Generic placeholder image

Clinical Cancer Drugs

Editor-in-Chief

ISSN (Print): 2212-697X
ISSN (Online): 2212-6988

Review Article

MiRNAs: A New Approach to Predict and Overcome Resistance to Anticancer Drugs

Author(s): Noor Altaleb*

Volume 7, Issue 2, 2020

Page: [65 - 77] Pages: 13

DOI: 10.2174/2212697X07666200130092419

Price: $65

Abstract

Although there are no 100% successful methods for treating cancer, chemotherapy is still one of the most commonly used approaches in its management. One of the most significant problems in cancer treatment is the resistance of cancer cells to chemotherapeutic agents. This review aims to unveil the factors contributing to this problem originally beginning with fundamental units like biomarkers and microRNAs. As more studies and researches carried out, various levels of miRNA expression were found among normal and cancer cells. Overexpression of oncomir and downregulation of tumour-suppressor miRNAs can lead to the emergence of cancer. Data collected from studying these miRNAs can help in the diagnosis, prognosis and developing therapies, which will assist in overcoming the emerged resistance.

Keywords: Biomarkers, cancer, cobomarsen, mesomir, miRNA, MRX34, resistance, therapy, tumour.

Graphical Abstract
[1]
World Health Organization. www.who.int/news-room/fact-sheets/detail/cancer (Accessed August 5, 2019).
[2]
Cho WC. Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer 2007; 6: 25.
[http://dx.doi.org/10.1186/1476-4598-6-25 ] [PMID: 17407558]
[3]
Li H, Yang BB. Friend or foe: The role of microRNA in chemotherapy resistance. Acta Pharmacol Sin 2013; 34(7): 870-9.
[http://dx.doi.org/10.1038/aps.2013.35 ] [PMID: 23624759]
[4]
Liu FS. Mechanisms of chemotherapeutic drug resistance in cancer therapy a quick review. Taiwan J Obstet Gynecol 2009; 48(3): 239-44.
[http://dx.doi.org/10.1016/S1028-4559(09)60296-5 ] [PMID: 19797012]
[5]
Allen KE, Weiss GJ. Resistance may not be futile: MicroRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 2010; 9(12): 3126-36.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0397 ] [PMID: 20940321]
[6]
Srinivas PR, Kramer BS, Srivastava S. Trends in biomarker research for cancer detection. Lancet Oncol 2001; 2(11): 698-704.
[http://dx.doi.org/10.1016/S1470-2045(01)00560-5 ] [PMID: 11902541]
[7]
[8]
Polanski M, Anderson NL. A list of candidate cancer biomarkers for targeted proteomics. Biomark Insights 2007; 1: 1-48.
[PMID: 19690635]
[9]
Personalized Medicine Coalition. Types of Biomarkers www.personalizedmedicinecoalition.org/Education/Types_of_Biomarkers (Accessed March 27, 2017).
[10]
Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010; 5(6): 463-6.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177 ] [PMID: 20978388]
[11]
Dehn D, Torkko KC, Shroyer KR. Human papillomavirus testing and molecular markers of cervical dysplasia and carcinoma. Cancer 2007; 111(1): 1-14.
[http://dx.doi.org/10.1002/cncr.22425 ] [PMID: 17219448]
[12]
Lau P, Chin JL, Pautler S, Razvi H, Izawa JI. NMP22 is predictive of recurrence in high-risk superficial bladder cancer patients. Can Urol Assoc J 2009; 3(6): 454-8.
[http://dx.doi.org/10.5489/cuaj.1173 ] [PMID: 20019971]
[13]
Ballman KV. Biomarker: Predictive or prognostic? J Clin Oncol 2015; 33(33): 3968-71.
[http://dx.doi.org/10.1200/JCO.2015.63.3651 ] [PMID: 26392104]
[14]
Roses RE, Paulson EC, Sharma A, et al. HER-2/neu overexpression as a predictor for the transition from in situ to invasive breast cancer. Cancer Epidemiol Biomarkers Prev 2009; 18(5): 1386-9.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-1101 ] [PMID: 19383888]
[15]
[16]
My Cancer Genome. Biomarkers EGFR S768I. www.mycancer genome.org/content/alteration/egfr-s768i/ (Accessed November 19, 2019).
[17]
Ahmadzada T, Kao S, Reid G, Boyer M, Mahar A, Cooper WA. An update on predictive biomarkers for treatment selection in non-small cell lung cancer. J Clin Med 2018; 7(6): 153.
[http://dx.doi.org/10.3390/jcm7060153 ] [PMID: 29914100]
[18]
National Institute for Health and Care Excellence. Dinutuximab for treating high-risk neuroblastoma www.nice.org.uk/guidance/gid-tag507/documents/committee-papers (Accessed November 19, 2019).
[19]
Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 2019; 33(2): 299-312.
[http://dx.doi.org/10.1038/s41375-018-0357-9 ] [PMID: 30651634]
[20]
Tejpar S, Yan P, Piessevaux H, et al. Clinical and pharmacogenetic determinants of 5-fluorouracyl/leucovorin/irinotecan toxicity: Results of the PETACC-3 trial. Eur J Cancer 2018; 99: 66-77.
[http://dx.doi.org/10.1016/j.ejca.2018.05.009 ] [PMID: 29909091]
[22]
Tung NM, Garber JE. BRCA1/2 testing: Therapeutic implications for breast cancer management. Br J Cancer 2018; 119(2): 141-52.
[http://dx.doi.org/10.1038/s41416-018-0127-5 ] [PMID: 29867226]
[23]
Katchi T, Liu D. Diagnosis and treatment of CD20 negative B cell lymphomas. Biomark Res 2017; 5: 5.
[http://dx.doi.org/10.1186/s40364-017-0088-5 ] [PMID: 28191314]
[24]
Zhang C, Zhang Z, Zhu Y, Qin S. Glucose-6-phosphate dehydrogenase: A biomarker and potential therapeutic target for cancer. Anticancer Agents Med Chem 2014; 14(2): 280-9.
[http://dx.doi.org/10.2174/18715206113136660337 ] [PMID: 24066844]
[26]
Park SE, Noh JM, Kim YJ, et al. EGFR mutation is associated with short progression-free survival in patients with stage III non-squamous cell lung cancer treated with concurrent chemoradiotherapy. Cancer Res Treat 2019; 51(2): 493-501.
[http://dx.doi.org/10.4143/crt.2018.125 ] [PMID: 29914238]
[27]
Maemondo M, Inoue A, Kobayashi K, et al. North-East Japan Study Group. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362(25): 2380-8.
[http://dx.doi.org/10.1056/NEJMoa0909530 ] [PMID: 20573926]
[28]
Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359(17): 1757-65.
[http://dx.doi.org/10.1056/NEJMoa0804385 ] [PMID: 18946061]
[30]
Wagle N, Emery C, Berger MF, et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 2011; 29(22): 3085-96.
[http://dx.doi.org/10.1200/JCO.2010.33.2312 ] [PMID: 21383288]
[31]
Meador CB, Pao W. Old Habits Die Hard: Addiction of BRAFmutant cancer cells to MAP kinase signaling. cancer discov 2015; 5(4): 348-50.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0221] [PMID: 25847954]
[32]
Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3(75)75ra26
[http://dx.doi.org/10.1126/scitranslmed.3002003 ] [PMID: 21430269]
[33]
Huang S, Hölzel M, Knijnenburg T, et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell 2012; 151(5): 937-50.
[http://dx.doi.org/10.1016/j.cell.2012.10.035 ] [PMID: 23178117]
[34]
Firestein R, Bass AJ, Kim SY, et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 2008; 455(7212): 547-51.
[http://dx.doi.org/10.1038/nature07179 ] [PMID: 18794900]
[35]
BreastCancer.org. www.breastcancer.org/symptoms/understand_ bc/statistics (Accessed February 13, 2019).
[36]
Kutomi G, Mizuguchi T, Satomi F, et al. Current status of the prognostic molecular biomarkers in breast cancer: A systematic review. Oncol Lett 2017; 13(3): 1491-8.
[http://dx.doi.org/10.3892/ol.2017.5609 ] [PMID: 28454281]
[37]
Niederreither K, Dollé P. Retinoic acid in development: Towards an integrated view. Nat Rev Genet 2008; 9(7): 541-53.
[http://dx.doi.org/10.1038/nrg2340 ] [PMID: 18542081]
[38]
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005; 365(9472): 1687-717.
[http://dx.doi.org/10.1016/S0140-6736(05)66544-0 ] [PMID: 15894097]
[39]
Johansson HJ, Sanchez BC, Mundt F, et al. Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer. Nat Commun 2013; 4: 2175.
[http://dx.doi.org/10.1038/ncomms3175 ] [PMID: 23868472]
[40]
Chromek M, Tullus K, Lundahl J, Brauner A. Tissue inhibitor of metalloproteinase 1 activates normal human granulocytes, protects them from apoptosis, and blocks their transmigration during inflammation. Infect Immun 2004; 72(1): 82-8.
[http://dx.doi.org/10.1128/IAI.72.1.82-88.2004 ] [PMID: 14688084]
[41]
Bergh J, Jönsson PE, Glimelius B, Nygren P. SBU-group. Swedish Council of Technology Assessment in Health Care. A systematic overview of chemotherapy effects in breast cancer. Acta Oncol 2001; 40(2-3): 253-81.
[http://dx.doi.org/10.1080/02841860151116349 ] [PMID: 11441936]
[42]
Schrohl AS, Meijer-van Gelder ME, Holten-Andersen MN, et al. Primary tumor levels of tissue inhibitor of metalloproteinases-1 are predictive of resistance to chemotherapy in patients with metastatic breast cancer. Clin Cancer Res 2006; 12(23): 7054-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0950 ] [PMID: 17114213]
[44]
Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet 2008; 9(2): 102-14.
[http://dx.doi.org/10.1038/nrg2290 ] [PMID: 18197166]
[45]
Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 2018; 10: 59.
[http://dx.doi.org/10.1186/s13148-018-0492-1 ] [PMID: 29713393]
[46]
Nilsen TW. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 2007; 23(5): 243-9.
[http://dx.doi.org/10.1016/j.tig.2007.02.011 ] [PMID: 17368621]
[47]
Kim VN, Nam JW. Genomics of microRNA. Trends Genet 2006; 22(3): 165-73.
[http://dx.doi.org/10.1016/j.tig.2006.01.003 ] [PMID: 16446010]
[48]
Dufour JF, Clavien PA. Signaling pathways in liver diseases. 2nd ed. Berlin: Springer 2010.
[http://dx.doi.org/10.1007/978-3-642-00150-5]
[49]
Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Lett 2005; 579(26): 5911-22.
[http://dx.doi.org/10.1016/j.febslet.2005.07.070 ] [PMID: 16111679]
[50]
Katharina Petsche. Gene Silencing by microRNAs https://youtu.be/t5jroSCBBwk (Accessed August 4, 2016).
[51]
http://youtu.be/aTMeQf2daho (Accessed April 16, 2013).
[52]
Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA 2003; 9(3): 277-9.
[http://dx.doi.org/10.1261/rna.2183803 ] [PMID: 12592000]
[53]
Ha TY. MicroRNAs in human diseases: From cancer to cardiovascular disease. Immune Netw 2011; 11(3): 135-54.
[http://dx.doi.org/10.4110/in.2011.11.3.135 ] [PMID: 21860607]
[54]
Yang N. An overview of viral and nonviral delivery systems for microRNA. Int J Pharm Investig 2015; 5(4): 179-81.
[http://dx.doi.org/10.4103/2230-973X.167646 ] [PMID: 26682187]
[55]
University of Manchester. www.mirbase.org/cgi-bin/mirna_summary. pl?org=hsa (Accessed August 3, 2016).
[56]
Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res 2016; 7(2): 68-74.
[http://dx.doi.org/10.4103/2229-3485.179431 ] [PMID: 27141472]
[57]
Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6(4): 259-69.
[http://dx.doi.org/10.1038/nrc1840 ] [PMID: 16557279]
[58]
Misso G, Di Martino MT, De Rosa G, et al. Mir-34: A new weapon against cancer? Mol Ther Nucleic Acids 2014; 3e194.
[http://dx.doi.org/10.1038/mtna.2014.47] [PMID: 25247240 ]
[59]
Pal MK, Jaiswar SP, Dwivedi VN, Tripathi AK, Dwivedi A, Sankhwar P. MicroRNA: a new and promising potential biomarker for diagnosis and prognosis of ovarian cancer. Cancer Biol Med 2015; 12(4): 328-41.
[PMID: 26779370]
[60]
Diab M, Muqbil I, Mohammad RM, Azmi AS, Philip PA. The role of microRNAs in the diagnosis and treatment of pancreatic adenocarcinoma. J Clin Med 2016; 5(6): 59.
[http://dx.doi.org/10.3390/jcm5060059 ] [PMID: 27322337]
[61]
Shwetha S, Gouthamchandra K, Chandra M, Ravishankar B, Khaja MN, Das S. Circulating miRNA profile in HCV infected serum: novel insight into pathogenesis. Sci Rep 2013; 3: 1555.
[http://dx.doi.org/10.1038/srep01555 ] [PMID: 23549102]
[62]
Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65(16): 7065-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1783 ] [PMID: 16103053]
[63]
Li X, Zhang Z, Yu M, et al. Involvement of miR-20a in promoting gastric cancer progression by targeting early growth response 2 (EGR2). Int J Mol Sci 2013; 14(8): 16226-39.
[http://dx.doi.org/10.3390/ijms140816226 ] [PMID: 23924943]
[64]
Fornari F, Milazzo M, Chieco P, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2010; 70(12): 5184-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0145 ] [PMID: 20501828]
[65]
Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11(1): 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8 ] [PMID: 30744689]
[66]
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4(3): 143-59.
[http://dx.doi.org/10.1002/emmm.201100209 ] [PMID: 22351564]
[67]
Chen PS, Su JL, Hung MC. Dysregulation of microRNAs in cancer. J Biomed Sci 2012; 19: 90.
[http://dx.doi.org/10.1186/1423-0127-19-90 ] [PMID: 23075324]
[68]
[69]
Tutar L, Tutar E, Özgür A, Tutar Y. Therapeutic targeting of microRNAs in cancer: Future perspectives. drug dev res 2015; 76(7): 382-8.
[http://dx.doi.org/10.1002/ddr.21273] [PMID: 26435382]
[70]
Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 2011; 717(1-2): 1-8.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.03.009 ] [PMID: 21458467]
[71]
Pichler M, Calin GA. MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Br J Cancer 2015; 113(4): 569-73.
[http://dx.doi.org/10.1038/bjc.2015.253 ] [PMID: 26158421]
[72]
Rothschild SI. microRNA therapies in cancer. Mol Cell Ther 2014; 2: 7.
[http://dx.doi.org/10.1186/2052-8426-2-7 ] [PMID: 26056576]
[73]
Naidu S, Magee P, Garofalo M. MiRNA-based therapeutic intervention of cancer. J Hematol Oncol 2015; 8: 68.
[http://dx.doi.org/10.1186/s13045-015-0162-0 ] [PMID: 26062952]
[74]
Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet 2019; 10: 478.
[http://dx.doi.org/10.3389/fgene.2019.00478 ] [PMID: 31156715]
[75]
Dusílková N, Bašová P, Polívka J, et al. Plasma miR-155, miR-203, and miR-205 are biomarkers for monitoring of primary cutaneous T-cell lymphomas. Int J Mol Sci 2017; 18(10): 2136.
[http://dx.doi.org/10.3390/ijms18102136 ] [PMID: 29036928]
[76]
ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01829971?term=mrx34&rank=1 (Accessed October 11, 2016).
[77]
Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 2019; 30(2): 114-27.
[PMID: 31263388]
[78]
Balacescu O, Visan S, Baldasici O, Balacescu L, Vlad C, Achimas-Cadariu P. www.intechopen.com/online-first/mirna-based-therapeutics-in-oncology-realities-and-challenges (Accessed August 18, 2019).
[79]
Tessitore A, Cicciarelli G, Mastroiaco V, et al. Therapeutic use of micrornas in cancer. Anticancer Agents Med Chem 2016; 16(1): 7-19.
[http://dx.doi.org/10.2174/1871520615666150824153358] [PMID: 26299662]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy