Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Formation of Carbon-Carbon Bonds Mediated by Hypervalent Iodine Reagents Under Metal-free Conditions

Author(s): Xiaoxian Li, Tongxing Liu, Beibei Zhang, Dongke Zhang, Haofeng Shi, Zhenyang Yu, Shanqing Tao and Yunfei Du*

Volume 24, Issue 1, 2020

Page: [74 - 103] Pages: 30

DOI: 10.2174/1385272824666200211093103

Price: $65

Abstract

During the past several decades, hypervalent iodine reagents have been widely used in various organic transformations. Specifically, these exclusive classes of reagents have been extensively used for the construction of carbon-carbon bonds. This review aims to cover all the reactions involving the construction of carbon-carbon bonds mediated by hypervalent iodine reagents, providing references and highlights for synthetic chemists who are interested in hypervalent iodine chemistry.

Keywords: Hypervalent iodine reagents, C-C bond formation, metal-free, oxidation, organic transformation, iodine chemistry.

Graphical Abstract
[1]
Mkhalid, I.A.; Barnard, J.H.; Marder, T.B.; Murphy, J.M.; Hartwig, J.F. C-H activation for the construction of C-B bonds. Chem. Rev., 2010, 110(2), 890-931.
[http://dx.doi.org/10.1021/cr900206p] [PMID: 20028025]
[2]
Hataaki, Y.; Hiroshi, I. Palladium-catalyzed coupling reaction of aromatic compounds. Bull. Chem. Soc. Jpn., 1973, 46, 2490-2492.
[http://dx.doi.org/10.1246/bcsj.46.2490]
[3]
Shiotani, A.; Itatani, H. Dibenzofurane durch intramolekulare Ringschluss-Reaktionen. Angew. Chem. Int. Ed., 1974, 86(13), 478-479.
[http://dx.doi.org/10.1002/ange.19740861308]
[4]
Kermark, B.; Oslob, J.D.; Heuschert, U. catalytic oxidative aromatic cyclizations with palladium. Tetrahedron Lett., 1995, 36, 1325-1326.
[http://dx.doi.org/10.1016/0040-4039(94)02467-P]
[5]
Hagelin, H.; Oslob, J.D.; Akermark, B. Oxygen as oxidant in palladium-catalyzed inter- and intramolecular coupling reactions. Chemistry, 1999, 5, 2413-2416.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990802)5:8<2413:AID-CHEM2413>3.0.CO;2-3]
[6]
Makoto, O.; Teizo, Y. A selective synthesis of biphenyl by the Pd(Oac)2/MoO2(acac)2/O2/AcOH catalyst system. Chem. Lett., 2001, 30, 212-213.
[http://dx.doi.org/10.1246/cl.2001.212]
[7]
Shang, X.; Liu, Z.Q. Transition metal-catalyzed C(vinyl)-C(vinyl) bond formation via double C(vinyl)-H bond activation. Chem. Soc. Rev., 2013, 42(8), 3253-3260.
[http://dx.doi.org/10.1039/c2cs35445d] [PMID: 23318664]
[8]
Malik, G.; Swyka, R.A.; Tiwari, V.K.; Fei, X.; Applegate, G.A.; Berkowitz, D.B.A. A thiocyanopalladation/carbocyclization transformation identified through enzymatic screening: stereocontrolled tandem C-SCN and C-C bond formation. Chem. Sci. (Camb.), 2017, 8(12), 8050-8060.
[http://dx.doi.org/10.1039/C7SC04083K] [PMID: 29568453]
[9]
Guo, W.; Gómez, J.E.; Cristòfol, À.; Xie, J.; Kleij, A.W. Catalytic transformations of functionalized cyclic organic carbonates. Angew. Chem. Int. Ed. Engl., 2018, 57(42), 13735-13747.
[http://dx.doi.org/10.1002/anie.201805009] [PMID: 29873934]
[10]
Tachikawa, H. Alkali metal mediated C-C bond coupling reaction. J. Chem. Phys., 2015, 142(6)064301
[http://dx.doi.org/10.1063/1.4906944] [PMID: 25681900]
[11]
Cao, H.; Liu, X.; Liao, J.; Huang, J.; Qiu, H.; Chen, Q.; Chen, Y. Transition metal-mediated C═O and C═C bond-forming reactions: a regioselective strategy for the synthesis of imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrazines. J. Org. Chem., 2014, 79(22), 11209-11214.
[http://dx.doi.org/10.1021/jo501671x] [PMID: 25369461]
[12]
Sun, H.Y.; Hall, D.G. C-C bond formation: Rethinking cross-coupling. Nat. Chem., 2014, 6(7), 561-562.
[http://dx.doi.org/10.1038/nchem.1983] [PMID: 24950322]
[13]
Kretschmer, R.; Schlangen, M.; Schwarz, H. C-N and C-C bond formations in the thermal reactions of “bare” Ni(NH2)+ with C2H4: mechanistic insight on the metal-mediated hydroamination of an unactivated olefin. Angew. Chem. Int. Ed. Engl., 2012, 51(14), 3483-3488.
[http://dx.doi.org/10.1002/anie.201104433] [PMID: 22328116]
[14]
Kozhushkov, S.I.; Ackermann, L. Ruthenium-catalyzed direct oxidative alkenylation of arenes through two fold C-H bond functionalization. Chem. Sci. (Camb.), 2013, 4, 886-896.
[http://dx.doi.org/10.1039/C2SC21524A]
[15]
Tanyeli, C.; Ozdemirhan, D. Mn(III)-based C-C bond formation: regioselective α-allylation of various α,β-unsaturated, α and β-Alkoxy α,β-unsaturated ketones. Tetrahedron, 2005, 61, 8212-8217.
[http://dx.doi.org/10.1016/j.tet.2005.06.031]
[16]
Yeung, C.S.; Dong, V.M. Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev., 2011, 111(3), 1215-1292.
[17]
Deb, M.L.; Pegu, C.D.; Deka, B.; Dutta, P.; Kotmale, A.S.; Baruah, P.K. Bronsted-acid-mediated divergent reactions of Betti bases with indoles: An approach to chromeno 2,3-b indoles through intramolecular dehydrogenative C2-alkoxylation of indole. Eur. J. Org. Chem., 2016, 2016(20), 3441-3448.
[18]
Deb, M.L.; Borpatra, P.J.; Saikia, P.J.; Baruah, P.K. Iodine/hydrogen peroxide promoted intramolecular oxidative C-O bond formation in ethanol at room temperature: a green approach to 1,3-oxazines. Synlett, 2017, 28, 461-466.
[http://dx.doi.org/10.1021/cr100280d] [PMID: 21391561]
[19]
Maejima, S.; Yamaguchi, E.; Itoh, A. Visible light/molecular-iodine-mediated intermolecular spirolactonization reaction of olefins with cyclic ketones. J. Org. Chem., 2019, 84, 9519-9531.
[20]
Parvatkar, P.T.; Manetsch, R.; Banik, B.K. Metal-free Cross-Dehydrogenative Coupling (CDC): molecular iodine as a versatile catalyst/reagent for CDC reactions. Chem. Asian J., 2019, 14(1), 6-30.
[http://dx.doi.org/10.1002/asia.201801237] [PMID: 30259704]
[21]
Ren, Y.M.; Cai, C.; Yang, R.C. Molecular iodine-catalyzed multicomponent reactions: an efficient catalyst for organic synthesis. RSC Advances, 2013, 3, 7182-7204.
[22]
Finkbeiner, P.; Nachtsheim, B.J. Iodine in modern oxidation catalysis. Synthesis-Stuttgart, 2013, 45, 979-999.
[23]
Liu, D.; Lei, A.W. Iodine-catalyzed oxidative coupling reactions utilizing C - H and X - H as nucleophiles. Chem. Asian J., 2015, 10, 806-823.
[24]
Verma, A.K.; Shukla, S.P.; Singh, J.; Rustagi, V. Synthesis of 5-iodopyrrolo[1,2-a]quinolines and indolo[1,2-a]quinolines via iodine-mediated electrophilic and regioselective 6-endo-dig ring closure. J. Org. Chem., 2011, 76, 5670-5684.
[25]
Lv Z.G.; Wang B.N.; Hu Z.Y.; Zhou Y.M.; Yu W.Q.; Chang J.B. Synthesis of Quinazolines from N,N '-disubstituted amidines via I2/KI-Mediated oxidative C-C bond formation. J. Org. Chem., 2016, 81, 9924-9930.
[26]
Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun. (Camb.), 2009, (16), 2073-2085.
[http://dx.doi.org/10.1039/b821747e] [PMID: 19360157]
[27]
Kita, Y.; Dohi, T. Pioneering metal-free oxidative coupling strategy of aromatic compounds using hypervalent iodine reagents. Chem. Rec., 2015, 15(5), 886-906.
[http://dx.doi.org/10.1002/tcr.201500020] [PMID: 26223195]
[28]
Banks D.F. Organic polyvalent iodine compounds. Chem. Rev., 1996, 66, 243-266.
[29]
Zhdankin, V.V.; Stang, P.J. Recent developments in the chemistry of polyvalent iodine compounds. Chem. Rev., 2002, 102(7), 2523-2584.
[http://dx.doi.org/10.1021/cr010003+] [PMID: 12105935]
[30]
Wirth, T. Hypervalent iodine chemistry in synthesis: scope and new directions. Angew. Chem. Int. Ed. Engl., 2005, 44(24), 3656-3665.
[http://dx.doi.org/10.1002/anie.200500115] [PMID: 15828037]
[31]
Brown, M.; Farid, U.; Wirth, T. Hypervalent iodine reagents as powerful electrophiles. Synlett, 2013, 24, 424-431.
[http://dx.doi.org/10.1055/s-0032-1318103]
[32]
Charpentier, J.; Früh, N.; Togni, A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem. Rev., 2015, 115(2), 650-682.
[http://dx.doi.org/10.1021/cr500223h] [PMID: 25152082]
[33]
Kang, Z.; Sun, J.; Zhang-Negrerie, D.; Du, Y. Hypervalent iodine reagents for heterocycle synthesis and functionalization. Reports Org. Chem, 2016, 6, 25-45.
[34]
Brand, J.P.; Fernández González, D.; Nicolai, S.; Waser, J. Benziodoxole-based hypervalent iodine reagents for atom-transfer reactions. Chem. Commun. (Camb.), 2011, 47(1), 102-115.
[http://dx.doi.org/10.1039/C0CC02265A] [PMID: 20820531]
[35]
Hyatt, I.F.D.; Dave, L.; David, N.; Kaur, K.; Medard, M.; Mowdawalla, C. Hypervalent iodine reactions utilized in carbon-carbon bond formations. Org. Biomol. Chem., 2019, 17, 7822-7848.
[36]
Zhang, X.; Cong, Y.; Lin, G.Y.; Guo, X.L.; Cao, Y.; Lei, K.H.; Du, Y.F. Recent advances of the application of organoiodine(III) reagents in the construction of heterocyclic compounds. Chin. J. Org. Chem, 2016, 36, 2513-2529.
[37]
Xing, L.L.; Zhang, Y.; Du, Y.F. Hypervalent Iodine-Mediated synthesis of spiroheterocycles via oxidative cyclization. Curr. Org. Chem., 2019, 23, 14-37.
[38]
Liu, J.L.; Xiong, X.Y.; Chen, J.; Wang, Y.T.; Zhu, R.R.; Huang, J.H. Double C-H activation for the C-C bond formation reactions. Curr. Org. Synth., 2018, 15, 882-903.
[39]
Kandimalla, S.R.; Parvathaneni, S.P.; Sabitha, G.; Reddy, B.V.S. Recent advances in intramolecular metal-free oxidative C-H bond aminations using hypervalent iodine(III) reagents. Eur. J. Org. Chem., 2019, 2019(8), 1687-1714.
[40]
Hu, T.; Xu, K.; Ye, Z.; Zhu, K.; Wu, Y.; Zhang, F. Two-in-one strategy for the Pd(II)-catalyzed tandem C-H arylation/decarboxylative annulation involved with cyclic diaryliodonium salts. Org. Lett., 2019, 21, 7233-7237.
[41]
Zhdankin, V.V.; Stang, P.J. Alkynyliodonium salts in organic synthesis. Tetrahedron, 1998, 54, 10927-10966.
[http://dx.doi.org/10.1016/S0040-4020(98)00410-4]
[42]
Varvoglis, A.; Spyroudis, S. Hypervalent iodine chemistry: 25 years of development at the University of Thessaloniki. Synlett, 1998, 9(3), 221-232.
[http://dx.doi.org/10.1055/s-1998-1619]
[43]
Tellitu, I.; Dominguez, E. The application of [Bis(trifluoroacetoxy)iodo] benzene (PIFA) in the synthesis of nitrogen-containing heterocycles. Synlett, 2012, 23(15), 2165-2175.
[http://dx.doi.org/10.1055/s-0032-1316739]
[44]
Gayen, K.S.; Chatterjee, N.; Khamarui, S.; Tarafdar, P.K. recent advances in iodosobenzene-mediated construction of heterocyclic scaffolds: transition-metal-free approaches and scope. Eur. J. Org. Chem., 2018, 2018(4), 425-439.
[http://dx.doi.org/10.1002/ejoc.201701306]
[45]
Mironova, I.A.; Postnikov, P.S.; Yusubova, R.Y.; Yoshimura, A.; Wirth, T.; Zhdankin, V.V.; Nemykin, V.N.; Yusubov, M.S. Preparation and X-ray structure of 2-iodoxybenzenesulfonic acid (IBS) - a powerful hypervalent iodine(V) oxidant. Beilstein J. Org. Chem., 2018, 14, 1854-1858.
[http://dx.doi.org/10.3762/bjoc.14.159] [PMID: 30112090]
[46]
Birchall, T.; Myers, R.D.; Waard, H.D.; Gary, J.S. Multinuclear nuclear magnetic resonance and mossbauer study of OTeFs derivatives of tellurium, iodine, and xenon. Spectroscopic determination of the relative electronegativities of F and OTeFs. Inorg. Chem., 1982, 21, 1068-1073.
[http://dx.doi.org/10.1021/ic00133a039]
[47]
Uyanik, M.; Akakura, M.; Ishihara, K. 2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone. J. Am. Chem. Soc., 2009, 131(1), 251-262.
[http://dx.doi.org/10.1021/ja807110n] [PMID: 19053813]
[48]
Hara, S.; Monoi, M.; Umemura, R.; Fuse, C. IF5-pyridine-HF: air- and moisture-stable fluorination reagent. Tetrahedron, 2012, 68, 10145-10150.
[http://dx.doi.org/10.1016/j.tet.2012.09.104]
[49]
Bringer, F.M.; Bodlaender, P. Diaryliodosyl salts. J. Org. Chem., 1968, 33, 2981-1984.
[http://dx.doi.org/10.1021/jo01271a089]
[50]
Olah, G.A.; Pavlath, A.E.; Kuhn, S.J. On the preparation of iodine pentafluoride. J. Inorg. Nucl. Chem., 1958, 7, 301-302.
[http://dx.doi.org/10.1016/0022-1902(58)80089-5]
[51]
Gallos, J.; Varvoglis, A.; Alcock, N.W. Oxo-bridged compounds of iodine( III): syntheses, structure, and properties of μ-oxo-bis. J. Chem. Soc., Perkin Trans. 1,, 1985, 757-763. [trifluoroacetato(phenyl)iodine].
[http://dx.doi.org/10.1039/P19850000757]
[52]
Togo, H.; Iinuma, M. Preparation of new hypervalent iodine compounds, 1-acetoxy-5-halo-1,2-benziodoxol-3(1H)-one. JP Patent 2015063501, 2015.
[53]
Page, T.K.; Wirth, T. Simple direct synthesis of Bis(trifluoroacetoxy)iodo arenes. Synthesis, 2006, 2006(18), 3153-3155.
[54]
Ochiai, M.; Ito, T.; Takaoka, Y.; Masaki, Y. Generation of allenyliodinanes and their reductive iodobio-claisen rearrangement. J. Am. Chem. Soc., 1991, 113, 1319-1323.
[http://dx.doi.org/10.1021/ja00004a037]
[55]
Wu, Y.; Bouvet, S.; Izquierdo, S.; Shafir, A. Synthesis of polysubstituted iodoarenes enabled by iterative iodine-directed para and ortho C-H functionalization. Angew. Chem. Int. Ed. Engl., 2019, 58(9), 2617-2621.
[http://dx.doi.org/10.1002/anie.201809657] [PMID: 30496639]
[56]
Wu, Y.; Arenas, I.; Broomfield, L.M.; Martin, E.; Shafir, A. Hypervalent activation as a key step for dehydrogenative ortho C-C coupling of iodoarenes. Chemistry, 2015, 21(51), 18779-18784.
[http://dx.doi.org/10.1002/chem.201503987] [PMID: 26559651]
[57]
Zhiyu, J.; Erik, G.; Rosa María, S.; Roser, P. Angel, A-L.; Eddy M.; Adelina V.; Alexandr S. An alternative to the classical α-arylation: the transfer of an intact 2-iodoaryl from ArI(O2CCF3)2. Angew. Chem. Int. Ed., 2015, 126, 11480-11483.
[58]
Arisawa, M.; Ramesh, N.G.; Nakajima, M.; Tohma, H.; Kita, Y. Hypervalent iodine(III)-induced intramolecular cyclization of α-(aryl)alkyl-β-dicarbonyl compounds: a convenient synthesis of benzannulated and spirobenzannulated compounds. J. Org. Chem., 2001, 66(1), 59-65.
[http://dx.doi.org/10.1021/jo000953f] [PMID: 11429930]
[59]
Zhen, X.; Wan, X.; Zhang, W.; Li, Q.; Zhang-Negrerie, D.; Du, Y. Synthesis of spirooxindoles from N-arylamide derivatives via oxidative C(sp2)-C(sp3) bond formation mediated by PhI(OMe)2 generated in situ. Org. Lett., 2019, 21(4), 890-894.
[http://dx.doi.org/10.1021/acs.orglett.8b03741] [PMID: 30698442]
[60]
Wang, S.E.; Wang, L.; He, Q.; Fan, R. Destruction and construction: application of dearomatization strategy in aromatic carbon-nitrogen bond functionalization. Angew. Chem. Int. Ed. Engl., 2015, 54(46), 13655-13658.
[http://dx.doi.org/10.1002/anie.201508161] [PMID: 26457665]
[61]
Wang, J.; Yuan, Y.; Xiong, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Phenyliodine bis(trifluoroacetate)-mediated oxidative C-C bond formation: synthesis of 3-hydroxy-2-oxindoles and spirooxindoles from anilides. Org. Lett., 2012, 14(9), 2210-2213.
[http://dx.doi.org/10.1021/ol300418h] [PMID: 22497343]
[62]
Antonchick, A.P.; Burgmann, L. Direct selective oxidative cross-coupling of simple alkanes with heteroarenes. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3267-3271.
[http://dx.doi.org/10.1002/anie.201209584] [PMID: 23364911]
[63]
Narayan, R.; Antonchick, A.P. Hypervalent iodine-mediated selective oxidative functionalization of (thio)chromones with alkanes. Chemistry, 2014, 20(16), 4568-4572.
[http://dx.doi.org/10.1002/chem.201400186] [PMID: 24604840]
[64]
Ochiai, M.; Kitagawa, Y.; Takayama, N.; Takaoka, Y.; Shiro, M. Synthesis of chiral diaryliodonium salts, 1,1‘-binaphthyl-2-yl(phenyl)iodonium tetrafluoroborates: asymmetric α-phenylation of β-keto ester enolates. J. Am. Chem. Soc., 1999, 121, 9233-9234.
[http://dx.doi.org/10.1021/ja992236c]
[65]
Wu, H.; He, Y.P.; Xu, L.; Zhang, D.Y.; Gong, L.Z. Asymmetric organocatalytic direct C(sp2)-H/C(sp3)-H oxidative cross-coupling by chiral iodine reagents. Angew. Chem. Int. Ed. Engl., 2014, 53(13), 3466-3469.
[http://dx.doi.org/10.1002/anie.201309967] [PMID: 24554460]
[66]
Cao, Y.; Zhang, X.; Lin, G.; Zhang-Negrerie, D.; Du, Y. chiral aryliodine-mediated enantioselective organocatalytic spirocyclization: synthesis of spirofurooxindoles via cascade oxidative C-O and C-C bond formation. Org. Lett., 2016, 18(21), 5580-5583.
[http://dx.doi.org/10.1021/acs.orglett.6b02816] [PMID: 27768318]
[67]
Hu, B.; Cao, Y.; Zhang, B.B.; Zhang-Negrerie, D.; Du, Y.F. Formation of phenyliodonio-substituted spirofurooxindole trifluoroacetates from N-substituted 3-oxopentanediamides via phenyliodine Bis(trifluoroacetate)-mediated oxidative cascade reactions. Adv. Synth. Catal., 2017, 359, 2542-2548.
[http://dx.doi.org/10.1002/adsc.201700075]
[68]
Sun, J.Y.; Li, G.C.; Zhang, G.T.; Cong, Y.; An, X.C.; Zhang-Negrerie, D.; Du, Y.F. Cascade formation of C-3-unsymmetric spirooxindoles via PhI(OAc)2-mediated oxidative C-C/C-N bond formation. Adv. Synth. Catal., 2018, 360, 2476-2481.
[http://dx.doi.org/10.1002/adsc.201800314]
[69]
Sun, D.S.; Zhao, X.Y.; Zhang, B.B.; Cong, Y.; Wan, X.T.; Bao, M.M.; Zhao, X.; Li, B.; Zhang-Negrerie, D.; Du, Y.F. Synthesis of spirofurooxindoles via phenyliodine(III) Bis(trifluoroacetate) (PIFA)-mediated cascade oxidative C-O and C-C bond formation. Adv. Synth. Catal., 2018, 360, 1634-1638.
[http://dx.doi.org/10.1002/adsc.201701635]
[70]
Andrez, J.C.; Giroux, M.A.; Lucien, J.; Canesi, S. Rapid formation of hindered cores using an oxidative Prins process. Org. Lett., 2010, 12(19), 4368-4371.
[http://dx.doi.org/10.1021/ol101851z] [PMID: 20812675]
[71]
Dohi, T.; Kato, D.; Hyodo, R.; Yamashita, D.; Shiro, M.; Kita, Y. Discovery of stabilized bisiodonium salts as intermediates in the carbon-carbon bond formation of alkynes. Angew. Chem. Int. Ed. Engl., 2011, 50(16), 3784-3787.
[http://dx.doi.org/10.1002/anie.201007640] [PMID: 21425421]
[72]
Dohi, T.; Nakae, T.; Ishikado, Y.; Kato, D.; Kita, Y. New synthesis of spirocycles by utilizing in situ forming hypervalent iodine species. Org. Biomol. Chem., 2011, 9(20), 6899-6902.
[http://dx.doi.org/10.1039/c1ob06199b] [PMID: 21892505]
[73]
Zhang, B.; Zhang, X.; Hu, B.; Sun, D.; Wang, S.; Zhang-Negrerie, D.; Du, Y. PhI (OCOCF3)2-mediated construction of a 2-spiropseudoindoxyl skeleton via cascade annulation of 2-sulfonamido-N-phenylpropiolamide derivatives. Org. Lett., 2017, 19(4), 902-905.
[http://dx.doi.org/10.1021/acs.orglett.7b00058] [PMID: 28134531]
[74]
Manna, S.; Antonchick, A.P. Organocatalytic oxidative annulation of benzamide derivatives with alkynes. Angew. Chem. Int. Ed. Engl., 2014, 53(28), 7324-7327.
[http://dx.doi.org/10.1002/anie.201404222] [PMID: 24849322]
[75]
Gao, P.; Fan, M.J.; Bai, Z.J.; Wei, Y.Y. Hypervalent iodine(III)-mediated benzannulation of enamines with alkynes: an efficient synthesis of substituted aminonaphthoic acid derivatives. Chin. J. Chem., 2015, 33, 479-485.
[http://dx.doi.org/10.1002/cjoc.201400802]
[76]
Zhou, Y.; Zhang, X.; Zhang, Y.; Ruan, L.; Zhang, J.; Zhang-Negrerie, D.; Du, Y. Iodocyclization of N-arylpropynamides mediated by hypervalent iodine reagent: divergent synthesis of iodinated quinolin-2-ones and spiro[4,5]trienones. Org. Lett., 2017, 19(1), 150-153.
[http://dx.doi.org/10.1021/acs.orglett.6b03455] [PMID: 28001422]
[77]
Kita, Y.; Gyoten, M.; Ohtsubo, M.; Tohma, H.; Takada, T. Non-phenolic oxidative coupling of phenol ether derivatives using phenyliodine(III) Bis(trifluoroacetate). Chem. Commun. (Camb.), 1996, 12, 1481-1482.
[http://dx.doi.org/10.1039/cc9960001481]
[78]
Moreno, I.; Tellitu, I.; Etayo, J.; Sanmartin, R.; Dominguez, E. Novel applications of hypervalent iodine: PIFA mediated synthesis of benzo [c] phenanthiridines and benzo [c] phenanthridinones. Tetrahedron, 2001, 57, 5403-5411.
[http://dx.doi.org/10.1016/S0040-4020(01)00459-8]
[79]
Beaulieu, M.A.; Sabot, C.; Achache, N.; Guérard, K.C.; Canesi, S. An oxidative Prins-pinacol tandem process and its application to the synthesis of (-)-platensimycin. Chemistry, 2010, 16(37), 11224-11228.
[http://dx.doi.org/10.1002/chem.201001813] [PMID: 20740509]
[80]
Beaulieu, M.A.; Guérard, K.C.; Maertens, G.; Sabot, C.; Canesi, S. Oxidative Prins-pinacol tandem process mediated by a hypervalent iodine reagent: scope, limitations, and applications. J. Org. Chem., 2011, 76(22), 9460-9471.
[http://dx.doi.org/10.1021/jo2019027] [PMID: 21988536]
[81]
Yu, Z.; Ju, X.H.; Wang, J.Y.; Yu, W. Iodobenzene-mediated intramolecular oxidative coupling of substituted 4-hydroxyphenyl-N-phenylbenzamides for the synthesis of spirooxindoles. Synthesis, 2011, 2011(6), 860-866.
[http://dx.doi.org/10.1055/s-0030-1259444]
[82]
Hempel, C.; Weckenmann, N.M.; Maichle-Moessmer, C.; Nachtsheim, B.J. A hypervalent iodine-mediated spirocyclization of 2-(4-hydroxybenzamido)acrylates--unexpected formation of δ-spirolactones. Org. Biomol. Chem., 2012, 10(47), 9325-9329.
[http://dx.doi.org/10.1039/c2ob26815a] [PMID: 23117367]
[83]
Chabaud, L.; Hromjakova, T.; Rambla, M.; Retailleau, P.; Guillou, C. Hypervalent iodine-mediated oxidative cyclisation of p-hydroxy acetanilides to 1,2-dispirodienones. Chem. Commun. (Camb.), 2013, 49(98), 11542-11544.
[http://dx.doi.org/10.1039/c3cc47171c] [PMID: 24177580]
[84]
Zheng, C.; Wang, L.; Li, J.; Wang, L.; Wang, D.Z. Ortho-dearomatization of phenols creating all-carbon spiro-bicycles. Org. Lett., 2013, 15(16), 4046-4049.
[http://dx.doi.org/10.1021/ol401863k] [PMID: 23909662]
[85]
Matcha, K.; Narayan, R.; Antonchick, A.P. Metal-free radical azidoarylation of alkenes: rapid access to oxindoles by cascade C-N and C-C bond-forming reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(31), 7985-7989.
[http://dx.doi.org/10.1002/anie.201303550] [PMID: 23788465]
[86]
Li, L.; Deng, M.; Zheng, S.C.; Xiong, Y.P.; Tan, B.; Liu, X.Y. Metal-free direct intramolecular carbotrifluoromethylation of alkenes to functionalized trifluoromethyl azaheterocycles. Org. Lett., 2014, 16(2), 504-507.
[http://dx.doi.org/10.1021/ol403391v] [PMID: 24351111]
[87]
Liu, L.; Lu, H.; Wang, H.; Yang, C.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. PhI(OCOCF3)2-mediated C-C bond formation concomitant with a 1,2-aryl shift in a metal-free synthesis of 3-arylquinolin-2-ones. Org. Lett., 2013, 15(12), 2906-2909.
[http://dx.doi.org/10.1021/ol400743r] [PMID: 23721160]
[88]
Shi, H.; Guo, T.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Synthesis of substituted tetrahydron-1H-carbazol-1-one and analogs via PhI(OCOCF3)2-mediated oxidative C–C bond formation. Tetrahedron, 2014, 70, 2753-2760.
[http://dx.doi.org/10.1016/j.tet.2014.02.083]
[89]
Zheng, Z.S.; Dian, L.Y.; Yuan, Y.C.; Zhang-Negrerie, D.; Du, Y.F.; Zhao, K.PhI. (OAc)2-mediated intramolecular oxidative aryl-aldehyde Csp2-Csp2 bond formation: Metal-free synthesis of acridone derivatives. J. Org. Chem., 2014, 79, 7451-7458.
[http://dx.doi.org/10.1021/jo5011697] [PMID: 25068595]
[90]
Jin, C.Y.; Du, J.Y.; Zeng, C.; Zhao, X.H.; Cao, Y.X.; Zhang, X.Z.; Lu, X.Y.; Fan, C.A. Hypervalent iodine(III)-mediated oxidative dearomatizing cyclization of arylamines. Adv. Synth. Catal., 2014, 356, 2437-2444.
[http://dx.doi.org/10.1002/adsc.201400191]
[91]
Lv, J.; Zhang-Negrerie, D.; Deng, J.; Du, Y.; Zhao, K. Metal-free synthesis of 2-oxindoles via PhI(OAc)2-mediated oxidative C–C bond formation. J. Org. Chem., 2014, 79(3), 1111-1119.
[http://dx.doi.org/10.1021/jo4025539] [PMID: 24410404]
[92]
Shang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Intramolecular metal-free oxidative aryl-aryl coupling: an unusual hypervalent-iodine-mediated rearrangement of 2-substituted N-phenylbenzamides. Angew. Chem. Int. Ed. Engl., 2014, 53(24), 6216-6219.
[http://dx.doi.org/10.1002/anie.201402925] [PMID: 24764255]
[93]
Zhang, D.Y.; Xu, L.; Wu, H.; Gong, L.Z. Chiral iodine-catalyzed dearomatizative spirocyclization for the enantioselective construction of an all-carbon stereogenic center. Chemistry, 2015, 21(29), 10314-10317.
[http://dx.doi.org/10.1002/chem.201501583] [PMID: 26095392]
[94]
Shimogaki, M.; Fujita, M.; Sugimura, T. Metal-free enantioselective oxidative arylation of alkenes: hypervalent-iodine-promoted oxidative C-C bond formation. Angew. Chem. Int. Ed. Engl., 2016, 55(51), 15797-15801.
[http://dx.doi.org/10.1002/anie.201609110] [PMID: 27879045]
[95]
Umar, F.; Florence, M.; Romain, C.; Lena, A.; Thomas, W. Stereoselective rearrangements with chiral hypervalent iodine reagents. Angew. Chem. Int. Ed., 2013, 52, 6788-6788.
[http://dx.doi.org/10.1002/anie.201304229]
[96]
Wang, S.E.; He, Q.; Fan, R. Iodobenzene-catalyzed ortho-dearomatization and aromatization-triggered rearrangement of 2-allylanilines: construction of indolin-3-ylmethanols with high diastereoselectivities. Org. Lett., 2017, 19(24), 6478-6481.
[http://dx.doi.org/10.1021/acs.orglett.7b02986] [PMID: 29192793]
[97]
Quideau, S.; Looney, M.A.; Pouysegu, L. Oxidized arenol intermediates in intermolecular Carbon-Carbon bond formation. Naphthoid cyclohexa-2,4-dienones via oxidative nucleophilic substitution. Org. Lett., 1999, 1, 1651-1654.
[http://dx.doi.org/10.1021/ol9910363]
[98]
Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y. Oxidative biaryl coupling reaction of phenol ether derivatives using a hypervalent iodine(III) reagent. J. Org. Chem., 1998, 63, 7698-7706.
[http://dx.doi.org/10.1021/jo980704f]
[99]
Tohma, H.; Morioka, H.; Takizawa, S.; Arisawa, M.; Kita, Y. Efficient oxidative biaryl coupling reaction of phenol ether derivatives using hypervalent iodine(III) reagents. Tetrahedron, 2001, 57, 345-352.
[http://dx.doi.org/10.1016/S0040-4020(00)00941-8]
[100]
Tohma, H.; Iwata, M.; Maegawa, T.; Kita, Y. Novel and efficient oxidative biaryl coupling reaction of alkylarenes using a hypervalent iodine(III) reagent. Tetrahedron Lett., 2002, 43, 9241-9244.
[http://dx.doi.org/10.1016/S0040-4039(02)02150-0]
[101]
Toshifumi, D.; Akinobu, M.; Misaki, Y.; Koji, M.; Hirofumi, T.; Yasuyuki, K. Versatile hypervalent-iodine(III)-catalyzed oxidations with m-chloroperbenzoic acid as a cooxidant. Angew. Chem. Int. Ed., 2005, 117, 6349-6352.
[http://dx.doi.org/10.1002/ange.200501688]
[102]
Tohma, H.; Iwata, M.; Maegawa, T.; Kiyono, Y.; Maruyama, A.; Kita, Y. A novel and direct synthesis of alkylated 2,2′-bithiophene derivatives using a combination of hypervalent iodine(III) reagent and BF3.Et2O. Org. Biomol. Chem., 2003, 1(10), 1647-1649.
[http://dx.doi.org/10.1039/B302462H] [PMID: 12926350]
[103]
Morimoto, K.; Yamaoka, N.; Ogawa, C.; Nakae, T.; Fujioka, H.; Dohi, T.; Kita, Y. Metal-free regioselective oxidative biaryl coupling leading to head-to-tail bithiophenes: reactivity switching, a concept based on the iodonium(III) intermediate. Org. Lett., 2010, 12(17), 3804-3807.
[http://dx.doi.org/10.1021/ol101498r] [PMID: 20690618]
[104]
Dohi, T.; Morimoto, K.; Maruyama, A.; Kita, Y. Direct synthesis of bipyrroles using phenyliodine bis(trifluoroacetate) with bromotrimethylsilane. Org. Lett., 2006, 8(10), 2007-2010.
[http://dx.doi.org/10.1021/ol060333m] [PMID: 16671768]
[105]
Dohi, T.; Morimoto, K.; Ito, M.; Kita, Y. Regioselective bipyrrole coupling of pyrroles and 3-substituted pyrroles using phenyliodine(III) Bis(trifluoroacetate). Synthesis, 2007, 2007, 2913-2919.
[http://dx.doi.org/10.1055/s-2007-983798]
[106]
Dohi, T.; Ito, M.; Morimoto, K.; Iwata, M.; Kita, Y. Oxidative cross-coupling of arenes induced by single-electron transfer leading to biaryls by use of organoiodine(III) oxidants. Angew. Chem. Int. Ed. Engl., 2008, 47(7), 1301-1304.
[http://dx.doi.org/10.1002/anie.200704495] [PMID: 18080255]
[107]
Taylor, S.R.; Ung, A.T.; Pyne, S.G.; Skelton, B.W.; White, A.H. Intramolecular versus intermolecular oxidative couplings of ester tethered di-aryl ethers. Tetrahedron, 2007, 63, 11377-11385.
[http://dx.doi.org/10.1016/j.tet.2007.08.082]
[108]
Jean, A.; Cantat, J.; Bérard, D.; Bouchu, D.; Canesi, S. Novel method of aromatic coupling between N-aryl methanesulfonamide and thiophene derivatives. Org. Lett., 2007, 9(13), 2553-2556.
[http://dx.doi.org/10.1021/ol070941h] [PMID: 17530765]
[109]
Huang, J.; Liang, Y.; Pan, W.; Yang, Y.; Dong, D. Efficient synthesis of highly substituted Pyrrolin-4-ones via PIFA-mediated cyclization reactions of enaminones. Org. Lett., 2007, 9(26), 5345-5348.
[http://dx.doi.org/10.1021/ol702362n] [PMID: 18047359]
[110]
Wang, J.Y.; Liu, S.P.; Yu, W. Synthesis of polysubstituted pyrroles via PhI(OAc)2-mediated oxidative coupling of enamine esters and ketones. Synlett, 2009, 2009(15), 2529-2533.
[111]
Berard, D.; Racicot, L.; Sabot, C.; Canesi, S. Formal 2+3 cycloaddition between substituted phenols and allylsilane. Synlett, 2008, 2008(7), 1076-1080.
[112]
Fan, R.H.; Li, W.X.; Ye, Y.; Wang, L.F. One-pot oxidative heteroannulations of N-sulfonylanilines with styrenes for the construction of 5-aminocoumaran derivatives. Adv. Synth. Catal., 2008, 2008(7), 350-, 1531-1536.
[http://dx.doi.org/10.1002/adsc.200800280]
[113]
Dohi, T.; Ito, M.; Itani, I.; Yamaoka, N.; Morimoto, K.; Fujioka, H.; Kita, Y. Metal-free C-H cross-coupling toward oxygenated naphthalene-benzene linked biaryls. Org. Lett., 2011, 13(23), 6208-6211.
[http://dx.doi.org/10.1021/ol202632h] [PMID: 22035315]
[114]
Ye, Y.; Wang, H.; Fan, R.H. meta-Selective substitution of phenols with indoles via one-pot oxidative dearomatization-michael addition-aromatization. Synlett, 2011, 2011(7), 923-926.
[115]
Samanta, R.; Lategahn, J.; Antonchick, A.P. Metal-free direct oxidative intermolecular diarylation of anilides at ambient temperature assisted by cascade selective formation of C-C and C-N bonds. Chem. Commun. (Camb.), 2012, 48(26), 3194-3196.
[http://dx.doi.org/10.1039/c2cc30324h] [PMID: 22331064]
[116]
Matcha, K.; Antonchick, A.P. Metal-free cross-dehydrogenative coupling of heterocycles with aldehydes. Angew. Chem. Int. Ed. Engl., 2013, 52(7), 2082-2086.
[http://dx.doi.org/10.1002/anie.201208851] [PMID: 23307313]
[117]
Ito, M.; Kubo, H.; Itani, I.; Morimoto, K.; Dohi, T.; Kita, Y. Organocatalytic C–H/C–H’ cross-biaryl coupling: C-selective arylation of sulfonanilides with aromatic hydrocarbons. J. Am. Chem. Soc., 2013, 135(38), 14078-14081.
[http://dx.doi.org/10.1021/ja407944p] [PMID: 24028674]
[118]
Wang, L.F.; Wang, S.E.; Wang, W.B.; Fan, R.H. Accessing bridged bicyclic compounds or meta carbon-functionalized anilines from the dearomatization of anilines. RSC Advances, 2013, 3, 5775-5778.
[http://dx.doi.org/10.1039/c3ra23224g]
[119]
Dohi, T.; Toyoda, Y.; Nakae, T.; Koseld, D.; Kubo, H.; Kamitanaka, T.; Kita, Y. Phenol and aniline oxidative coupling with alkenes by using hypervalent iodine dimer for the rapid access to dihydrobenzofurans and indolines. Heterocycles, 2015, 90, 631-644.
[http://dx.doi.org/10.3987/COM-14-S(K)14]
[120]
Maiti, S.; Achar, T.K.; Mal, P. An organic intermolecular dehydrogenative annulation reaction. Org. Lett., 2017, 19(8), 2006-2009.
[http://dx.doi.org/10.1021/acs.orglett.7b00562] [PMID: 28406305]
[121]
Kita, Y.; Morimoto, K.; Ito, M.; Ogawa, C.; Goto, A.; Dohi, T. Metal-free oxidative cross-coupling of unfunctionalized aromatic compounds. J. Am. Chem. Soc., 2009, 131(5), 1668-1669.
[http://dx.doi.org/10.1021/ja808940n] [PMID: 19191694]
[122]
Dohi, T.; Ito, M.; Yamaoka, N.; Morimoto, K.; Fujioka, H.; Kita, Y. Unusual ipso substitution of diaryliodonium bromides initiated by a single-electron-transfer oxidizing process. Angew. Chem. Int. Ed. Engl., 2010, 49(19), 3334-3337.
[http://dx.doi.org/10.1002/anie.200907281] [PMID: 20405520]
[123]
Pang, X.L.; Lou, Z.B.; Li, M.; Wen, L.R.; Chen, C. Tandem arylation/Friedel-Crafts reactions of o-acylanilines with diaryliodonium salts: a modular synthesis of acridine derivatives. Eur. J. Org. Chem., 2015, 2015(15), 3361-3369.
[http://dx.doi.org/10.1002/ejoc.201500161]
[124]
Hori, M.; Guo, J.D.; Yanagi, T.; Nogi, K.; Sasamori, T.; Yorimitsu, H. sigmatropic rearrangements of hypervalent-iodine-tethered intermediates for the synthesis of biaryls. Angew. Chem. Int. Ed. Engl., 2018, 57(17), 4663-4667.
[http://dx.doi.org/10.1002/anie.201801132] [PMID: 29451348]
[125]
Gomes, L.F.R.; Veiros, L.F.; Maulide, N.; Afonso, C.A. Diazo- and transition-metal-free C-H insertion: a direct synthesis of β-lactams. Chemistry, 2015, 21(4), 1449-1453.
[http://dx.doi.org/10.1002/chem.201404990] [PMID: 25412838]
[126]
Ngouansavanh, T.; Zhu, J. IBX-mediated oxidative Ugi-type multicomponent reactions: application to the N and C1 functionalization of tetrahydroisoquinoline. Angew. Chem. Int. Ed. Engl., 2007, 46(30), 5775-5778.
[http://dx.doi.org/10.1002/anie.200701603] [PMID: 17591732]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy