Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Recent Advances in Chemotherapeutic Implications of Deguelin: A Plant- Derived Retinoid

Author(s): Manzoor A. Mir*, Umar Mehraj and Bashir A. Sheikh

Volume 11, Issue 2, 2021

Published on: 28 January, 2020

Page: [169 - 181] Pages: 13

DOI: 10.2174/2210315510666200128125950

Price: $65

Abstract

Deguelin, a plant retinoid has emerged to be a promising therapeutic agent in the treatment of different cancers. Recent studies demonstrate that deguelin has potential as an angiogenesis antagonist in malignant and endothelial cells by specifically targeting HGF-c-Met and VEGFVEGFR pathways. It is reported to have profound therapeutic effects in pancreatic cancer by inactivation of the hedgehog (Hh) signalling pathway and suppresses the expression of matrix metalloproteinases such as MMP-2 and MMP-9. The basic underlying mechanisms for deguelin mediated anti- NSCLC effects were uncovered through its induction of elevated intracellular Reactive Oxygen Species (ROS) levels and suppression of the PI3K /Akt-HK2 signalling pathway. Deguelin induces cell apoptosis by targeting various pathways most notably regulating the expression of galectin-1 and binding directly to anti-apoptotic Bcl-2 (B-cell lymphoma 2), Bcl-xl (B-cell lymphoma-extralarge) and Mcl-1 (Myeloid Cell Leukemia Sequence 1) in the hydrophobic grooves thereby liberating BAD and BAX from binding with these proteins. These results derived from the effect of Deguelin on various cancer cell lines have further elucidated its role as a novel anti-tumorigenic agent targeting angiogenesis, apoptosis, cell proliferation and migration for cancer chemoprevention. In this review, an attempt has been made to highlight the potential therapeutic effects of Deguelin in destroying the cancer cells by inhibiting various tumour promoting pathways and its uses as a therapeutic agent alone or in combination.

Keywords: Apoptosis, Angiogenesis, Tumorigenic, Epithelial-mesenchymal Transition (EMT), Hypoxia-inducible factor (HIF1), Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinase-2 (MMP-2), B-cell lymphoma extra-large (Bcl-xl), Inhibitory Kappa B Kinase (IKK), Epithelial Growth Factor Receptor (EGFR).

Graphical Abstract
[1]
Shahmarvand, N.; Nagy, A.; Shahryari, J.; Ohgami, R.S. Mutations in the signal transducer and activator of transcription family of genes in cancer. Cancer Sci., 2018, 109(4), 926-933.
[http://dx.doi.org/10.1111/cas.13525] [PMID: 29417693]
[2]
Stewart, B.; Wild, C.P. World cancer report 2014; World Health Organization: Geneva, Switzerland, 2014, pp. 482-494.
[3]
Triberti, S.; Savioni, L.; Sebri, V.; Pravettoni, G. eHealth for improving quality of life in breast cancer patients: A systematic review. Cancer Treat. Rev., 2019, 74, 1-14.
[http://dx.doi.org/10.1016/j.ctrv.2019.01.003] [PMID: 30658289]
[4]
Williams, J.; Phillips, C.; Byrd, H.M. Factors which influence owners when deciding to use chemotherapy in terminally ill pets. Animals (Basel), 2017, 7(3), 18.
[http://dx.doi.org/10.3390/ani7030018] [PMID: 28272340]
[5]
Boivin, J.F. Second cancers and other late side effects of cancer treatment. A review. Cancer, 1990, 65(3)(Suppl.), 770-775.
[http://dx.doi.org/10.1002/1097-0142(19900201)65:3+<770::AIDCNCR2820651323>3.0.CO;2-8] [PMID: 2406000]
[6]
Lievens, Y.; Audisio, R.; Banks, I.; Collette, L.; Grau, C.; Oliver, K.; Price, R.; Aggarwal, A. Towards an evidence-informed value scale for surgical and radiation oncology: a multi-stakeholder perspective. Lancet Oncol., 2019, 20(2), e112-e123.
[http://dx.doi.org/10.1016/S1470-2045(18)30917-3] [PMID: 30712798]
[7]
Graziani, V.; Scognamiglio, M.; Belli, V.; Esposito, A.; D’Abrosca, B.; Chambery, A.; Russo, R.; Panella, M.; Russo, A.; Ciardiello, F.; Troiani, T.; Potenza, N.; Fiorentino, A. Metabolomic approach for a rapid identification of natural products with cytotoxic activity against human colorectal cancer cells. Sci. Rep., 2018, 8(1), 5309.
[http://dx.doi.org/10.1038/s41598-018-23704-9] [PMID: 29593231]
[8]
Hsiao, Y-T.; Fan, M-J.; Huang, A-C.; Lien, J-C.; Lin, J-J.; Chen, J-C.; Hsia, T.C.; Wu, R.S.; Chung, J.G. Deguelin Impairs Cell Adhesion, Migration and Invasion of Human Lung Cancer Cells through the NF-B Signaling Pathways. Am. J. Chin. Med., 2018, 46(1), 209-229.
[http://dx.doi.org/10.1142/S0192415X1850012X] [PMID: 29402127]
[9]
Wang, Y.; Ma, W.; Zheng, W. Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention. Mol. Clin. Oncol., 2013, 1(2), 215-219.
[10]
Lokhande, K.B.; Nagar, S.; Swamy, K.V. Molecular interaction studies of Deguelin and its derivatives with Cyclin D1 and Cyclin E in cancer cell signaling pathway: The computational approach. Sci. Rep., 2019, 9(1), 1778.
[http://dx.doi.org/10.1038/s41598-018-38332-6] [PMID: 30741976]
[11]
Varughese, R.S.; Lam, W.S.T.; Marican, A.A.B.H.; Viganeshwari, S.H.; Bhave, A.S.; Syn, N.L.; Wang, J.; Wong, A.L.; Kumar, A.P.; Lobie, P.E.; Lee, S.C.; Sethi, G.; Goh, B.C.; Wang, L. Biopharmacological considerations for accelerating drug development of deguelin, a rotenoid with potent chemotherapeutic and chemopreventive potential. Cancer, 2019, 125(11), 1789-1798.
[http://dx.doi.org/10.1002/cncr.32069] [PMID: 30933320]
[12]
Chun, K-H.; Kosmeder, J.W.; Sun, S.; Pezzuto, J.M.; Lotan, R.; Hong, W.K. Effects of Deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J. Natl. Cancer Inst., 2003, 95(4), 291-302.
[13]
Mehta, R.; Katta, H.; Alimirah, F.; Patel, R.; Murillo, G.; Peng, X. Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells. PloS One, 2013, 8(6), e65113.
[http://dx.doi.org/10.1371/journal.pone.0065113]
[14]
Lee, H.; Lee, J-H.; Jung, K.H.; Hong, S-S. Deguelin promotes apoptosis and inhibits angiogenesis of gastric cancer. Oncol. Rep., 2010, 24(4), 957-963.
[15]
Hu, J.; Ye, H.; Fu, A.; Chen, X.; Wang, Y.; Chen, X. Deguelin-An inhibitor to tumor lymphangiogenesis and lymphatic metastasis by downregulation of vascular endothelial cell growth factor-D in lung tumor model. Int. J. Cancer, 2010, 127(10), 2455-2466.
[16]
Mehta, R.R.; Katta, H.; Kalra, A.; Patel, R.; Gupta, A.; Alimirah, F. Efficacy and mechanism of action of Deguelin in suppressing metastasis of 4T1 cells. Clin. Exper. Metast., 2013, 30(7), 855-866.
[17]
Suh, Y-A.; Kim, J-H.; Sung, M.A.; Boo, H-J.; Yun, H.J.; Lee, S-H. A novel antitumor activity of Deguelin targeting the insulin-like growth factor (IGF) receptor pathway via up-regulation of IGF-binding protein-3 expression in breast cancer. Cancer Lett., 2013, 332(1), 102-109.
[18]
Thamilselvan, V.; Menon, M.; Thamilselvan, S. Anticancer efficacy of Deguelin in human prostate cancer cells targeting glycogen synthase kinase‐3 β/β‐catenin pathway. Int. J. Cancer, 2011, 129(12), 2916-2927.
[19]
Murillo, G.; Peng, X.; Torres, K.E.; Mehta, R.G. Deguelin inhibits growth of breast cancer cells by modulating the expression of key members of the Wnt signaling pathway. Cancer Prev. Res. (Phila.), 2009, 2(11), 942-950.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0232] [PMID: 19861542]
[20]
Shang, H.-S.; Chang, J.-B.; Lin, J.-H.; Lin, J.-P.; Hsu, S.-C.; Liu, C.-M.; Liu, J.Y.; Wu, P.P.; Lu, H.F.; Au, M.K.; Chung, J.G. Deguelin inhibits the migration and invasion of U-2 OS human osteosarcoma cells via the inhibition of matrix metalloproteinase-2/-9 in vitro. Molecules, 2014, 19(10), 16588-16608.
[http://dx.doi.org/10.3390/molecules191016588] [PMID: 25322282]
[21]
Paz, A.; Haklai, R.; Elad-Sfadia, G.; Ballan, E.; Kloog, Y. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene, 2001, 20(51), 7486-7493.
[http://dx.doi.org/10.1038/sj.onc.1204950] [PMID: 11709720]
[22]
Zhou, X.; Li, D.; Wang, X.; Zhang, B.; Zhu, H.; Zhao, J. Galectin-1 is overexpressed in CD133+ human lung adenocarcinoma cells and promotes their growth and invasiveness. Oncotarget, 2015, 6(5), 3111-3122.
[http://dx.doi.org/10.18632/oncotarget.3076] [PMID: 25605013]
[23]
Ye, C.; Yu, X.; Liu, X.; Zhan, P.; Nie, T.; Guo, R.; Liu, H.; Dai, M.; Zhang, B. Beclin-1 knockdown decreases proliferation, invasion and migration of Ewing sarcoma SK-ES-1 cells via inhibition of MMP-9. Oncol. Lett., 2018, 15(3), 3221-3225.
[PMID: 29435061]
[24]
Ji, B-C.; Yu, C-C.; Yang, S-T.; Hsia, T-C.; Yang, J-S.; Lai, K-C.; Ko, Y.C.; Lin, J.J.; Lai, T.Y.; Chung, J.G. Induction of DNA damage by deguelin is mediated through reducing DNA repair genes in human non-small cell lung cancer NCI-H460 cells. Oncol. Rep., 2012, 27(4), 959-964.
[http://dx.doi.org/10.3892/or.2012.1622] [PMID: 22227970]
[25]
Zheng, W.; Lu, S.; Cai, H.; Kang, M.; Qin, W.; Li, C.; Wu, Y. Deguelin inhibits proliferation and migration of human pancreatic cancer cells in vitro targeting hedgehog pathway. Oncol. Lett., 2016, 12(4), 2761-2765.
[http://dx.doi.org/10.3892/ol.2016.4928] [PMID: 27698853]
[26]
Bundela, S.; Sharma, A.; Bisen, P.S. Potential compounds for oral cancer treatment: resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, Deguelin, andrographolide, and colchicine. PLoS One, 2015, 10(11), e0141719.
[http://dx.doi.org/10.1371/journal.pone.0141719] [PMID: 26536350]
[27]
Baba, Y.; Fujii, M.; Maeda, T.; Suzuki, A.; Yuzawa, S.; Kato, Y. Deguelin induces apoptosis by targeting both EGFR-Akt and IGF1R-Akt pathways in head and neck squamous cell cancer cell lines. BioMed Res. Int., 2015.
[28]
Yang, Y.L.; Ji, C.; Bi, Z.G.; Lu, C.C.; Wang, R.; Gu, B.; Cheng, L. Deguelin induces both apoptosis and autophagy in cultured head and neck squamous cell carcinoma cells. PLoS One, 2013, 8(1), e54736.
[http://dx.doi.org/10.1371/journal.pone.0054736] [PMID: 23372762]
[29]
Yan, B.; Zhao, D.; Yao, Y.; Bao, Z.; Lu, G.; Zhou, J. Deguelin induces the apoptosis of lung squamous cell carcinoma cells through regulating the expression of galectin-1. Int. J. Biol. Sci., 2016, 12(7), 850-860.
[http://dx.doi.org/10.7150/ijbs.14773] [PMID: 27313498]
[30]
Lee, S-C.; Min, H-Y.; Choi, H.; Bae, S.Y.; Park, K.H.; Hyun, S.Y.; Lee, H.J.; Moon, J.; Park, S.H.; Kim, J.Y.; An, H.; Park, S.J.; Seo, J.H.; Lee, S.; Kim, Y.M.; Park, H.J.; Lee, S.K.; Lee, J.; Lee, J.; Kim, K.W.; Suh, Y.G.; Lee, H.Y. Deguelin analogue SH-1242 inhibits Hsp90 activity and exerts potent anticancer efficacy with limited neurotoxicity. Cancer Res., 2016, 76(3), 686-699.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1492] [PMID: 26645561]
[31]
Lee, J-H.; Lee, D-H.; Lee, H-S.; Choi, J-S.; Kim, K-W.; Hong, S-S. Deguelin inhibits human hepatocellular carcinoma by antiangiogenesis and apoptosis. Oncol. Rep., 2008, 20(1), 129-134.
[http://dx.doi.org/10.3892/or.20.1.129] [PMID: 18575727]
[32]
Boreddy, S.R.; Srivastava, S.K. Deguelin suppresses pancreatic tumor growth and metastasis by inhibiting epithelial-to-mesenchymal transition in an orthotopic model. Oncogene, 2013, 32(34), 3980-3991.
[http://dx.doi.org/10.1038/onc.2012.413] [PMID: 22986522]
[33]
Hafeez, S.; Urooj, M.; Saleem, S.; Gillani, Z.; Shaheen, S.; Qazi, M.H.; Naseer, M.I.; Iqbal, Z.; Ansari, S.A.; Haque, A.; Asif, M.; Mir, M.A.; Ali, A.; Pushparaj, P.N.; Jamal, M.S.; Rasool, M. BAD, a Proapoptotic protein, Escapes ERK/RSK phosphorylation in Deguelin and siRNA-treated Hela cells. PLoS One, 2016, 11(1), e0145780.
[http://dx.doi.org/10.1371/journal.pone.0145780] [PMID: 26745145]
[34]
Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84.
[PMID: 30459476]
[35]
Sarwar, M.S.; Zhang, H-J.; Tsang, S.W. Perspectives of plant natural products in inhibition of cancer invasion and metastasis by regulating multiple signaling pathways. Curr. Med. Chem., 2018, 25(38), 5057-5087.
[http://dx.doi.org/10.2174/0929867324666170918123413] [PMID: 28925869]
[36]
Li, G.; Zhong, Y.; Shen, Q.; Zhou, Y.; Deng, X.; Li, C.; Chen, J.; Zhou, Y.; He, M. NEK2 serves as a prognostic biomarker for hepatocellular carcinoma. Int. J. Oncol., 2017, 50(2), 405-413.
[http://dx.doi.org/10.3892/ijo.2017.3837] [PMID: 28101574]
[37]
Fang, Y.; Zhang, X. Targeting NEK2 as a promising therapeutic approach for cancer treatment. Cell Cycle, 2016, 15(7), 895-907.
[http://dx.doi.org/10.1080/15384101.2016.1152430] [PMID: 27019372]
[38]
Cheng, Y.; Chen, X.; Ye, L.; Zhang, Y.; Liang, J.; Liu, W.; Zhou, B.; Zheng, S.; Huang, Y.; Chen, G.; Deng, Y.; Zhang, Q.; Yang, Y. The prognostic significance of NEK2 in hepatocellular carcinoma: Evidence from a meta-analysis and retrospective cohort study. Cell. Physiol. Biochem., 2018, 51(6), 2746-2759.
[http://dx.doi.org/10.1159/000495966] [PMID: 30562736]
[39]
Wu, W.; Hai, Y.; Chen, L.; Liu, R.J.; Han, Y.X.; Li, W.H.; Li, S.; Lin, S.; Wu, X.R. Deguelin-induced blockade of PI3K/protein kinase B/MAP kinase signaling in zebrafish and breast cancer cell lines is mediated by down-regulation of fibroblast growth factor receptor 4 activity. Pharmacol. Res. Perspect., 2016, 4(2), e00212.
[http://dx.doi.org/10.1002/prp2.212] [PMID: 27069628]
[40]
Neal, C.P.; Fry, A.M.; Moreman, C.; McGregor, A.; Garcea, G.; Berry, D.P.; Manson, M.M. Overexpression of the Nek2 kinase in colorectal cancer correlates with beta-catenin relocalization and shortened cancer-specific survival. J. Surg. Oncol., 2014, 110(7), 828-838.
[http://dx.doi.org/10.1002/jso.23717] [PMID: 25043295]
[41]
Hesari, A.; Anoshiravani, A.A.; Talebi, S.; Noruzi, S.; Mohammadi, R.; Salarinia, R.; Zare, R.; Ghasemi, F. Knockdown of sal-like 4 expression by small interfering RNA induces apoptosis in breast cancer cells. J. Cell. Biochem., 2019, 120(6), 9392-9399.
[http://dx.doi.org/10.1002/jcb.28214] [PMID: 30520112]
[42]
Zhao, D.; Han, W.; Liu, X.; Cui, D.; Chen, Y. Deguelin inhibits epithelial-to-mesenchymal transition and metastasis of human non-small cell lung cancer cells by regulating NIMA-related kinase 2. Thorac. Cancer, 2017, 8(4), 320-327.
[http://dx.doi.org/10.1111/1759-7714.12444] [PMID: 28509438]
[43]
Yeh, C-C.; Hsu, C-H.; Shao, Y-Y.; Ho, W-C.; Tsai, M-H.; Feng, W-C.; Chow, L.P. Integrated stable isotope labeling by amino acids in cell culture (SILAC) and isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomic analysis identifies galectin-1 as a potential biomarker for predicting sorafenib resistance in liver cancer. Mol. Cell. Proteomics, 2015, 14(6), 1527-1545.
[http://dx.doi.org/10.1074/mcp.M114.046417] [PMID: 25850433]
[44]
Tang, D.; Gao, J.; Wang, S.; Yuan, Z.; Ye, N.; Chong, Y.; Xu, C.; Jiang, X.; Li, B.; Yin, W.; Miao, Y.; Wang, D.; Jiang, K. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer. Tumour Biol., 2015, 36(7), 5617-5626.
[http://dx.doi.org/10.1007/s13277-015-3233-5] [PMID: 25725585]
[45]
Chung, L-Y.; Tang, S-J.; Sun, G-H.; Chou, T-Y.; Yeh, T-S.; Yu, S-L.; Sun, K.H. Galectin-1 promotes lung cancer progression and chemoresistance by upregulating p38 MAPK, ERK, and cyclooxygenase-2. Clin. Cancer Res., 2012, 18(15), 4037-4047.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3348] [PMID: 22696230]
[46]
Oh, S.H.; Woo, J.K.; Yazici, Y.D.; Myers, J.N.; Kim, W-Y.; Jin, Q.; Hong, S.S.; Park, H.J.; Suh, Y.G.; Kim, K.W.; Hong, W.K.; Lee, H.Y. Structural basis for depletion of heat shock protein 90 client proteins by deguelin. J. Natl. Cancer Inst., 2007, 99(12), 949-961.
[http://dx.doi.org/10.1093/jnci/djm007] [PMID: 17565155]
[47]
Kim, W-Y.; Oh, S.H.; Woo, J-K.; Hong, W.K.; Lee, H-Y. Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1α. Cancer Res., 2009, 69(4), 1624-1632.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0505] [PMID: 19176399]
[48]
Jin, Q.; Feng, L.; Behrens, C.; Bekele, B.N.; Wistuba, I.I.; Hong, W-K.; Lee, H.Y. Implication of AMP-activated protein kinase and Akt-regulated survivin in lung cancer chemopreventive activities of deguelin. Cancer Res., 2007, 67(24), 11630-11639.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2401] [PMID: 18089792]
[49]
Manzi, M.; Bacigalupo, M.L.; Carabias, P.; Elola, M.T.; Wolfenstein-Todel, C.; Rabinovich, G.A.; Espelt, M.V.; Troncoso, M.F. Galectin-1 controls the proliferation and migration of liver sinusoidal endothelial cells and their interaction with hepatocarcinoma cells. J. Cell. Physiol., 2016, 231(7), 1522-1533.
[http://dx.doi.org/10.1002/jcp.25244] [PMID: 26551914]
[50]
Hail, N., Jr; Lotan, R. Apoptosis induction by the natural product cancer chemopreventive agent deguelin is mediated through the inhibition of mitochondrial bioenergetics. Apoptosis, 2004, 9(4), 437-447.
[http://dx.doi.org/10.1023/B:APPT.0000031449.57551.e1] [PMID: 15192326]
[51]
Lee, H-Y.; Suh, Y-A.; Kosmeder, J.W.; Pezzuto, J.M.; Hong, W.K.; Kurie, J.M. Deguelin-induced inhibition of cyclooxygenase-2 expression in human bronchial epithelial cells. Clin. Cancer Res., 2004, 10(3), 1074-1079.
[http://dx.doi.org/10.1158/1078-0432.CCR-0833-3] [PMID: 14871987]
[52]
Gerhäuser, C.; Mar, W.; Lee, S.K.; Suh, N.; Luo, Y.; Kosmeder, J.; Luyengi, L.; Fong, H.H.; Kinghorn, A.D.; Moriarty, R.M. Rotenoids mediate potent cancer chemopreventive activity through transcriptional regulation of ornithine decarboxylase. Nat. Med., 1995, 1(3), 260-266.
[http://dx.doi.org/10.1038/nm0395-260] [PMID: 7585044]
[53]
Gerhäuser, C.; Lee, S.K.; Kosmeder, J.W.; Moriarty, R.M.; Hamel, E.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Regulation of ornithine decarboxylase induction by Deguelin, a natural product cancer chemopreventive agent. Cancer Res., 1997, 57(16), 3429-3435.
[PMID: 9270009]
[54]
Karhadkar, S.S.; Bova, G.S.; Abdallah, N.; Dhara, S.; Gardner, D.; Maitra, A.; Isaacs, J.T.; Berman, D.M.; Beachy, P.A. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature, 2004, 431(7009), 707-712.
[http://dx.doi.org/10.1038/nature02962] [PMID: 15361885]
[55]
Liao, X.; Siu, M.K.; Au, C.W.; Wong, E.S.; Chan, H.Y.; Ip, P.P.; Ngan, H.Y.; Cheung, A.N. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis, 2009, 30(1), 131-140.
[http://dx.doi.org/10.1093/carcin/bgn230] [PMID: 19028702]
[56]
Mori, Y.; Okumura, T.; Tsunoda, S.; Sakai, Y.; Shimada, Y. Gli-1 expression is associated with lymph node metastasis and tumor progression in esophageal squamous cell carcinoma. Oncology, 2006, 70(5), 378-389.
[http://dx.doi.org/10.1159/000098111] [PMID: 17179732]
[57]
Yoo, Y.A.; Kang, M.H.; Kim, J.S.; Oh, S.C. Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-β-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis, 2008, 29(3), 480-490.
[http://dx.doi.org/10.1093/carcin/bgm281] [PMID: 18174246]
[58]
Freije, J.M.; Balbín, M.; Pendás, A.M.; Sánchez, L.M.; Puente, X.S.; López-Otín, C. Matrix metalloproteinases and tumor progression. New Trends in Cancer for the 21st Century., 2003, 91-107.
[59]
Liu, Y.P.; Lee, J.J.; Lai, T.C.; Lee, C.H.; Hsiao, Y.W.; Chen, P.S.; Liu, W.T.; Hong, C.Y.; Lin, S.K.; Ping, Kuo; M.Y., Lu; P.J., Hsiao, M. Suppressive function of low-dose deguelin on the invasion of oral cancer cells by downregulating tumor necrosis factor alpha-induced nuclear factor-kappa B signaling. Head Neck, 2016, 38(S1), E524-E534.
[http://dx.doi.org/10.1002/hed.24034] [PMID: 25784049]
[60]
Dell’Eva, R.; Ambrosini, C.; Minghelli, S.; Noonan, D.M.; Albini, A.; Ferrari, N. The Akt inhibitor deguelin, is an angiopreventive agent also acting on the NF-kappaB pathway. Carcinogenesis, 2007, 28(2), 404-413.
[http://dx.doi.org/10.1093/carcin/bgl162] [PMID: 16952909]
[61]
Ye, H.; Xie, C.; Wu, W.; Xiang, M.; Liu, Z.; Li, Y.; Tang, M.; Li, S.; Yang, J.; Tang, H.; Chen, K.; Long, C.; Peng, A.; Chen, L. Millettia pachycarpa exhibits anti-inflammatory activity through the suppression of LPS-induced NO/iNOS expression. Am. J. Chin. Med., 2014, 42(4), 949-965.
[http://dx.doi.org/10.1142/S0192415X14500608] [PMID: 25004885]
[62]
Vihinen, P; Ala-aho, R; Kahari, V-MJCcdt Matrix metalloproteinases as therapeutic targets in cancer. 2005, 5(3), 203-220.
[63]
Chung, AS; Lee, J; Ferrara, N. Targeting the tumour vasculature: Insights from physiological angiogenesis. Nat. Rev. Cancer, 2010, 10(7), 505.
[http://dx.doi.org/10.1038/nrc2868]
[64]
Lee, J.-H.; Lee, D.-H.; Lee, H-.S.; Choi, J-S.; Kim, K-W.; Hong, S-S. Deguelin inhibits human hepatocellular carcinoma by antiangiogenesis and apoptosis. Oncol. Rep., 2008, 20(1), 129-134.
[65]
Lee, S-C.; Min, H-Y.; Choi, H.; Kim, H.S.; Kim, K-C.; Park, S-J.; Seong, M.A.; Seo, J.H.; Park, H.J.; Suh, Y.G.; Kim, K.W.; Hong, H.S.; Kim, H.; Lee, M.Y.; Lee, J.; Lee, H.Y. Synthesis and evaluation of a novel Deguelin derivative, L80, which disrupts ATP binding to the C-terminal domain of heat shock protein 90. Mol. Pharmacol., 2015, 88(2), 245-255.
[http://dx.doi.org/10.1124/mol.114.096883] [PMID: 25976766]
[66]
Boone, B.A.; Zeh, H.J., III; Bahary, N. Autophagy inhibition in pancreatic adenocarcinoma. Clin. Colorectal Cancer, 2018, 17(1), 25-31.
[http://dx.doi.org/10.1016/j.clcc.2017.10.013] [PMID: 29223362]
[67]
Li, M.; Yu, X.; Li, W.; Liu, T.; Deng, G.; Liu, W.; Liu, H.; Gao, F. Deguelin suppresses angiogenesis in human hepatocellular carcinoma by targeting HGF-c-Met pathway. Oncotarget, 2017, 9(1), 152-166.
[PMID: 29416603]
[68]
Awad, M.M.; Oxnard, G.R.; Jackman, D.M.; Savukoski, D.O.; Hall, D.; Shivdasani, P., Eds.; MET exon 14 mutations in non–small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression, J; J. Clin. Oncol, 2016.
[http://dx.doi.org/10.1200/JCO.2015.63.4600]
[69]
Matsumura, A.; Kubota, T.; Taiyoh, H.; Fujiwara, H.; Okamoto, K.; Ichikawa, D. HGF regulates VEGF expression via the c-Met receptor downstream pathways, PI3K/Akt, MAPK and STAT3, in CT26 murine cells. Int. J. Oncol., 2013, 42(2), 535-542.
[70]
Dong, G.; Chen, Z.; Li, Z-Y.; Yeh, N.T.; Bancroft, C.C.; Van Waes, C. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res., 2001, 61(15), 5911-5918.
[PMID: 11479233]
[71]
Lin, Y-M; Huang, Y-L; Fong, Y-C; Tsai, C-H; Chou, M-C Tang, C-HJPo. Hepatocyte growth factor increases vascular endothelial growth factor-A production in human synovial fibroblasts through c-Met receptor pathway. 2012, 7(11), e50924.
[72]
Sulpice, E.; Ding, S.; Muscatelli-Groux, B.; Bergé, M.; Han, ZC; Plouet, J. Cross-talk between the VEGF-A and HGF signaling pathways in endothelial cells. Biol. Cell, 2009, 101(9), 525-539.
[73]
You, W-K.; Sennino, B.; Williamson, C.W.; Falcón, B.; Hashizume, H.; Yao, L-C.; Aftab, D.T.; McDonald, D.M. VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res., 2011, 71(14), 4758-4768.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2527] [PMID: 21613405]
[74]
Shojaei, F.; Lee, J.H.; Simmons, B.H.; Wong, A.; Esparza, C.O.; Plumlee, P.A.; Feng, J.; Stewart, A.E.; Hu-Lowe, D.D.; Christensen, J.G. HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res., 2010, 70(24), 10090-10100.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0489] [PMID: 20952508]
[75]
Giordano, S.; Columbano, A. Met as a therapeutic target in HCC: Facts and hopes. J. Hepatol., 2014, 60(2), 442-452.
[http://dx.doi.org/10.1016/j.jhep.2013.09.009] [PMID: 24045150]
[76]
Xiang, Q.; Chen, W.; Ren, M.; Wang, J.; Zhang, H.; Deng, D.Y.; Zhang, L.; Shang, C.; Chen, Y. Cabozantinib suppresses tumor growth and metastasis in hepatocellular carcinoma by a dual blockade of VEGFR2 and MET. Clin. Cancer Res., 2014, 20(11), 2959-2970.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2620] [PMID: 24700742]
[77]
Oh, S.H.; Woo, J.K.; Jin, Q.; Kang, H.J.; Jeong, J.W.; Kim, K.W. Identification of novel antiangiogenic anticancer activities of Deguelin targeting hypoxia‐inducible factor‐1 alpha. Int. J. Cancer, 2008, 122(1), 5-14.
[http://dx.doi.org/10.1002/ijc.23075]
[78]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[79]
Altman, BJ; Stine, ZE; Dang, CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nature Rev. Cancer, 2016, 16(10), 619.
[http://dx.doi.org/10.1038/nrc.2016.71]
[80]
Gill, K.S.; Fernandes, P.; O’Donovan, T.R.; McKenna, S.L.; Doddakula, K.K.; Power, D.G. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Biochimica et Biophysica, 2016, 1866(1), 87-105.
[http://dx.doi.org/10.1016/j.bbcan.2016.06.005]
[81]
Hasanpourghadi, M.; Yeng Looi, C.; Kumar Pandurangan, A.; Sethi, G; Fen Wong, W.; Rais Mustafa, M.J. Phytometabolites targeting the Warburg effect in cancer cells: A mechanistic review. Curr. Drug Targets, 2017, 18(9), 1086-1094.
[82]
Lincet, H.; Icard, P. How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene, 2015, 34(29), 3751.
[http://dx.doi.org/10.1038/onc.2014.320]
[83]
Zhou, L.; Li, M.; Yu, X.; Gao, F.; Li, W. Repression of Hexokinases II-Mediated glycolysis contributes to piperlongumine-induced tumor suppression in non-small cell lung cancer cells. Int. J. Biol. Sci., 2019, 15(4), 826-837.
[http://dx.doi.org/10.7150/ijbs.31749] [PMID: 30906213]
[84]
Mathupala, S.P.; Ko, Y.H.; Pedersen, P.L., Eds.; Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy.Seminars in cancer biology; , 2009.
[85]
Krasnov, GS; Dmitriev, AA; Lakunina, VA; Kirpiy, AA Kudryavtseva, AVJEoott. Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy. Exp. Opin. Therap. Targ., 2013, 17(10), 1221-1233.
[86]
Pastorino, JG; Shulga, N.; Hoek, J.B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem., 2007, 277(9), 7610-7618.
[87]
Majewski, N.; Nogueira, V.; Bhaskar, P.; Coy, P.E.; Skeen, J.E.; Gottlob, K. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell, 2004, 16(5), 819-830.
[http://dx.doi.org/10.1016/j.molcel.2004.11.014]
[88]
Li, S-H.; Fu, J.; Watkins, DN; Srivastava, RK; Shankar, S. Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog–GLI pathway. Mol. Cellul. Biochem., 2013, 373(1), 217-227.
[89]
Rodova, M.; Fu, J.; Watkins, DN; Srivastava, RK; Shankar, S. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal. PLoS One, 2012, 7(9), e46083.
[90]
Crocoli, A.; Fassari, FM; Natali, GL; La Rosa, G.; Devito, R.; Falappa, P. Sclerotherapy of primary aneurysmal bone cysts: Comment to Lambot-Juhan et al. Pediatr. Radiol., 2013, 43(3), 385-386.
[91]
Toth, M.; Sohail, A.; Fridman, R. Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Metastasis Research Protocols; Humana Press: Totowa, NJ, 2012, pp. 121-135.
[92]
Bianchi-Smiraglia, A.; Paesante, S.; Bakin, A.V. Integrin β5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways. Oncogene, 2013, 32(25), 3049.
[http://dx.doi.org/10.1038/onc.2012.320]
[93]
Shen, J.; Xu, L.; Owonikoko, T.K.; Sun, S-Y.; Khuri, F.R.; Curran, W.J. NNK promotes migration and invasion of lung cancer cells through activation of c-Src/PKCι/FAK loop. Cancer Lett., 2012, 318(1), 106-113.
[94]
Li, Q.; Verma, I.M. I NF-κB regulation in the immune system. Nat. Rev. Immunol., 2002, 2(10), 725-734.
[http://dx.doi.org/10.1038/nri910]
[95]
Chang, Y-WE; Marlin, JW; Chance, TW; Jakobi, RJ RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility., 2006, 66(24), 11700-11708.
[96]
Hadler-Olsen, E.; Winberg, J-O.; Uhlin-Hansen, L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumor Biol., 2013, 34(4), 2041-2051.
[http://dx.doi.org/10.1007/s13277-013-0842-8]
[97]
Wiedmann, W.M.; Mossner, J. Molecular targeted therapy of hepatocellular carcinoma-results of the first clinical studies. Curr. Cancer Drug Targ., 2011, 11(6), 714-733.
[98]
Mayoral, R.; Fernández-Martínez, A.; Boscá, L.; Martín-Sanz, P. Prostaglandin E 2 promotes migration and adhesion in hepatocellular carcinoma cells. Carcinogenesis, 2005, 26(4), 753-761.
[http://dx.doi.org/10.1093/carcin/bgi022]
[99]
Ghosh, N.; Hossain, U.; Mandal, A.; Sil, P.C. The Wnt signaling pathway: A potential therapeutic target against cancer. Ann. N. Y. Acad. Sci., 2019, 1443(1), 54-74.
[http://dx.doi.org/10.1111/nyas.14027] [PMID: 31017675]
[100]
Stetler-Stevenson, W.G. Type IV collagenases in tumor invasion and metastasis. Cancer Metast. Rev., 1990, 9(4), 289-303.
[http://dx.doi.org/10.1007/BF00049520]
[101]
Chen, J.-S.; Li, H.-S.; Huang, J.-Q.; Zhang, L.-J.; Chen, X.-L.; Wang, Q. Down-regulation of Gli-1 inhibits hepatocellular carcinoma cell migration and invasion. Mol. Cellul. Biochem., 2014, 393(1-2), 283-291.
[http://dx.doi.org/10.1007/s11010-014-2071-x]
[102]
Chen, M.; Qian, Y.; Dai, J.; Chu, R. The sonic hedgehog signaling pathway induces myopic development by activating matrix metalloproteinase (MMP)-2 in Guinea pigs. Plos One, 2014, 9(5), e96952.
[103]
Fan, H-X.; Wang, S.; Zhao, H.; Liu, N.; Chen, D.; Sun, M. Sonic hedgehog signaling may promote invasion and metastasis of oral squamous cell carcinoma by activating MMP-9 and E-cadherin expression. Medical Oncol., 2014, 31(7), 41.
[http://dx.doi.org/10.1007/s12032-014-0041-5]
[104]
Palanivel, K.; Kanimozhi, V.; Kadalmani, B.; Akbarsha, M.A. Verrucarin A induces apoptosis through ROS-mediated EGFR/MAPK/Akt signaling pathways in MDA-MB-231 Breast. Cancer Cells, 2014, 115(11), 2022-2032.
[PMID: 24963595]
[105]
Dall’Acqua, S; Linardi, MA; Bortolozzi, R; Clauser, M; Marzocchini, S; Maggi, F. Natural daucane esters induces apoptosis in leukaemic cells through ROS production. Phytochemistry, 2014, 108, 147-156.
[http://dx.doi.org/10.1016/j.phytochem.2014.09.001]
[106]
Li, W.; Yu, X.; Xia, Z.; Yu, X.; Xie, L.; Ma, X.; Zhou, H.; Liu, L.; Wang, J.; Yang, Y.; Liu, H. Repression of Noxa by Bmi1 contributes to deguelin-induced apoptosis in non-small cell lung cancer cells. J. Cell. Mol. Med., 2018, 22(12), 6213-6227.
[http://dx.doi.org/10.1111/jcmm.13908] [PMID: 30255595]
[107]
Zhang, H.; Li, X.; Ding, J.; Xu, H.; Dai, X.; Hou, Z. Delivery of ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2). Int. J. Pharmaceut., 2013, 441(1-2), 261-268.
[108]
Li, X.; Lu, X.; Xu, H.; Zhu, Z.; Yin, H.; Qian, X. Paclitaxel/tetrandrine coloaded nanoparticles effectively promote the apoptosis of gastric cancer cells based on “oxidation therapy”. Mol. Pharmaceut., 2011, 9(2), 222-229.
[109]
Li, X.; Zhen, D.; Lu, X.; Shao, Y.; Xue, Q.; Hu, Y. Enhanced cytotoxicity and activation of ROS-dependent c-Jun NH2-terminal kinase and caspase-3 by low doses of tetrandrine-loaded nanoparticles in Lovo cells–a possible Trojan strategy against cancer Eur. J. Pharmaceut. Biopharmaceut., 2010, 75(3), 334-340.
[http://dx.doi.org/10.1016/j.ejpb.2010.04.016]
[110]
Oh, S.H.; Woo, J.K.; Yazici, Y.D.; Myers, J.N.; Kim, W-Y.; Jin, Q. Structural basis for depletion of heat shock protein 90 client proteins by Deguelin. J. Natl. Cancer Instit., 2007, 99(12), 949-961.
[http://dx.doi.org/10.1093/jnci/djm007]
[111]
Camby, I.; Le Mercier, M.; Lefranc, F.; Kiss, R. Galectin-1: a small protein with major functions. Glycobiology, 2016, 16(11), 137R-157R.
[112]
Dalotto-Moreno, T.; Croci, DO; Cerliani, JP; Martinez-Allo, VC; Dergan-Dylon, S; Méndez-Huergo, S. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res., 2013, 73(3), 1107-1117.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2418]
[113]
Zhang, X.; Zhang, H.M. Alantolactone induces gastric cancer BGC-823 cell apoptosis by regulating reactive oxygen species generation and the AKT signaling pathway. Oncol. Lett., 2019, 17(6), 4795-4802.
[http://dx.doi.org/10.3892/ol.2019.10172] [PMID: 31186685]
[114]
Chen, L.; Jiang, K.; Chen, H.; Tang, Y.; Zhou, X.; Tan, Y.; Yuan, Y.; Xiao, Q.; Ding, K. Deguelin induces apoptosis in colorectal cancer cells by activating the p38 MAPK pathway. Cancer Manag. Res., 2018, 11, 95-105.
[http://dx.doi.org/10.2147/CMAR.S169476] [PMID: 30588113]
[115]
Zhou, X; Li, D; Wang, X; Zhang, B; Zhu, H; Zhao, J. Galectin-1 is overexpressed in CD133+ human lung adenocarcinoma cells and promotes their growth and invasiveness. Oncotarget, 2015, 6(5), 3111.
[116]
Chung, L.-Y.; Tang, S.-J.; Sun, G.-H.; Chou, T.-Y.; Yeh, T.-S.; Yu, S.-L. Galectin-1 promotes lung cancer progression and chemoresistance by upregulating p38 MAPK, ERK, and cyclooxygenase-2. Oncotarget, 2012, 6(5), 3111.
[117]
He, X.J.; Tao, H.Q.; Hu, Z.M.; Ma, Y.Y.; Xu, J.; Wang, H.J.; Xia, Y.J.; Li, L.; Fei, B.Y.; Li, Y.Q.; Chen, J.Z. Expression of galectin-1 in carcinoma-associated fibroblasts promotes gastric cancer cell invasion through upregulation of integrin β1. Cancer Sci., 2014, 105(11), 1402-1410.
[http://dx.doi.org/10.1111/cas.12539] [PMID: 25230369]
[118]
Laderach, D.J.; Gentilini, L.D.; Giribaldi, L.; Delgado, V.C.; Nugnes, L.; Croci, D.O.; Al Nakouzi, N.; Sacca, P.; Casas, G.; Mazza, O.; Shipp, M.A.; Vazquez, E.; Chauchereau, A.; Kutok, J.L.; Rodig, S.J.; Elola, M.T.; Compagno, D.; Rabinovich, G.A. A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease. Cancer Res., 2013, 73(1), 86-96.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1260] [PMID: 23108139]
[119]
Chow, S.N.; Chen, R.J.; Chen, C.H.; Chang, T.C.; Chen, L.C.; Lee, W.J.; Shen, J.; Chow, L.P. Analysis of protein profiles in human epithelial ovarian cancer tissues by proteomic technology. Eur. J. Gynaecol. Oncol., 2010, 31(1), 55-62.
[PMID: 20349782]
[120]
Barrow, H.; Rhodes, J.M.; Yu, L.G. The role of galectins in colorectal cancer progression. Int. J. Cancer, 2011, 129(1), 1-8.
[http://dx.doi.org/10.1002/ijc.25945] [PMID: 21520033]
[121]
Camby, I.; Le Mercier, M.; Lefranc, F.; Kiss, R. Galectin-1: a small protein with major functions. Glycobiology, 2006, 16(11), 137R-157R.
[http://dx.doi.org/10.1093/glycob/cwl025] [PMID: 16840800]
[122]
Masamune, A.; Satoh, M.; Hirabayashi, J.; Kasai, K.; Satoh, K.; Shimosegawa, T. Galectin-1 induces chemokine production and proliferation in pancreatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(4), G729-G736.
[http://dx.doi.org/10.1152/ajpgi.00511.2005] [PMID: 16373424]
[123]
Downward, J. Targeting RAS signaling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[124]
Castellano, E.; Downward, J. Role of RAS in the regulation of PI 3-kinase. Phosphoinositide 3-kinase in health and disease. , 2010; pp. 143-169.
[http://dx.doi.org/10.1007/82_2010_56]
[125]
Chen, Y.; Wu, Q.; Cui, G-H.; Chen, Y-Q.; Li, R. Deguelin blocks cells survival signal pathways and induces apoptosis of HL-60 cells in vitro. Int. J. Hematol., 2009, 89(5), 618-623.
[126]
Peng, X-H.; Karna, P.; O’Regan, R.M.; Liu, X.; Naithani, R.; Moriarty, R.M.; Wood, W.C.; Lee, H.Y.; Yang, L. Down-regulation of inhibitor of apoptosis proteins by deguelin selectively induces apoptosis in breast cancer cells. Mol. Pharmacol., 2007, 71(1), 101-111.
[http://dx.doi.org/10.1124/mol.106.027367] [PMID: 17035597]
[127]
Brenner, H.; Rothenbacher, D.; Arndt, V. Epidemiology of stomach cancer. Cancer Epidemiol., 2009, pp. 467-477.
[128]
Orditura, M.; Galizia, G.; Sforza, V.; Gambardella, V.; Fabozzi, A.; Laterza, M.M.; Andreozzi, F.; Ventriglia, J.; Savastano, B.; Mabilia, A.; Lieto, E.; Ciardiello, F.; De Vita, F. Treatment of gastric cancer. World J. Gastroenterol., 2014, 20(7), 1635-1649.
[http://dx.doi.org/10.3748/wjg.v20.i7.1635] [PMID: 24587643]
[129]
Kang, W.; Zheng, X.; Wang, P.; Guo, S. Deguelin exerts anticancer activity of human gastric cancer MGC-803 and MKN-45 cells in vitro. Int. J. Mol. Med., 2018, 41(6), 3157-3166.
[http://dx.doi.org/10.3892/ijmm.2018.3532] [PMID: 29512685]
[130]
Murillo, G.; Salti, G.I.; Kosmeder, J.W., II; Pezzuto, J.M.; Mehta, R.G. Deguelin inhibits the growth of colon cancer cells through the induction of apoptosis and cell cycle arrest. Eur. J. Cancer, 2002, 38(18), 2446-2454.
[http://dx.doi.org/10.1016/S0959-8049(02)00192-2] [PMID: 12460790]
[131]
Xiong, J.R.; Liu, H.L. Regulatory effects of deguelin on proliferation and cell cycle of Raji cells. J. Huazhong Univ. Sci. Technol. Med. Sci., 2013, 33(4), 491-495.
[http://dx.doi.org/10.1007/s11596-013-1147-2] [PMID: 23904366]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy