Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Impact of Annealing Temperature on Structural, Optical, and Morphological Properties of ZnO Nanoparticles Synthesized by a Simple Precipitation Method

Author(s): Lalita D. Deshmukh* and Kalyan B. Chavan

Volume 11, Issue 2, 2021

Published on: 16 March, 2020

Page: [204 - 210] Pages: 7

DOI: 10.2174/2210681210666200316161346

Price: $65

Abstract

Objective: Herein, we report zinc oxide (ZnO) nanoparticles (NPs) synthesized by a simple precipitation method using zinc acetate dihydrate (Zn(CH3CO2)2. 2H2O) and sodium hydroxide (NaOH) precursors in aqueous media.

Methods: Synthesized material was annealed at different temperatures to check phase formation and its purity.

Results: At room temperature, the sample shows the formation of zinc hydroxide and at high temperature (100, 200, and 300°C) shows the formation of ZnO. Synthesized materials were analyzed by different techniques. X-ray diffraction analysis shows the formation of a hexagonal crystal structure. Morphological features were analyzed by the SEM technique which shows agglomerated nanoparticles.

Conclusion: The optical properties of ZnO were studied by using UV analysis and showed intrinsic excitonic transition property of the ZnO semiconductor. Further, with an increase in annealing temperature crystalline size, agglomeration of nanoparticles found to be increased whereas the bandgap decreased.

Keywords: Nanoparticle synthesis, Zinc Oxide (ZnO), precipitation method, annealing temperature, nanoparticles, bandgap.

Graphical Abstract
[1]
Lu, L.; Li, R.; Fan, K.; Peng, T. Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol. Energy, 2010, 84(5), 844-853.
[http://dx.doi.org/10.1016/j.solener.2010.02.010]
[2]
Grigore, M.E.; Biscu, E.R.; Holban, A.M.; Gestal, M.C.; Grumezescu, A.M. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals (Basel), 2016, 9(4), 1-14.
[http://dx.doi.org/10.3390/ph9040075 PMID: 27916867]
[3]
Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res., 2016, 88, 428-448.
[http://dx.doi.org/10.1016/j.watres.2015.09.045 PMID: 26519627]
[4]
Samadi, M.; Zirak, M.; Naseri, A.; Khorashadizade, E.; Moshfegh, A.Z. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films, 2016, 605, 2-19.
[http://dx.doi.org/10.1016/j.tsf.2015.12.064]
[5]
Kripal, R.; Gupta, A.K.; Srivastava, R.K.; Mishra, S.K. Photoconductivity and photoluminescence of ZnO nanoparticles synthesized via co-precipitation method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(5), 1605-1612.
[http://dx.doi.org/10.1016/j.saa.2011.05.019 PMID: 21697003]
[6]
Kurudirek, S.V.; Menkara, H.; Klein, B.D.B.; Hertel, N.E.; Summers, C.J. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorodsDetect. Assoc. Equip., 2018, 877, 80-86.
[http://dx.doi.org/10.1016/j.nima.2017.08.057]
[7]
Chithra, M.J.; Pushpanathan, M.S.K. Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by Chemical Precipitation Method. Chin Shu Hsueh Pao, 2015, 28(3), 394-404.
[8]
Verma, D.; Kole, A.K.; Kumbhakar, P. Red shift of the band-edge photoluminescence emission and effects of annealing and capping agent on structural and optical properties of ZnO nanoparticles. J. Alloys Compd., 2015, 625, 122-130.
[http://dx.doi.org/10.1016/j.jallcom.2014.11.102]
[9]
Taunk, P.B.; Das, R.; Bisen, D.P. Structural characterization and photoluminescence properties of zinc oxide nano particles synthesized by chemical route method. J. Radiat. Res. Appl. Sci., 2015, 8(3), 433-438.
[http://dx.doi.org/10.1016/j.jrras.2015.03.006]
[10]
Hou, S.; Li, C. Aluminum-doped zinc oxide thin film as seeds layer effects on the alignment of zinc oxide nanorods synthesized in the chemical bath deposition. Thin Solid Films, 2016, 605, 37-43.
[http://dx.doi.org/10.1016/j.tsf.2015.11.085]
[11]
Hasan Farooqi, M.M.; Srivastava, R.K. Structural, optical and photoconductivity study of ZnO nanoparticles synthesized by annealing of ZnS nanoparticles. J. Alloys Compd., 2017, 691, 275-286.
[http://dx.doi.org/10.1016/j.jallcom.2016.08.245]
[12]
Omri, K.; Bettaibi, A.; Najeh, I.; Rabaoui, S.; Khirouni, K.; El Mir, L. Role of annealing temperature on electrical and optical properties of ZnO nanoparticles for renewable energy applications. J. Mater. Sci. Mater. Electron., 2016, 27(1), 226-231.
[http://dx.doi.org/10.1007/s10854-015-3743-3]
[13]
Reddy, A.J.; Kokila, M.K.; Nagabhushana, H.; Rao, J.L.; Shivakumara, C.; Nagabhushana, B.M.; Chakradhar, R.P.S. Combustion synthesis, characterization and Raman studies of ZnO nanopowders. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81(1), 53-58.
[http://dx.doi.org/10.1016/j.saa.2011.05.043 PMID: 21764361]
[14]
Mohan, A.C.; Renjanadevi, B. Preparation of Zinc Oxide nanoparticles and its characterization using Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). Procedia Technol., 2016, 24, 761-766.
[http://dx.doi.org/10.1016/j.protcy.2016.05.078]
[15]
Boon, C.; Yong, L.; Wahab, A. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applicationsRenew. Sustain. Energy Rev., 2018, 81, 536-551.
[16]
Geetha, M.S.; Nagabhushana, H.; Shivananjaiah, H.N. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J. Sci. Adv. Mater. Devices, 2016, 1(3), 301-310.
[http://dx.doi.org/10.1016/j.jsamd.2016.06.015]
[17]
Azlina, H.N.; Hasnidawani, J.N.; Norita, H.; Surip, S.N. Synthesis of SiO2 nanostructures using sol-gel method. Acta Phys. Pol. A, 2016, 129(4), 842-844.
[http://dx.doi.org/10.12693/APhysPolA.129.842]
[18]
Adam, R.E.; Pozina, G.; Willander, M.; Nur, O. Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photon. Nanostruc., 2018, 32, 11-18.
[http://dx.doi.org/10.1016/j.photonics.2018.08.005]
[19]
Wasly, H.S.; El-Sadek, M.S.A.; Henini, M. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method. Appl. Phys., A Mater. Sci. Process., 2018, 124, 1-12.
[http://dx.doi.org/10.1007/s00339-017-1482-4]
[20]
Kawakami, M.; Hartanto, A.B.; Nakata, Y.; Okada, T. Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition. Japanese J. Appl. Physics, Part 2 Lett, 2003, 42, L33-L35.
[21]
Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley Publishing Company Inc., 2nd Ed., 1978, 114, pp. 347-1978.
[22]
Aljawfi, R.N.; Alam, M.J.; Rahman, F.; Ahmad, S.; Shahee, A.; Kumar, S. Impact of annealing on the structural and optical properties of ZnO nanoparticles and tracing the formation of clusters via DFT calculation. Arab. J. Chem., 2018, 13, pp. 2207-2218.
[http://dx.doi.org/10.1016/j.arabjc.2018.04.006]
[23]
Nazir, Z.; Farhat, K. Effect of calcination temperature on the properties of ZnO nanoparticles. Appl. Phys., A Mater. Sci. Process., 2015, 119, 713-720.
[http://dx.doi.org/10.1007/s00339-015-9019-1]
[24]
Finsy, R. On the critical radius in Ostwald ripening. Langmuir, 2004, 20(7), 2975-2976.
[http://dx.doi.org/10.1021/la035966d PMID: 15835181]
[25]
Raoufi, D. Synthesis and photoluminescence characterization of ZnO nanoparticles. J. Lumin., 2013, 134, 213-219.
[http://dx.doi.org/10.1016/j.jlumin.2012.08.045]
[26]
Raoufi, D. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew. Energy, 2013, 50, 932-937.
[http://dx.doi.org/10.1016/j.renene.2012.08.076]
[27]
Madlol, R.A.A. Structural and optical properties of ZnO nanotube synthesis via novel method. Results Phys., 2017, 7, 1498-1503.
[http://dx.doi.org/10.1016/j.rinp.2017.04.018]
[28]
Narayanan, G.N.; Ganesh, R.S.; Karthigeyan, A. Effect of annealing temperature on structural, optical and electrical properties of hydrothermal assisted zinc oxide nanorods. Thin Solid Films, 2016, 598, 39-45.
[http://dx.doi.org/10.1016/j.tsf.2015.11.071]
[29]
Raji, R.; Gopchandran, K.G. ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Devices, 2017, 2(1), 51-58.
[http://dx.doi.org/10.1016/j.jsamd.2017.02.002]
[30]
Goswami, M.; Adhikary, N.C.; Bhattacharjee, S. Effect of annealing temperatures on the structural and optical properties of zinc oxide nanoparticles prepared by chemical precipitation method. Optik (Stuttg.), 2018, 158, 1006-1015.
[http://dx.doi.org/10.1016/j.ijleo.2017.12.174]
[31]
Lotfi Orimi, R. Investigation of the effect of annealing on the photoluminescence properties of ZnO nanoparticles, synthesized at low temperature. Opt. Mater. (Amst), 2013, 35(3), 657-660.
[http://dx.doi.org/10.1016/j.optmat.2012.10.047]
[32]
Umar, A.; Kumar, R.; Kumar, G.; Algarni, H.; Kim, S.H. Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. J. Alloys Compd., 2015, 648, 46-52.
[http://dx.doi.org/10.1016/j.jallcom.2015.04.236]
[33]
Omri, K.; Najeh, I.; El Mir, L. Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int., 2016, 42(7), 8940-8948.
[http://dx.doi.org/10.1016/j.ceramint.2016.02.151]
[34]
Taylor, P.; Williamson, G.K.; Smallman, R.E., III Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye- scherrer spectrum. Philos. Mag., 1956, 1, 34-46.
[35]
Kalita, P.K.R.; Sarma, B.K.; Das, H.L. Structural characterization of vacuum evaporated ZnSe thin films. Bull. Mater. Sci., 2000, 23, 313-317.
[http://dx.doi.org/10.1007/BF02720089]
[36]
Subbaiah, Y.P.V.; Prathap, P.; Reddy, K.T.R. Structural, electrical and optical properties of ZnS films deposited by close-spaced evaporation. Appl. Surf. Sci., 2006, 253, 2409-2415.
[http://dx.doi.org/10.1016/j.apsusc.2006.04.063]
[37]
John, R.; Rajakumari, R. Synthesis and characterization of rare earth ion doped nano ZnO. Nano-Micro Lett., 2012, 4, 65-72.
[http://dx.doi.org/10.1007/BF03353694]
[38]
Roy, P.; Srivastava, S.K. Chemical bath deposition of MoS2 thin film using ammonium tetrathiomolybdate as a single source for molybdenum and sulphur. Thin Solid Films, 2006, 496, 293-298.
[http://dx.doi.org/10.1016/j.tsf.2005.08.368]
[39]
Al-saadi, T.M.; Al-dhahir, T.; Al-obodi, E.E. ZnO Nanoparticles: synthesis and crystal structure study. Wiast J. Sci. Med., 2014, 7, 87-95.
[40]
Li, Y.Q.; Fu, S.Y.; Mai, Y.W. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer (Guildf.), 2006, 47(6), 2127-2132.
[http://dx.doi.org/10.1016/j.polymer.2006.01.071]
[41]
Hervé, P.; Vandamme, L.K.J. General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol., 1994, 35(4), 609-615.
[http://dx.doi.org/10.1016/1350-4495(94)90026-4]
[42]
Marquez, E.; Bhethanabotla, V.R.; Garcia-Rubio, L.H. Conformation Effects on the Absorption Spectra of Macromolecules. Macromolecules, 1993, 26(3), 479-484.
[http://dx.doi.org/10.1021/ma00055a012]
[43]
Kliger, D.S.; Lewis, J.W. Polarized Light in Optics and Spectroscopy, 1st ed; Academic Press, Inc. Harcourt Brace Jovanovich Publishers:: Boston, San Diego, New York, 1990, p. 266.
[44]
Moballegh, A.; Shahverdi, H.R.; Aghababazadeh, R.; Mirhabibi, A.R. ZnO nanoparticles obtained by mechanochemical technique and the optical properties. Surf. Sci., 2007, 601(13), 2850-2854.
[http://dx.doi.org/10.1016/j.susc.2006.12.012]
[45]
Catauro, M.; Tranquillo, E.; Poggetto, G.D.; Pasquali, M.; Era, A.D.; Ciprioti, S.V. Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 Synthesized by the Sol-Gel method. Materials (Basel), 2018, 11, 1-11.
[http://dx.doi.org/10.3390/ma11122364]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy