2014180549
[http://dx.doi.org/10.1155/2014/180549] [PMID: 24772414]
[7]
Sponton, O.E.; Perez, A.A.; Carrara, C.R.; Santiago, L.G. Linoleic acid binding properties of ovalbumin nanoparticles. Colloids Surf. B Biointerfaces, 2015, 128, 219-226.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.037] [PMID: 25701117]
[8]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[9]
Kudarha, R.R.; Sawant, K.K. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. Mater. Sci. Eng. C, 2017, 81, 607-626.
[http://dx.doi.org/10.1016/j.msec.2017.08.004] [PMID: 28888016]
[10]
Dong, X.; Sun, Z.; Liang, J.; Wang, H.; Zhu, D.; Leng, X.; Wang, C.; Kong, D.; Lv, F. A visible fluorescent nanovaccine based on functional genipin crosslinked ovalbumin protein nanoparticles. Nanomedicine (Lond.), 2018, 14(4), 1087-1098.
[http://dx.doi.org/10.1016/j.nano.2018.02.007] [PMID: 29474923]
[11]
An, F.F.; Zhang, X.H. Strategies for Preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics, 2017, 7(15), 3667-3689.
[http://dx.doi.org/10.7150/thno.19365] [PMID: 29109768]
[12]
Liu, F.; Mu, J.; Xing, B. Recent advances on the development of pharmacotherapeutic agents on the basis of human serum albumin. Curr. Pharm. Des., 2015, 21(14), 1866-1888.
[http://dx.doi.org/10.2174/1381612821666150302115411] [PMID: 25732552]
[13]
Tan, Y.L.; Ho, H.K. Navigating albumin-based nanoparticles through various drug delivery routes. Drug Discov. Today, 2018, 23(5), 1108-1114.
[http://dx.doi.org/10.1016/j.drudis.2018.01.051] [PMID: 29408437]
[14]
Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132(3), 171-183.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.010] [PMID: 18582981]
[15]
Elsadek, B.; Kratz, F. Impact of albumin on drug delivery--new applications on the horizon. J. Control. Release, 2012, 157(1), 4-28.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.069] [PMID: 21959118]
[16]
Hoogenboezem, E.N.; Duvall, C.L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev., 2018, 130, 73-89.
[http://dx.doi.org/10.1016/j.addr.2018.07.011] [PMID: 30012492]
[17]
Bolaños, K.; Kogan, M.J.; Araya, E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int. J. Nanomedicine, 2019, 14, 6387-6406.
[http://dx.doi.org/10.2147/IJN.S210992] [PMID: 31496693]
[18]
Chu, D.; Gao, J.; Wang, Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano, 2015, 9(12), 11800-11811.
[http://dx.doi.org/10.1021/acsnano.5b05583] [PMID: 26516654]
[19]
Hudson, D.; Margaritis, A. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit. Rev. Biotechnol., 2014, 34(2), 161-179.
[http://dx.doi.org/10.3109/07388551.2012.743503] [PMID: 23294062]
[20]
Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther., 2016, 4, 3.
[http://dx.doi.org/10.1186/s40591-016-0048-8] [PMID: 26925240]
[21]
Jiang, Y.; Stenzel, M. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates. Macromol. Biosci., 2016, 16(6), 791-802.
[http://dx.doi.org/10.1002/mabi.201500453] [PMID: 26947019]
[22]
He, X.; Xiang, N.; Zhang, J.; Zhou, J.; Fu, Y.; Gong, T.; Zhang, Z. Encapsulation of teniposide into albumin nanoparticles with greatly lowered toxicity and enhanced antitumor activity. Int. J. Pharm., 2015, 487(1-2), 250-259.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.047] [PMID: 25899285]
[23]
Zhang, J.Y.; He, B.; Qu, W.; Cui, Z.; Wang, Y.B.; Zhang, H.; Wang, J.C.; Zhang, Q. Preparation of the albumin nanoparticle system loaded with both paclitaxel and sorafenib and its evaluation in vitro and in vivo. J. Microencapsul., 2011, 28(6), 528-536.
[http://dx.doi.org/10.3109/02652048.2011.590614] [PMID: 21702701]
[24]
Li, F.Q.; Su, H.; Wang, J.; Liu, J.Y.; Zhu, Q.G.; Fei, Y.B.; Pan, Y.H.; Hu, J.H. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int. J. Pharm., 2008, 349(1-2), 274-282.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.001] [PMID: 17870261]
[25]
Tarhini, M.; Benlyamani, I.; Hamdani, S.; Agusti, G.; Fessi, H.; Greige-Gerges, H.; Bentaher, A.; Elaissari, A. Protein-based nanoparticle preparation via nanoprecipitation method. Materials (Basel), 2018, 11(3), 11.
[http://dx.doi.org/10.3390/ma11030394] [PMID: 29518919]
[26]
Galisteo-González, F.; Molina-Bolívar, J.A. Systematic study on the preparation of BSA nanoparticles. Colloids Surf. B Biointerfaces, 2014, 123, 286-292.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.028] [PMID: 25262407]
[27]
Li, J.M.; Chen, W.; Wang, H.; Jin, C.; Yu, X.J.; Lu, W.Y.; Cui, L.; Fu, D.L.; Ni, Q.X.; Hou, H.M. Preparation of albumin nanospheres loaded with gemcitabine and their cytotoxicity against BXPC-3 cells in vitro. Acta Pharmacol. Sin., 2009, 30(9), 1337-1343.
[http://dx.doi.org/10.1038/aps.2009.125] [PMID: 19730429]
[28]
Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; von Briesen, H.; Schubert, D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm., 2003, 257(1-2), 169-180.
[http://dx.doi.org/10.1016/S0378-5173(03)00134-0] [PMID: 12711172]
[29]
Sebak, S.; Mirzaei, M.; Malhotra, M.; Kulamarva, A.; Prakash, S. Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int. J. Nanomedicine, 2010, 5, 525-532.
[PMID: 20957217]
[30]
Weber, C.; Coester, C.; Kreuter, J.; Langer, K. Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm., 2000, 194(1), 91-102.
[http://dx.doi.org/10.1016/S0378-5173(99)00370-1] [PMID: 10601688]
[31]
Dreis, S.; Rothweiler, F.; Michaelis, M.; Cinatl, J., Jr; Kreuter, J.; Langer, K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int. J. Pharm., 2007, 341(1-2), 207-214.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.036] [PMID: 17478065]
[32]
Shen, Z.; Li, Y.; Kohama, K.; Oneill, B.; Bi, J. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacol. Res., 2011, 63(1), 51-58.
[http://dx.doi.org/10.1016/j.phrs.2010.10.012] [PMID: 21035550]
[33]
Wacker, M.; Chen, K.; Preuss, A.; Possemeyer, K.; Roeder, B.; Langer, K. Photosensitizer loaded HSA nanoparticles. I: Preparation and photophysical properties. Int. J. Pharm., 2010, 393(1-2), 253-262.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.022] [PMID: 20417701]
[34]
Qi, L.; Guo, Y.; Luan, J.; Zhang, D.; Zhao, Z.; Luan, Y. Folate-modified bexarotene-loaded bovine serum albumin nanoparticles as a promising tumor-targeting delivery system. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 8361-8371.
[http://dx.doi.org/10.1039/C4TB01102C]
[35]
Cheng, K.; Sun, S.; Gong, X. Preparation, characterization, and antiproliferative activities of biotin-decorated docetaxel-loaded bovine serum albumin nanoparticles. Braz. J. Pharm. Sci., 2018, 54.
[http://dx.doi.org/10.1590/s2175-97902018000217295]
[36]
Choi, J.S.; Meghani, N. Impact of surface modification in BSA nanoparticles for uptake in cancer cells. Colloids Surf. B Biointerfaces, 2016, 145, 653-661.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.050] [PMID: 27289306]
[37]
Dubey, R.D.; Alam, N.; Saneja, A.; Khare, V.; Kumar, A.; Vaidh, S.; Mahajan, G.; Sharma, P.R.; Singh, S.K.; Mondhe, D.M.; Gupta, P.N. Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gemcitabine. Int. J. Pharm., 2015, 492(1-2), 80-91.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.012] [PMID: 26165611]
[38]
Gao, S.; Sun, J.; Fu, D.; Zhao, H.; Lan, M.; Gao, F. Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles. Int. J. Pharm., 2012, 427(2), 410-416.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.054] [PMID: 22326299]
[39]
Abbasi, S.; Paul, A.; Prakash, S. Investigation of siRNA-loaded polyethylenimine-coated human serum albumin nanoparticle complexes for the treatment of breast cancer. Cell Biochem. Biophys., 2011, 61(2), 277-287.
[http://dx.doi.org/10.1007/s12013-011-9201-9] [PMID: 21556941]
[40]
Bhushan, B.; Dubey, P.; Kumar, S.U.; Sachdev, A.; Matai, I.; Gopinath, P. Bionanotherapeutics: niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy. RSC Advances, 2015, 5, 12078-12086.
[http://dx.doi.org/10.1039/C4RA15233F]
[41]
Ji, S.; Xu, J.; Zhang, B.; Yao, W.; Xu, W.; Wu, W.; Xu, Y.; Wang, H.; Ni, Q.; Hou, H.; Yu, X. RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy. Cancer Biol. Ther., 2012, 13(4), 206-215.
[http://dx.doi.org/10.4161/cbt.13.4.18692] [PMID: 22354009]
[42]
Jiang, S.; Gong, X.; Zhao, X.; Zu, Y. Preparation, characterization, and antitumor activities of folate-decorated docetaxel-loaded human serum albumin nanoparticles. Drug Deliv., 2015, 22(2), 206-213.
[http://dx.doi.org/10.3109/10717544.2013.879964] [PMID: 24471890]
[43]
Li, C.; Zhang, D.; Guo, H.; Hao, L.; Zheng, D.; Liu, G.; Shen, J.; Tian, X.; Zhang, Q. Preparation and characterization of galactosylated bovine serum albumin nanoparticles for liver-targeted delivery of oridonin. Int. J. Pharm., 2013, 448(1), 79-86.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.019] [PMID: 23518367]
[44]
Li, Y.; Shi, S.; Ming, Y.; Wang, L.; Li, C.; Luo, M.; Li, Z.; Li, B.; Chen, J. Specific cancer stem cell-therapy by albumin nanoparticles functionalized with CD44-mediated targeting. J. Nanobiotechnology, 2018, 16(1), 99.
[http://dx.doi.org/10.1186/s12951-018-0424-4] [PMID: 30501644]
[45]
Onafuye, H.; Pieper, S.; Mulac, D.; Cinatl, J., Jr; Wass, M.N.; Langer, K.; Michaelis, M. Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein J. Nanotechnol., 2019, 10, 1707-1715.
[http://dx.doi.org/10.3762/bjnano.10.166] [PMID: 31501742]
[46]
Sripriyalakshmi, S.; Anjali, C.H.; George, P.D.; Rajith, B.; Ravindran, A. BSA nanoparticle loaded atorvastatin calcium--a new facet for an old drug. PLoS One, 2014, 9(2)e86317
[http://dx.doi.org/10.1371/journal.pone.0086317] [PMID: 24498272]
[47]
Su, Z.; Xing, L.; Chen, Y.; Xu, Y.; Yang, F.; Zhang, C.; Ping, Q.; Xiao, Y. Lactoferrin-modified poly(ethylene glycol)-grafted BSA nanoparticles as a dual-targeting carrier for treating brain gliomas. Mol. Pharm., 2014, 11(6), 1823-1834.
[http://dx.doi.org/10.1021/mp500238m] [PMID: 24779677]
[48]
Watcharin, W.; Schmithals, C.; Pleli, T.; Köberle, V.; Korkusuz, H.; Huebner, F.; Zeuzem, S.; Korf, H.W.; Vogl, T.J.; Rittmeyer, C.; Terfort, A.; Piiper, A.; Gelperina, S.; Kreuter, J. Biodegradable human serum albumin nanoparticles as contrast agents for the detection of hepatocellular carcinoma by magnetic resonance imaging. Eur. J. Pharm. Biopharm., 2014, 87(1), 132-141.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.010] [PMID: 24365328]
[49]
Yalcin, E.; Kara, G.; Celik, E.; Pinarli, F.A.; Saylam, G.; Sucularli, C.; Ozturk, S.; Yilmaz, E.; Bayir, O.; Korkmaz, M.H.; Denkbas, E.B. Preparation and characterization of novel albumin-sericin nanoparticles as siRNA delivery vehicle for laryngeal cancer treatment. Prep. Biochem. Biotechnol., 2019, 49(7), 659-670.
[http://dx.doi.org/10.1080/10826068.2019.1599395] [PMID: 31066619]
[50]
Yan, S.; Zhang, H.; Piao, J.; Chen, Y.; Gao, S.; Lu, C.; Niu, L.; Xia, Y.; Hu, Y.; Ji, R.; Wang, H.; Xu, X. Studies on the Preparation, Characterization and Intracellular Kinetics of JD27-loaded Human Serum Albumin Nanoparticles. Procedia Eng., 2015, 102, 590-601.
[http://dx.doi.org/10.1016/j.proeng.2015.01.133]
[51]
Zhao, D.; Zhao, X.; Zu, Y.; Li, J.; Zhang, Y.; Jiang, R.; Zhang, Z. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int. J. Nanomedicine, 2010, 5, 669-677.
[PMID: 20957218]
[52]
Zu, Y.; Zhang, Y.; Zhao, X.; Zhang, Q.; Liu, Y.; Jiang, R. Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folate-conjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). Int. J. Nanomedicine, 2009, 4, 321-333.
[http://dx.doi.org/10.2147/IJN.S8501] [PMID: 20054435]
[53]
Hu, Y.; Chen, X.; Xu, Y.; Han, X.; Wang, M.; Gong, T.; Zhang, Z.R.; John Kao, W.; Fu, Y. Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy. Nanoscale, 2019, 11(35), 16476-16487.
[http://dx.doi.org/10.1039/C9NR03684A] [PMID: 31453622]
[54]
Li, C.; Li, Y.; Gao, Y.; Wei, N.; Zhao, X.; Wang, C.; Li, Y.; Xiu, X.; Cui, J. Direct comparison of two albumin-based paclitaxel-loaded nanoparticle formulations: is the crosslinked version more advantageous? Int. J. Pharm., 2014, 468(1-2), 15-25.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.010] [PMID: 24709221]
[55]
Motevalli, S.M.; Eltahan, A.S.; Liu, L.; Magrini, A.; Rosato, N.; Guo, W.; Bottini, M.; Liang, X-J. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophys. Rep., 2019, 5, 19-30.
[http://dx.doi.org/10.1007/s41048-018-0079-6]
[56]
Zhou, Y.; Song, J.; Wang, L.; Xue, X.; Liu, X.; Xie, H.; Huang, X. in situ gelation-induced death of cancer cells based on proteinosomes. Biomacromolecules, 2017, 18(8), 2446-2453.
[http://dx.doi.org/10.1021/acs.biomac.7b00598] [PMID: 28635256]
[57]
Ferrado, J.B.; Perez, A.A.; Visentini, F.F.; Islan, G.A.; Castro, G.R.; Santiago, L.G. Formation and characterization of self-assembled bovine serum albumin nanoparticles as chrysin delivery systems. Colloids Surf. B Biointerfaces, 2019, 173, 43-51.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.046] [PMID: 30266019]
[58]
Das, R.P.; Singh, B.G.; Kunwar, A.; Ramani, M.V.; Subbaraju, G.V.; Hassan, P.A.; Priyadarsini, K.I. Tuning the binding, release and cytotoxicity of hydrophobic drug by Bovine Serum Albumin nanoparticles: Influence of particle size. Colloids Surf. B Biointerfaces, 2017, 158, 682-688.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.048] [PMID: 28783613]
[59]
Lu, Y.L.; Ma, Y.B.; Feng, C.; Zhu, D.L.; Liu, J.; Chen, L.; Liang, S.J.; Dong, C.Y. Co-delivery of Cyclopamine and doxorubicin mediated by bovine serum albumin nanoparticles reverses doxorubicin resistance in breast cancer by down-regulating p-glycoprotein expression. J. Cancer, 2019, 10(10), 2357-2368.
[http://dx.doi.org/10.7150/jca.30323] [PMID: 31258739]
[60]
Steinhauser, I.M.; Langer, K.; Strebhardt, K.M.; Spänkuch, B. Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. Biomaterials, 2008, 29(29), 4022-4028.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.001] [PMID: 18653231]
[61]
Lin, T.; Zhao, P.; Jiang, Y.; Tang, Y.; Jin, H.; Pan, Z.; He, H.; Yang, V.C.; Huang, Y. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano, 2016, 10(11), 9999-10012.
[http://dx.doi.org/10.1021/acsnano.6b04268] [PMID: 27934069]
[62]
Qu, N.; Sun, Y.; Xie, J.; Teng, L. Preparation and Evaluation of in vitro Self-assembling HSA Nanoparticles for Cabazitaxel. Anticancer. Agents Med. Chem., 2017, 17(2), 294-300.
[http://dx.doi.org/10.2174/1871520616666160526103102] [PMID: 27225451]
[63]
Chen, B.; He, X-Y.; Yi, X-Q.; Zhuo, R-X.; Cheng, S-X. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Appl. Mater. Interfaces, 2015, 7(28), 15148-15153.
[http://dx.doi.org/10.1021/acsami.5b03866] [PMID: 26168166]
[64]
Choi, S.H.; Byeon, H.J.; Choi, J.S.; Thao, L.; Kim, I.; Lee, E.S.; Shin, B.S.; Lee, K.C.; Youn, Y.S. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J. Control. Release, 2015, 197, 199-207.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.008] [PMID: 25445703]
[65]
Molina, A.M.; Morales-Cruz, M.; Benítez, M.; Berríos, K.; Figueroa, C.M.; Griebenow, K. Redox-sensitive cross-linking enhances albumin nanoparticle function as delivery system for photodynamic cancer therapy. J. Nanomed. Nanotechnol., 2016, 6(3), 6.
[PMID: 27088048]
[66]
Ge, L.; You, X.; Huang, J.; Chen, Y.; Chen, L.; Zhu, Y.; Zhang, Y.; Liu, X.; Wu, J.; Hai, Q. Human Albumin fragments nanoparticles as ptx carrier for improved anti-cancer efficacy. Front. Pharmacol., 2018, 9, 582.
[http://dx.doi.org/10.3389/fphar.2018.00582] [PMID: 29946256]
[67]
Kim, T.H.; Jiang, H.H.; Youn, Y.S.; Park, C.W.; Tak, K.K.; Lee, S.; Kim, H.; Jon, S.; Chen, X.; Lee, K.C. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int. J. Pharm., 2011, 403(1-2), 285-291.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.041] [PMID: 21035530]
[68]
Cirstea, D.; Hideshima, T.; Rodig, S.; Santo, L.; Pozzi, S.; Vallet, S.; Ikeda, H.; Perrone, G.; Gorgun, G.; Patel, K.; Desai, N.; Sportelli, P.; Kapoor, S.; Vali, S.; Mukherjee, S.; Munshi, N.C.; Anderson, K.C.; Raje, N. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol. Cancer Ther., 2010, 9(4), 963-975.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0763] [PMID: 20371718]
[69]
Mertz, D.; Affolter-Zbaraszczuk, C.; Barthès, J.; Cui, J.; Caruso, F.; Baumert, T.F.; Voegel, J.C.; Ogier, J.; Meyer, F. Templated assembly of albumin-based nanoparticles for simultaneous gene silencing and magnetic resonance imaging. Nanoscale, 2014, 6(20), 11676-11680.
[http://dx.doi.org/10.1039/C4NR02623C] [PMID: 25163585]
[70]
Xu, R.; Fisher, M.; Juliano, R.L. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug. Chem., 2011, 22(5), 870-878.
[http://dx.doi.org/10.1021/bc1002295] [PMID: 21452893]
[71]
Niknejad, H.; Mahmoudzadeh, R. Comparison of different crosslinking methods for preparation of docetaxel-loaded albumin nanoparticles. Iran. J. Pharm. Res., 2015, 14(2), 385-394.
[PMID: 25901145]
[72]
Karimi, M.; Avci, P.; Mobasseri, R.; Hamblin, M.R.; Naderi-Manesh, H. The novel albumin-chitosan core-shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation. J. Nanopart. Res., 2013, 15(4), 1651.
[http://dx.doi.org/10.1007/s11051-013-1651-0] [PMID: 24363607]
[73]
Lian, H.; Wu, J.; Hu, Y.; Guo, H. Self-assembled albumin nanoparticles for combination therapy in prostate cancer. Int. J. Nanomedicine, 2017, 12, 7777-7787.
[http://dx.doi.org/10.2147/IJN.S144634] [PMID: 29123392]
[74]
Jiang, Y.; Wong, S.; Chen, F.; Chang, T.; Lu, H.; Stenzel, M.H. Influencing Selectivity to cancer cells with mixed nanoparticles prepared from albumin-polymer conjugates and block copolymers. Bioconjug. Chem., 2017, 28(4), 979-985.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00698] [PMID: 28263565]
[75]
Elzoghby, A.O.; Hemasa, A.L.; Freag, M.S. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging. J. Control. Release, 2016, 243, 303-322.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.023] [PMID: 27794493]
[76]
DeFrates, K.; Markiewicz, T.; Gallo, P.; Rack, A.; Weyhmiller, A.; Jarmusik, B.; Hu, X. Protein Polymer-based nanoparticles: fabrication and medical applications. Int. J. Mol. Sci., 2018, 19(6), 19.
[http://dx.doi.org/10.3390/ijms19061717] [PMID: 29890756]
[77]
Khullar, P.; Singh, V.; Mahal, A.; Dave, P.N.; Thakur, S.; Kaur, G.; Singh, J.; Singh Kamboj, S.; Singh Bakshi, M. Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J. Phys. Chem. C, 2012, 116, 8834-8843.
[http://dx.doi.org/10.1021/jp300585d]
[78]
Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Kheiri Manjili, H. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem., 2018, 76, 501-509.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.033] [PMID: 29310081]
[79]
Azizi, M.; Ghourchian, H.; Yazdian, F.; Bagherifam, S.; Bekhradnia, S.; Nyström, B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci. Rep., 2017, 7(1), 5178.
[http://dx.doi.org/10.1038/s41598-017-05461-3] [PMID: 28701707]
[80]
Burdette, M.K.; Jenkins, R.; Bandera, Y.; Powell, R.R.; Bruce, T.F.; Yang, X.; Wei, Y.; Foulger, S.H. Bovine serum albumin coated nanoparticles for in vitro activated fluorescence. Nanoscale, 2016, 8(48), 20066-20073.
[http://dx.doi.org/10.1039/C6NR05883C] [PMID: 27892586]
[81]
Hiremath, C.G.; Kariduraganavar, M.Y.; Hiremath, M.B. Synergistic delivery of 5-fluorouracil and curcumin using human serum albumin-coated iron oxide nanoparticles by folic acid targeting. Prog. Biomater., 2018, 7(4), 297-306.
[http://dx.doi.org/10.1007/s40204-018-0104-3] [PMID: 30565175]
[82]
Chunfu, Z.; Jinquan, C.; Duanzhi, Y.; Yongxian, W.; Yanlin, F.; Jiajü, T. Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy. Appl. Radiat. Isot., 2004, 61(6), 1255-1259.
[http://dx.doi.org/10.1016/j.apradiso.2004.03.114] [PMID: 15388118]
[83]
Li, Z.; Hu, Y.; Jiang, T.; Howard, K.A.; Li, Y.; Fan, X.; Sun, Y.; Besenbacher, F.; Yu, M. Human‐Serum‐Albumin‐Coated Prussian Blue Nanoparticles as pH‐/Thermotriggered Drug‐Delivery Vehicles for Cancer Thermochemotherapy. Particle & Particle Systems Characterization, 2016, 33, 53-62.
[http://dx.doi.org/10.1002/ppsc.201500189]
[84]
Sattarahmady, N.; Azarpira, N.; Hosseinpour, A.; Heli, H.; Zare, T. Albumin coated arginine-capped magnetite nanoparticles as a paclitaxel vehicle: Physicochemical characterizations and in vitro evaluation. J. Drug Deliv. Sci. Technol., 2016, 36, 68-74.
[http://dx.doi.org/10.1016/j.jddst.2016.07.004]
[85]
AL-Jawad. SM.; Taha, AA.; Al-Halbosiy, MM.; AL-Barram, LF. Synthesis and characterization of small-sized gold nanoparticles coated by bovine serum albumin (BSA) for cancer photothermal therapy. Photodiagn. Photodyn. Ther., 2018, 21, 201-210.
[http://dx.doi.org/10.1016/j.pdpdt.2017.12.004]
[86]
Quan, Q.; Xie, J.; Gao, H.; Yang, M.; Zhang, F.; Liu, G.; Lin, X.; Wang, A.; Eden, H.S.; Lee, S.; Zhang, G.; Chen, X. HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol. Pharm., 2011, 8(5), 1669-1676.
[http://dx.doi.org/10.1021/mp200006f] [PMID: 21838321]
[87]
Azizi, M.; Ghourchian, H.; Yazdian, F.; Dashtestani, F. AlizadehZeinabad, H. Cytotoxic effect of albumin coated copper nanoparticle on human breast cancer cells of MDA-MB 231. PLoS One, 2017, 12(11)e0188639
[http://dx.doi.org/10.1371/journal.pone.0188639] [PMID: 29186208]
[88]
Peralta, D.V.; He, J.; Wheeler, D.A.; Zhang, J.Z.; Tarr, M.A. Encapsulating gold nanomaterials into size-controlled human serum albumin nanoparticles for cancer therapy platforms. J. Microencapsul., 2014, 31(8), 824-831.
[http://dx.doi.org/10.3109/02652048.2014.940012] [PMID: 25090588]
[89]
Bhushan, B.; Khanadeev, V.; Khlebtsov, B.; Khlebtsov, N.; Gopinath, P. Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv. Colloid Interface Sci., 2017, 246, 13-39.
[http://dx.doi.org/10.1016/j.cis.2017.06.012] [PMID: 28716187]
[90]
Tian, L.; Chen, Q.; Yi, X.; Wang, G.; Chen, J.; Ning, P.; Yang, K.; Liu, Z. Radionuclide I-131 Labeled Albumin-Paclitaxel Nanoparticles for Synergistic Combined Chemo-radioisotope Therapy of Cancer. Theranostics, 2017, 7(3), 614-623.
[http://dx.doi.org/10.7150/thno.17381] [PMID: 28255354]
[91]
Lee, J.E.; Kim, M.G.; Jang, Y.L.; Lee, M.S.; Kim, N.W.; Yin, Y.; Lee, J.H.; Lim, S.Y.; Park, J.W.; Kim, J.; Lee, D.S.; Kim, S.H.; Jeong, J.H. Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Deliv., 2018, 25(1), 1570-1578.
[http://dx.doi.org/10.1080/10717544.2018.1489430] [PMID: 30044159]
[92]
Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 524-539.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[93]
Kastner, E.; Perrie, Y. Particle Size Analysis of Micro and Nanoparticles. Analytical Techniques in the Pharmaceutical Sciences; Müllertz, A.; Perrie, Y; Rades, T., Ed.; Springer: New York, NY, 2016.
[http://dx.doi.org/10.1007/978-1-4939-4029-5_21]
[94]
Clayton, K.N.; Salameh, J.W.; Wereley, S.T.; Kinzer-Ursem, T.L. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics, 2016, 10(5)054107
[http://dx.doi.org/10.1063/1.4962992] [PMID: 27703593]
[95]
Bhattacharjee, S. DLS and zeta potential - What they are and what they are not? J. Control. Release, 2016, 235, 337-351.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.017] [PMID: 27297779]
[96]
Çelebi, N. Koloitler Farmasötik Teknoloji: Temel Konular ve Dozaj Şekilleri; Gürsoy, AZ.Ed.; Kontrollü Salım Sistemleri Derneği: İstanbul ; , 2004.
[97]
Manaia, E.B.; Abuçafy, M.P.; Chiari-Andréo, B.G.; Silva, B.L.; Oshiro, Junior, J.A; Chiavacci, L.A. Physicochemical characterization of drug nanocarriers. Int. J. Nanomedicine, 2017, 12, 4991-5011.
[http://dx.doi.org/10.2147/IJN.S133832] [PMID: 28761340]
[98]
Yamamoto, E.; Miyazaki, S.; Aoyama, C.; Kato, M. A simple and rapid measurement method of encapsulation efficiency of doxorubicin loaded liposomes by direct injection of the liposomal suspension to liquid chromatography. Int. J. Pharm., 2018, 536(1), 21-28.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.035] [PMID: 29175642]
[99]
Daneshmand, S.; Golmohammadzadeh, S.; Jaafari, M.R.; Movaffagh, J.; Rezaee, M.; Sahebkar, A.; Malaekeh-Nikouei, B. Encapsulation challenges, the substantial issue in solid lipid nanoparticles characterization. J. Cell. Biochem., 2018, 119(6), 4251-4264.
[http://dx.doi.org/10.1002/jcb.26617] [PMID: 29243841]
[100]
Shen, J.; Burgess, D.J. in vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv. Transl. Res., 2013, 3(5), 409-415.
[http://dx.doi.org/10.1007/s13346-013-0129-z] [PMID: 24069580]
[101]
Savaser, A.; Esim, O.; Kurbanoglu, S.; Ozkan, S.A.; Ozkan, Y. Current perspectives on drug release studies from polymeric nanoparticles; Organic Materials as Smart Nanocarriers for Drug Delivery, 2018, pp. 101-145.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00003-8]
[102]
Nemutlu, E.; Eroğlu, İ.; Eroğlu, H.; Kır, S. In vitro Release test of nano-drug delivery systems based on analytical and technological perspectives. Curr. Anal. Chem., 2019, 15, 373-409.
[http://dx.doi.org/10.2174/1573411014666180912125931]
[103]
Maghsoudi, A.; Shojaosadati, S.A.; Vasheghani Farahani, E. 5-Fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release study. AAPS PharmSciTech, 2008, 9(4), 1092-1096.
[http://dx.doi.org/10.1208/s12249-008-9146-5] [PMID: 18850275]
[104]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10, S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy