Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Cu-Catalyzed Cascade Reaction of Isoxazoles with Diaryliodonium Salts for the Synthesis of Acridines

Author(s): Shangrong Zhu, Xuechen Lu, Qiuneng Xu, Jian Li* and Shenghu Yan*

Volume 17, Issue 12, 2020

Page: [944 - 950] Pages: 7

DOI: 10.2174/1570178617666200225125427

Price: $65

Abstract

A straightforward and efficient synthesis of acridine derivatives via a copper-catalyzed cascade reaction among isoxazoles and diaryliodonium salts is achieved. Various mono-, multi-substituted and 9-substituted acridine derivatives could be obtained in moderate to good yields. The process has gone through tandem double arylation and Friedel-Crafts reactions.

Keywords: Synthetic methods, Cu-Catalyzed, Cascade Reaction, Diaryliodonium salts, Isoxazole, Acridine.

Graphical Abstract
[1]
Black, D.S. Product Class 9: Acridines; Black, D.S., Ed.; Georg Thieme Verlag: Stuttgart, Germany, 2005, Vol. 15, .
[2]
Romero, N.A. Chem. Rev., 2016, 116, 10075-10166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582]
[3]
Zhang, D.; Jiang, X.; Yang, H.; Martinez, A.; Feng, M.; Dong, Z.; Gao, G. Org. Biomol. Chem., 2013, 11(20), 3375-3381.
[http://dx.doi.org/10.1039/c3ob27500k] [PMID: 23563223]
[4]
Youji Huaxue, 2018, 38, 594-611.
[5]
Knölker, H-J. Chem. Rev., 2002, 102, 4303-4427.
[PMID: 12428991]
[6]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Chem. Rev., 2009, 109(9), 4140-4182.
[http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022]
[7]
Schmidt, A.W.; Reddy, K.R. Chem. Rev., 2012, 112, 3193-3328.
[http://dx.doi.org/10.1021/cr200447s] [PMID: 22480243]
[8]
Prasher, P.; Sharma, M. MedChemComm, 2018, 9(10), 1589-1618.
[http://dx.doi.org/10.1039/C8MD00384J] [PMID: 30429967]
[9]
Geddes, C.D. Dyes Pigm., 2000, 45, 243-251.
[http://dx.doi.org/10.1016/S0143-7208(00)00025-5]
[10]
Ye, X.; Plessow, P.N.; Brinks, M.K.; Schelwies, M.; Schaub, T.; Rominger, F.; Paciello, R.; Limbach, M.; Hofmann, P. J. Am. Chem. Soc., 2014, 136(16), 5923-5929.
[http://dx.doi.org/10.1021/ja409368a] [PMID: 24684701]
[11]
Baruah, H.; Wright, M.W.; Bierbach, U. Biochemistry, 2005, 44(16), 6059-6070.
[http://dx.doi.org/10.1021/bi050021b] [PMID: 15835895]
[12]
Graham, L.A.; Suryadi, J.; West, T.K.; Kucera, G.L.; Bierbach, U. J. Med. Chem., 2012, 55(17), 7817-7827.
[http://dx.doi.org/10.1021/jm300879k] [PMID: 22871158]
[13]
Dollinger, S.; Löber, S.; Klingenstein, R.; Korth, C.; Gmeiner, P. J. Med. Chem., 2006, 49(22), 6591-6595.
[http://dx.doi.org/10.1021/jm060773j] [PMID: 17064077]
[14]
Ma, Z.; Choudhury, J.R.; Wright, M.W.; Day, C.S.; Saluta, G.; Kucera, G.L.; Bierbach, U. J. Med. Chem., 2008, 51(23), 7574-7580.
[http://dx.doi.org/10.1021/jm800900g] [PMID: 19012390]
[15]
Goodell, J.R.; Ougolkov, A.V.; Hiasa, H.; Kaur, H.; Remmel, R.; Billadeau, D.D.; Ferguson, D.M. J. Med. Chem., 2008, 51(2), 179-182.
[http://dx.doi.org/10.1021/jm701228e] [PMID: 18163538]
[16]
Cheng, M-K.; Modi, C.; Cookson, J.C.; Hutchinson, I.; Heald, R.A.; McCarroll, A.J.; Missailidis, S.; Tanious, F. J. Med. Chem., 2008, 51, 963-975.
[http://dx.doi.org/10.1021/jm070587t] [PMID: 18247546]
[17]
Ma, Z.; Rao, L.; Bierbach, U. J. Med. Chem., 2009, 52(10), 3424-3427.
[http://dx.doi.org/10.1021/jm900451y] [PMID: 19397321]
[18]
Gensicka-Kowalewska, M.; Cholewinski, G.; Dzierzbicka, K. Rsc. Adv., 2017, 7, 15776-15804.
[http://dx.doi.org/10.1039/C7RA01026E]
[19]
Byvaltsev, V.A.; Bardonova, L.A.; Onaka, N.R.; Polkin, R.A.; Ochkal, S.V.; Shepelev, V.V.; Aliyev, M.A.; Potapov, A.A. Front. Oncol., 2019, 9, 925.
[http://dx.doi.org/10.3389/fonc.2019.00925] [PMID: 31612102]
[20]
Popp, F.D. J. Org. Chem., 1962, 27, 2658-2659.
[http://dx.doi.org/10.1021/jo01054a518]
[21]
Lian, Y.; Hummel, J.R.; Bergman, R.G.; Ellman, J.A. J. Am. Chem. Soc., 2013, 135(34), 12548-12551.
[http://dx.doi.org/10.1021/ja406131a] [PMID: 23957711]
[22]
Hu, W.; Zheng, Q.; Sun, S. Cheng. J. Chem. Commun. (Camb.), 2017, 53(46), 6263-6266.
[http://dx.doi.org/10.1039/C7CC03006A] [PMID: 28541363]
[23]
Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Angew. Chem. Int. Ed., 2016, 55, 12688-12692.
[http://dx.doi.org/10.1002/anie.201606043]
[24]
Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Angew. Chem. Int. Ed., 2016, 55, 794-797.
[http://dx.doi.org/10.1002/anie.201508309]
[25]
Yu, S.; Tang, G.; Li, Y.; Zhou, X.; Lan, Y.; Li, X. Angew. Chem. Int. Ed., 2016, 55, 8696-8700.
[http://dx.doi.org/10.1002/anie.201602224]
[26]
Sahani, R.L.; Liu, R.S. Angew. Chem. Int. Ed., 2017, 56, 12736-12740.
[http://dx.doi.org/10.1002/anie.201707423]
[27]
Zeng, Z.; Jin, H.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Angew. Chem. Int. Ed., 2018, 57, 16549-16553.
[http://dx.doi.org/10.1002/anie.201810369]
[28]
Li, J.; Tan, E.; Keller, N.; Chen, Y-H.; Zehetmaier, P.M.; Jakowetz, A.C.; Bein, T.; Knochel, P. J. Am. Chem. Soc., 2019, 141(1), 98-103.
[http://dx.doi.org/10.1021/jacs.8b11466] [PMID: 30558415]
[29]
Mokar, B.D.; Jadhav, P.D.; Pandit, Y.B. Chem. Sci. (Camb.), 2018, 9, 4488-4492.
[http://dx.doi.org/10.1039/C8SC00986D]
[30]
Kim, S.; Han, S.H.; Mishra, N.K.; Chun, R.; Jung, Y.H.; Kim, H.S.; Park, J.S.; Kim, I.S. Org. Lett., 2018, 20(13), 4010-4014.
[http://dx.doi.org/10.1021/acs.orglett.8b01571] [PMID: 29905072]
[31]
Merritt, E.A.; Olofsson, B. Angew. Chem. Int. Ed., 2009, 48, 9052-9070.
[http://dx.doi.org/10.1002/anie.200904689]
[32]
Zhdankin, V.V.; Stang, P. J. Chem. Rev., 2008, 108(12), 5299-5358.
[http://dx.doi.org/10.1021/cr800332c] [PMID: 18986207]
[33]
Suero, M.G.; Bayle, E.D.; Collins, B.S.L.; Gaunt, M.J. J. Am. Chem. Soc., 2013, 135(14), 5332-5335.
[http://dx.doi.org/10.1021/ja401840j] [PMID: 23521626]
[34]
Walkinshaw, A.J.; Xu, W.; Suero, M.G.; Gaunt, M.J. J. Am. Chem. Soc., 2013, 135(34), 12532-12535.
[http://dx.doi.org/10.1021/ja405972h] [PMID: 23947578]
[35]
Cahard, E.; Bremeyer, N.; Gaunt, M.J.A. Chem. Int. Ed., 2013, 52, 9284-9288.
[http://dx.doi.org/10.1002/anie.201303724]
[36]
Vo, N.T.; Pace, R.D.M.; O’Hara, F.; Gaunt, M.J. J. Am. Chem. Soc., 2008, 130(2), 404-405.
[http://dx.doi.org/10.1021/ja077457u] [PMID: 18081291]
[37]
Pang, X.; Lou, Z.; Li, M.; Wen, L.; Chen, C. Eur. J. Org. Chem., 2015, 15, 3361-3369.
[http://dx.doi.org/10.1002/ejoc.201500161]
[38]
Liu, L.; Bai, S.H.; Li, Y.; Wang, L-X.; Hu, Y.; Sung, H-L.; Li, J. J. Org. Chem., 2017, 82(20), 11084-11090.
[http://dx.doi.org/10.1021/acs.joc.7b02035] [PMID: 28969415]
[39]
Liu, L.; Qiang, J.; Bai, S.; Sung, H-L.; Miao, C. Li. J. Adv. Synth. Catal., 2017, 359, 1283-1289.
[http://dx.doi.org/10.1002/adsc.201601403]
[40]
Wang, M.; Fan, Q.; Jiang, X. Org. Lett., 2018, 20(1), 216-219.
[http://dx.doi.org/10.1021/acs.orglett.7b03564] [PMID: 29256611]
[41]
Bauer, I.; Knölker, H-J. Top. Curr. Chem., 2012, 309, 203-253.
[http://dx.doi.org/10.1007/128_2011_192] [PMID: 21728136]
[42]
Kalirajan, R.; Muralidharan, V.; Jubie, S.; Gowramma, B.; Gomathy, S.; Sankar, S.; Elango, K. J. Chem., 2012, 49, 748-754.
[43]
Kotani, H.; Ohkubo, K.; Fukuzumi, S. J. Am. Chem. Soc., 2004, 126(49), 15999-16006.
[http://dx.doi.org/10.1021/ja048353b] [PMID: 15584734]
[44]
Hamilton, D.S.; Nicewicz, D.A. J. Am. Chem. Soc., 2012, 134(45), 18577-18580.
[http://dx.doi.org/10.1021/ja309635w] [PMID: 23113557]
[45]
Sheng, J.; He, R.; Xue, J.; Wu, C.; Qiao, J.; Chen, C. Org. Lett., 2018, 20(15), 4458-4461.
[http://dx.doi.org/10.1021/acs.orglett.8b01748] [PMID: 30040430]
[46]
Phipps, R.J.; Grimster, N.P.; Gaunt, M.J. J. Am. Chem. Soc., 2008, 130(26), 8172-8174.
[http://dx.doi.org/10.1021/ja801767s] [PMID: 18543910]
[47]
Li, H.; Jie, J.; Wu, S.; Yang, X.; Xu, H. Org. Chem. Front., 2017, 4, 250-254.
[http://dx.doi.org/10.1039/C6QO00709K]
[48]
Su, Q.; Li, P.; He, M.; Wu, Q.; Ye, L.; Mu, Y. Org. Lett., 2014, 16, 28-31.
[49]
Kinensl, A. Russ. Original., 2014, 50, 1500-1504.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy