Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Synthesis and Applications of Hydrogels in Cancer Therapy

Author(s): Anchal Singhal*, Niharika Sinha, Pratibha Kumari and Manoushikha Purkayastha

Volume 20, Issue 12, 2020

Page: [1431 - 1446] Pages: 16

DOI: 10.2174/1871521409666200120094048

Price: $65

Abstract

Hydrogels are water-insoluble, hydrophilic, cross-linked, three-dimensional networks of polymer chains having the ability to swell and absorb water but do not dissolve in it, that comprise the major difference between gels and hydrogels. The mechanical strength, physical integrity and solubility are offered by the crosslinks. The different applications of hydrogels can be derived based on the methods of their synthesis, response to different stimuli, and their different kinds. Hydrogels are highly biocompatible and have properties similar to human tissues that make it suitable to be used in various biomedical applications, including drug delivery and tissue engineering. The role of hydrogels in cancer therapy is highly emerging in recent years. In the present review, we highlighted different methods of synthesis of hydrogels and their classification based on different parameters. Distinctive applications of hydrogels in the treatment of cancer are also discussed.

Keywords: Hydrogels, biocompatible, polymers, cancer therapy, drug discovery, tissue engineering.

Graphical Abstract
[1]
Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature, 1960, 185, 117-118.
[http://dx.doi.org/10.1038/185117a0]
[2]
Paleos, G.A. Pittsburgh Plastics Manufacturing; Buttler: PA, 2012.
[3]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf.), 2008, 49, 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[4]
Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules, 2019, 24(3), 603-623.
[http://dx.doi.org/10.3390/molecules24030603] [PMID: 30744011]
[5]
Akhtar, M.F.; Hanif, M.; Ranjha, N.M. Methods of synthesis of hydrogels … A review. Saudi Pharm. J., 2016, 24(5), 554-559.
[http://dx.doi.org/10.1016/j.jsps.2015.03.022] [PMID: 27752227]
[6]
Aly, A.S. Self-dissolving chitosan. I. Preparation and characterisation and evaluation for drug delivery system. Angew Macromol. Chem., 1998, 259, 33-38.
[http://dx.doi.org/10.1002/(SICI)1522-9505(19981001)259:1<13:AID-APMC13>3.0.CO;2-T]
[7]
Martin, B.D.; Linhardt, R.J.; Dordick, J.S. Highly swelling hydrogels from ordered galactose-based polyacrylates. Biomaterials, 1998, 19(1-3), 69-76.
[http://dx.doi.org/10.1016/S0142-9612(97)00184-1] [PMID: 9678852]
[8]
Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism. Mater. Selection Appl. Polym., 2017, 9(137), 1-37.
[9]
Sahooa, P.; Leonga, K.H.; Nyamathullaa, S.; Onukib, Y.; Takayamac, K.; Chunga, L.Y. Optimization of pH-responsive carboxymethylated iota-carrageenan/chitosan nanoparticles for oral insulin delivery using response surface methodology. React. Funct. Polym., 2017, 119, 145-155.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.08.014]
[10]
Xu, X.; Jha, A.K.; Harrington, D.A.; Farach-Carson, M.C.; Jia, X. Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter, 2012, 8(12), 3280-3294.
[http://dx.doi.org/10.1039/c2sm06463d] [PMID: 22419946]
[11]
Coviello, T.; Grassi, M.; Rambone, G.; Santucci, E.; Carafa, M.; Murtas, E.; Riccieri, F.M.; Alhaique, F. Novel hydrogel system from scleroglucan: synthesis and characterization. J. Control. Release, 1999, 60(2-3), 367-378.
[http://dx.doi.org/10.1016/S0168-3659(99)00091-7] [PMID: 10425341]
[12]
Kim, J.; Kong, Y.P.; Niedzielski, S.M.; Singh, R.K.; Putnam, A.J.; Shikanov, A. Charaecterization of the cross linking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition. Soft Matter, 2016, 12(7), 2076-2085.
[http://dx.doi.org/10.1039/C5SM02668G] [PMID: 26750719]
[13]
Darling, N.J.; Hung, Y.S.; Sharma, S.; Segura, T. Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels. Biomaterials, 2016, 101, 199-206.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.053] [PMID: 27289380]
[14]
Teng, D.Y.; Wu, Z.M.; Zhang, X.; Wang, Y.X.; Zheng, C.; Wang, Z.; Li, C.X. Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer (Guildf.), 2010, 51, 639-646.
[http://dx.doi.org/10.1016/j.polymer.2009.12.003]
[15]
Khan, S.; Ullah, A.; Ullah, K.; Rehman, N. Insight into hydrogels. Des. Monomers Polym., 2016, 19(5), 456-478.
[http://dx.doi.org/10.1080/15685551.2016.1169380]
[16]
Zhang, Z.; He, C.; Chen, X. Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications. Mater. Chem. Front., 2018, 2, 1765-1778.
[http://dx.doi.org/10.1039/C8QM00317C]
[17]
Accardo, J.V.; Kalow, J.A. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem. Sci. (Camb.), 2018, 9(27), 5987-5993.
[http://dx.doi.org/10.1039/C8SC02093K] [PMID: 30079213]
[18]
Kuijpers, A.J.; van Wachem, P.B.; van Luyn, M.J.; Engbers, G.H.; Krijgsveld, J.; Zaat, S.A.; Dankert, J.; Feijen, J. In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: A model system for the delivery of antibacterial proteins from prosthetic heart valves. J. Control. Release, 2000, 67(2-3), 323-336.
[http://dx.doi.org/10.1016/S0168-3659(00)00221-2] [PMID: 10825564]
[19]
Yoshida, T.; Aoyagi, T.; Kokufuta, E.; Okano, T. Newly designed hydrogel with both sensitive thermoresponse and biodegradability. J. Polym. Sci. A Polym. Chem., 2003, 41, 779-787.
[http://dx.doi.org/10.1002/pola.10595]
[20]
Wan Ishak, W.H.; Ahmad, I.; Ramli, S.; Mohd Amin, M.C.I. Gamma irradiation-assisted synthesis of cellulose nanocrystal-reinforced gelatin hydrogels. Nanomaterials (Basel), 2018, 8(10), 749-762.
[http://dx.doi.org/10.3390/nano8100749] [PMID: 30241416]
[21]
Wisotzki, E.I.; Hennes, M.; Schuldt, C.; Engert, F.; Knolle, W.; Decker, U.; Kas, J.A.; Zink, M.; Mayr, S.G. Tailoring the material properties of gelatin hydrogels by high energy electron irradiation. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 4297-4309.
[http://dx.doi.org/10.1039/C4TB00429A]
[22]
Rimdusit, S.; Somsaeng, K.; Kewsuwan, P.; Jubsilp, C.; Tiptipakorn, S. Comparison of gamma radiation crosslinking and chemical crosslinking on properties of methylcellulose hydrogel. Eng. J. (N.Y.), 2012, 6(4), 15-28.
[http://dx.doi.org/10.4186/ej.2012.16.4.15]
[23]
Peppas, N.A.; Mikos, A.G. Preparation methods and structure of hydrogels. In: Hydrogels in Medicine and Pharmacy; Peppas, N.A., Ed.; CRC Press: Boca Raton, FL, 1986; Vol. I, pp. 1-27.
[24]
Peppas, N.A.; Merrill, E.W. Hydrogels as swollen elastic networks. J. Appl. Polym. Sci., 1977, 21, 1763-1770.
[http://dx.doi.org/10.1002/app.1977.070210704]
[25]
Stringer, J.L.; Peppas, N.A. Diffusion of small molecular weight drugs in radiation-crosslinked poly (ethylene oxide) hydrogels. J. Control. Release, 1996, 42, 195-202.
[http://dx.doi.org/10.1016/0168-3659(96)01457-5]
[26]
Jabbari, E.; Nozari, S. Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. Eur. Polym. J., 2000, 36, 2685-2692.
[http://dx.doi.org/10.1016/S0014-3057(00)00044-6]
[27]
Kishi, R.; Ichijo, H.; Hirasa, O. Thermo-responsive devices using poly(vinyl methyl ether) hydrogels. J. Intell. Mater. Syst. Struct., 1993, 4, 533-537.
[http://dx.doi.org/10.1177/1045389X9300400413]
[28]
Kishi, R.; Hirasa, O.; Ichijo, H. Fast responsive poly(N-sopropylacrylamide) hydrogels prepared by γ-ray irradiation. Polym. Gels Netw., 1997, 5, 145-151.
[http://dx.doi.org/10.1016/S0966-7822(96)00037-8]
[29]
Moerkerke, R.; Meeussen, F.; Koningsveld, R. Phase transitions in swollen networks. 3. Swelling behavior of radiation crosslinked poly (vinyl methyl ether) in water. Macromolecules, 1998, 31, 2223-2229.
[http://dx.doi.org/10.1021/ma971512+]
[30]
Arndt, K.F.; Schmidt, T.; Reichelt, R. Thermo-sensitive poly (vinyl methyl ether) micro-gel formed by high energy radiation. Polymer (Guildf.), 2001, 42, 6785-6791.
[http://dx.doi.org/10.1016/S0032-3861(01)00164-1]
[31]
Guo, K.; Chu, C.C. Synthesis of biodegradable amino-acid-based poly(ester amide)s and poly(ether ester amide)s with pendant functional groups. J. Appl. Polym. Sci., 2010, 117, 3386-3394.
[http://dx.doi.org/10.1002/app.32080]
[32]
Zhu, J.; Han, H.; Ye, T.T.; Li, F.X.; Wang, X.L.; Yu, J.Y.; Wu, D.Q. Biodegradable and pH sensitive peptide based hydrogel as controlled release system for antibacterial wound dressing application. Molecules, 2018, 23(12), 3383-3397.
[http://dx.doi.org/10.3390/molecules23123383] [PMID: 30572689]
[33]
Broguiere, N.; Formica, F.A.; Barreto, G.; Zenobi-Wong, M. Sortase A as a cross-linking enzyme in tissue engineering. Acta Biomater., 2018, 77, 182-190.
[http://dx.doi.org/10.1016/j.actbio.2018.07.020] [PMID: 30006315]
[34]
Arkenberg, M.R.; Moore, D.M.; Lin, C.C. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation. Acta Biomater., 2019, 83, 83-95.
[http://dx.doi.org/10.1016/j.actbio.2018.11.011] [PMID: 30415064]
[35]
Yung, C.W.; Wu, L.Q.; Tullman, J.A.; Payne, G.F.; Bentley, W.E.; Barbari, T.A. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J. Biomed. Mater. Res. A, 2007, 83(4), 1039-1046.
[http://dx.doi.org/10.1002/jbm.a.31431]] [PMID: 17584898]
[36]
Kim, K.S.; Park, S.J.; Yang, J.A.; Jeon, J.H.; Bhang, S.H.; Kim, B.S.; Hahn, S.K. Injectable hyaluronic acid-tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomater., 2011, 7(2), 666-674.
[http://dx.doi.org/10.1016/j.actbio.2010.09.030] [PMID: 20883838]
[37]
Roberts, J.J.; Naudiyal, P.; Lim, K.S.; Poole-Warren, L.A.; Martens, P.J. A comparative study of enzyme initiators for crosslinking phenol-functionalized hydrogels for cell encapsulation. Biomater. Res., 2016, 20, 30.
[http://dx.doi.org/10.1186/s40824-016-0077-z] [PMID: 27713832]
[38]
Mosiewicz, K.A.; Johnsson, K.; Lutolf, M.P. Phosphopantetheinyl transferase-catalyzed formation of bioactive hydrogels for tissue engineering. J. Am. Chem. Soc., 2010, 132(17), 5972-5974.
[http://dx.doi.org/10.1021/ja9098164] [PMID: 20373804]
[39]
Elbjeirami, W.M.; Yonter, E.O.; Starcher, B.C.; West, J.L. Enhancing mechanical properties of tissue-engineered constructs via lysyl oxidase crosslinking activity. J. Biomed. Mater. Res. A, 2003, 66(3), 513-521.
[http://dx.doi.org/10.1002/jbm.a.10021] [PMID: 12918034]
[40]
Bakota, E.L.; Aulisa, L.; Galler, K.M.; Hartgerink, J.D. Enzymatic cross-linking of a nanofibrous peptide hydrogel. Biomacromolecules, 2011, 12(1), 82-87.
[http://dx.doi.org/10.1021/bm1010195] [PMID: 21133404]
[41]
Teixeira, L.S.; Feijen, J.; van Blitterswijk, C.A.; Dijkstra, P.J.; Karperien, M. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 2012, 33(5), 1281-1290.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.067]] [PMID: 22118821]
[42]
Thi, P.L.; Lee, Y.; Nguyen, D.H.; Park, K.D. In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness. J. Mater. Chem. B Mater. Biol. Med., 2017, 5, 757-764.
[http://dx.doi.org/10.1039/C6TB02179D]]
[43]
Buwalda, S.J.; Boere, K.W.; Dijkstra, P.J.; Feijen, J.; Vermonden, T.; Hennink, W.E. Hydrogels in a historical perspective: From simple networks to smart materials. J. Control. Release, 2014, 190, 254-273.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.052] [PMID: 24746623]
[44]
Banerjee, S.L.; Khamrai, M.; Kundu, P.P.; Singha, N.K. Synthesis of self-healable and pH responsive hydrogel based on an ionic polymer/clay nanocomposite. RSC Advances, 2016, 6, 81654-81665.
[http://dx.doi.org/10.1039/C6RA01074A]
[45]
Pérez-Luna, V.H.; González-Reynoso, O. Encapsulation of biological agents in hydrogels for therapeutic applications. Gels, 2018, 4(3), 61.
[http://dx.doi.org/10.3390/gels4030061] [PMID: 30674837]
[46]
Wee, S.; Gombotz, W.R. Protein release from alginate matrices. Adv. Drug Deliv. Rev., 1998, 31(3), 267-285.
[http://dx.doi.org/10.1016/S0169-409X(97)00124-5] [PMID: 10837629]
[47]
Chen, P. Self-assembly of ionic-complementary peptides: A physicochemical viewpoint. Colloids Surf Physicochem Eng Aspects, 2005, 261, 3-24.
[http://dx.doi.org/10.1016/j.colsurfa.2004.12.048]
[48]
Eagland, D.; Crowther, N.J.; Butler, C.J. Complexation between polyoxyethylene and polymethacrylic acid-The importance of the molar mass of polyoxyethylene. Eur. Polym. J., 1994, 30, 767-773.
[http://dx.doi.org/10.1016/0014-3057(94)90003-5]
[49]
Zhang, X.N.; Wang, Y.J.; Sun, S.; Hou, L.; Wu, P.; Wu, Z.L.; Zheng, Q. A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction. Macromolecules, 2018, 51(20), 8136-8146.
[http://dx.doi.org/10.1021/acs.macromol.8b01496]
[50]
Chang, X.; Geng, Y.; Cao, H.; Zhou, J.; Tian, Y.; Shan, G.; Bao, Y.; Wu, Z.L.; Pan, P. Dual-crosslink physical hydrogels with high toughness based on synergistic hydrogen bonding and hydrophobic interactions. Macromol. Rapid Commun., 2018, 39(14), 1700806-1700813.
[http://dx.doi.org/10.1002/marc.201700806]
[51]
Meenakshi; Ahuja, M. Metronidazole loaded carboxymethyl tamarind kernel polysaccharide-polyvinyl alcohol cryogels: Preparation and characterization. Int. J. Biol. Macromol., 2015, 72, 931-938.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.040] [PMID: 25301698]
[52]
Stenekes, R.J.H.; Talsma, H.; Hennink, W.E. Formation of dextran hydrogels by crystallization. Biomaterials, 2001, 22(13), 1891-1898.
[http://dx.doi.org/10.1016/S0142-9612(00)00375-6] [PMID: 11396895]
[53]
Tsuji, H. Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications. Macromol. Biosci., 2005, 5(7), 569-597.
[http://dx.doi.org/10.1002/mabi.200500062] [PMID: 15997437]
[54]
Slager, J.; Glandnikoff, M.; Domb, A.J. Stereocomplexes, based on biodegradable polymers and bioactive macromolecules. Macromol. Symp., 2001, 175(1), 105-115.
[http://dx.doi.org/10.1002/1521-3900(200110)175:1<105::AIDMASY105>3.0.CO;2-C]
[55]
Lim, D.W.; Park, T.G. Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: Characterization and use as protein-delivery microparticulate carriers. J. Appl. Polym. Sci., 2000, 75, 1615-1623.
[http://dx.doi.org/10.1002/(SICI)1097-4628(20000328)75:13<1615:AID-APP7>3.0.CO;2-L]
[56]
Escobar-Chávez, J.J.; López-Cervantes, M.; Naïk, A.; Kalia, Y.N.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharm. Sci., 2006, 9(3), 339-358.
[PMID: 17207417]
[57]
Gyles, D.A.; Castro, L.D.; Silva, J.O.C., Jr; Ribeiro-Costa, R.M. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J., 2017, 88, 373-392.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.01.027]
[58]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[59]
Wang, K.; Burban, J.; Cussler, E. Hydrogels as separation agents. Responsive Gels: Volume Transitions II, 1993, 110, 67-79.
[60]
Hacker, M.C.; Mikos, A.G. Synthetic Polymers. Principles Regenerat. Med, 2011, 587-622.
[61]
Yang, L.; Chu, J.S.; Fix, J.A. Colon-specific drug delivery: New approaches and in vitro/in vivo evaluation. Int. J. Pharm., 2002, 235(1-2), 1-15.
[http://dx.doi.org/10.1016/S0378-5173(02)00004-2] [PMID: 11879735]
[62]
Kofinas, P.; Cohen, R.E. Development of methods for quantitative characterization of network morphology in pharmaceutical hydrogels. Biomaterials, 1997, 18(20), 1361-1369.
[http://dx.doi.org/10.1016/S0142-9612(97)00077-X] [PMID: 9363336]
[63]
Pathmanathan, K.; Johari, G.P. Relaxation and crystallization of water in a hydrogel. J. Chem. Soc., Faraday Trans., 1994, 90(8), 1143-1148.
[http://dx.doi.org/10.1039/ft9949001143]
[64]
Matsumoto, K.; Sakikawa, N.; Miyata, T. Thermo-responsive gels that absorb moisture and ooze water. Nat. Commun., 2018, 9(1), 2315-2321.
[http://dx.doi.org/10.1038/s41467-018-04810-8] [PMID: 29899417]
[65]
Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci., 2008, 33, 1088-1118.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[66]
Casolaro, M.; Casolaro, I.; Bottari, S. Long-term doxorubicin release from multiple stimuli-responsive hydrogels based on a-amino-acid residues Eur. J. Pharmaceut. Biopharmaceut., 2014, 88(2), 424-433.
[http://dx.doi.org/10.1016/j.ejpb.2014.06.005]
[67]
Norouzi, M.; Nazari, B.; Miller, D.W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today, 2016, 21(11), 1835-1849.
[http://dx.doi.org/10.1016/j.drudis.2016.07.006] [PMID: 27423369]
[68]
Qu, Y.; Chu, B.Y.; Peng, J.R.; Liao, J.F.; Qi, T.T.; Shi, K.; Zhang, X.N.; Wei, Y.Q.; Qian, Z.Y. A biodegradable thermo-responsive hybrid hydrogel: therapeutic applications in preventing the post operative reocurrence of breast cancer. NPG Asia Mater., 2015, 7, e207.
[http://dx.doi.org/10.1038/am.2015.83]
[69]
Alsuraifi, A.; Curtis, A.; Lamprou, D.A.; Hoskins, C. Stimuli responsive polymeric systems for cancer therapy. Pharmaceutics, 2018, 10(3), 136-153.
[http://dx.doi.org/10.3390/pharmaceutics10030136] [PMID: 30131473]
[70]
Qi, X.; Wei, W.; Li, J.; Zuo, G.; Pan, X.; Su, T.; Zhang, J.; Dong, W. Salecan-based pH-sensitive hydrogels for insulin delivery. Mol. Pharm., 2017, 14(2), 431-440.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00875] [PMID: 28055215]
[71]
Ishak, R.A.; Awad, G.A.; Mortada, N.D.; Nour, S.A. Preparation, in vitro and in vivo evaluation of stomach-specific metronidazole loaded alginate beads as local anti-Helicobacter pylori therapy. J. Control. Release, 2007, 119(2), 207-214.
[http://dx.doi.org/10.1016/j.jconrel.2007.02.012] [PMID: 17412443]
[72]
Krishnaiah, Y.S.R.; Satyanarayana, V.; Dinesh Kumar, B.; Karthikeyan, R.S. In vitro drug release studies on guar gum-based colon targeted oral drug delivery systems of 5-fluorouracil. Eur. J. Pharm. Sci., 2002, 16(3), 185-192.
[http://dx.doi.org/10.1016/S0928-0987(02)00081-7] [PMID: 12128173]
[73]
George, M.; Abraham, T.E. pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs. Int. J. Pharm., 2007, 335(1-2), 123-129.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.009] [PMID: 17147980]
[74]
Kim, M.S.; Park, K. Injectable hydrogel. In: Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer, 2012; pp. 1091-1096.
[75]
Brannon-Peppas, L.; Peppas, N.A. Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials, 1990, 11(9), 635-644.
[http://dx.doi.org/10.1016/0142-9612(90)90021-H] [PMID: 2090297]
[76]
Lee, S.M.; Ahn, R.W.; Chen, F.; Fought, A.J.; O’Halloran, T.V.; Cryns, V.L.; Nguyen, S.T. Biological evaluation of pH-responsive polymer-caged nanobins for breast cancer therapy. ACS Nano, 2010, 4(9), 4971-4978.
[http://dx.doi.org/10.1021/nn100560p] [PMID: 20738118]
[77]
Abbasian, M.; Rodi, M.M.; Mahmoodzadeh, F.; Eskandani, M.; Jaymand, M. Chitosan-grafted-poly(methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. Int. J. Biol. Macromol., 2018, 118, 1871-1879.
[78]
Chen, Q.; Zheng, J.; Yuan, X.; Wang, J.; Zhang, L. Folic acid grafted and tertiary amino based pH-responsive pentablock polymeric micelles for targeting anticancer drug delivery. Mater. Sci. Eng. C, 2018, 82, 1-9.
[http://dx.doi.org/10.1016/j.msec.2017.08.026] [PMID: 29025636]
[79]
Zhang, X.; Huang, Y.; Ghazwani, M.; Zhang, P.; Li, J.; Thorne, S.H.; Li, S. Tunable pH-responsive polymeric micelle for cancer treatment. ACS Macro Lett., 2015, 4, 620-623.
[http://dx.doi.org/10.1021/acsmacrolett.5b00165]
[80]
Kang, Y.; Ha, W.; Liu, Y-Q.; Ma, Y.; Fan, M-M.; Ding, L-S.; Zhang, S.; Li, B-J. pH-responsive polymer-drug conjugates as multifunctional micelles for cancer-drug delivery. Nanotechnology, 2014, 25(33), 335101.
[http://dx.doi.org/10.1088/0957-4484/25/33/335101] [PMID: 25073730]
[81]
Raja, A.; Hayat, U.; Rasheed, T.; Bilal, M.; Iqbal, H.M.N. “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: A review. J. Mater. Sci. Technol., 2018, 8(1), 1497-1509.
[http://dx.doi.org/10.1016/j.jmrt.2018.03.007]]
[82]
Fourniols, T.; Randolph, L.D.; Staub, A.; Vanvarenberg, K.; Leprince, J.G.; Préat, V.; des Rieux, A.; Danhier, F. Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma. J. Control. Release, 2015, 210, 95-104.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.272] [PMID: 25982679]
[83]
Zhang, H.; Guo, S.S.; Fuand, Y.; Zhao, A. Near-infrared light-responsive hybrid hydrogel based on UCST triblock copolymer and gold nanorods. Polymers (Basel), 2018, 10(1), 9.
[http://dx.doi.org/10.3390/polym10010009]
[84]
Griffin, D.R.; Kasko, A.M. Photo-selective delivery of model therapeutics from hydrogels. ACS Macro Lett., 2012, 1(11), 1330-1334.
[http://dx.doi.org/10.1021/mz300366s] [PMID: 25285242]
[85]
Azagarsamy, M.A.; Anseth, K.S. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew. Chem. Int. Ed. Engl., 2013, 52(51), 13803-13807.
[http://dx.doi.org/10.1002/anie.201308174] [PMID: 24173699]
[86]
Choi, J.R.; Yong, K.W.; Choi, J.Y.; Cowie, A.C. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques, 2019, 66(1), 40-53.
[http://dx.doi.org/10.2144/btn-2018-0083] [PMID: 30730212]
[87]
Zhao, L.; Wang, L.; Zhang, Y.; Xiao, S.; Bi, F.; Zhao, J.; Gai, G.; Ding, J. glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment. Polymers (Basel), 2017, 9(7), 255.
[http://dx.doi.org/10.3390/polym9070255] [PMID: 30970930]
[88]
Peppas, N.A.; Bures, C.D. Glucose-Responsive Hydrogels, Encyclopedia of Biomaterials and Biomedical Engineering; Taylor & Francis: UK, 2006.
[89]
Bratlie, K.M.; York, R.L.; Invernale, M.A.; Langer, R.; Anderson, D.G. Materials for diabetes therapeutics. Adv. Healthc. Mater., 2012, 1(3), 267-284.
[http://dx.doi.org/10.1002/adhm.201200037] [PMID: 23184741]
[90]
Jiménez, J.L.; Nettleton, E.J.; Bouchard, M.; Robinson, C.V.; Dobson, C.M.; Saibil, H.R. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA, 2002, 99(14), 9196-9201.
[http://dx.doi.org/10.1073/pnas.142459399] [PMID: 12093917]
[91]
Hassan, C.M.; Doyle, F.J.; Peppas, N.A. Dynamic behavior of glucose-responsive poly(methacrylic acid-g-ethylene glycol) hydrogels. Macromolecules, 1997, 30(20), 6166-6173.
[http://dx.doi.org/10.1021/ma970117g]
[92]
Webber, M.J.; Anderson, D.G. Smart approaches to glucose-responsive drug delivery. J. Drug Target., 2015, 23(7-8), 651-655.
[http://dx.doi.org/10.3109/1061186X.2015.1055749] [PMID: 26453161]
[93]
Matsumoto, A.; Tanaka, M.; Matsumoto, H.; Ochi, K.; Moro-Oka, Y.; Kuwata, H.; Yamada, H.; Shirakawa, I.; Miyazawa, T.; Ishii, H.; Kataoka, K.; Ogawa, Y.; Miyahara, Y.; Suganami, T. Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv., 2017, 3(11), eaaq0723.
[http://dx.doi.org/10.1126/sciadv.aaq0723] [PMID: 29202033]
[94]
Huebsch, N.; Kearney, C.J.; Zhao, X.; Kim, J.; Cezar, C.A.; Suo, Z.; Mooney, D.J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. USA, 2014, 111(27), 9762-9767.
[http://dx.doi.org/10.1073/pnas.1405469111] [PMID: 24961369]
[95]
Huang, W-C.; Ali, F.; Zhao, J.; Rhee, K.; Mou, C.; Bettinger, C.J. Ultrasound-mediated self-healing hydrogels based on tunable metal-organic bonding. Biomacromolecules, 2017, 18(4), 1162-1171.
[http://dx.doi.org/10.1021/acs.biomac.6b01841] [PMID: 28245355]
[96]
Zardad, A-Z.; Choonara, Y.E.; Du Toit, L.C.; Kumar, P.; Mabrouk, M.; Kondiah, P.P.D.; Pillay, V.M. A review of thermo- and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents. Polymers (Basel), 2016, 8(10), 359-380.
[http://dx.doi.org/10.3390/polym8100359] [PMID: 30974645]
[97]
Kowalski, G.; Kijowska, K.; Witczak, M.; Kuterasiński, Ł.; Łukasiewicz, M. Synthesis and effect of structure on swelling properties of hydrogels based on high methylated pectin and acrylic polymers. Polymers (Basel), 2019, 11(1), 114-129.
[http://dx.doi.org/10.3390/polym11010114] [PMID: 30960098]
[98]
Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 2017, 3(1), 1-15.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[99]
Fang, Y.; Tan, J.; Lim, S.; Soh, S. Rupturing cancer cells by the expansion of functionalized stimuli-responsive hydrogels. Nature, 2018, 10, 1-9.
[100]
Sepantafar, M.; Maheronnaghsh, R.; Mohammadi, H.; Radmanesh, F.; Hasani-Sadrabadi, M.M.; Ebrahimi, M.; Baharvand, H. Engineered hydrogels in cancer therapy and diagnosis. Trends Biotechnol., 2017, 35(11), 1074-1087.
[http://dx.doi.org/10.1016/j.tibtech.2017.06.015] [PMID: 28734545]
[101]
Ahmadi, F.; Oveisi, Z.; Samani, S.M.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci., 2015, 10(1), 1-16.
[PMID: 26430453]
[102]
Kuijpers, A.J.; Engbers, G.H.M.; Krijgsveld, J.; Zaat, S.A.; Dankert, J.; Feijen, J. Cross-linking and characterisation of gelatin matrices for biomedical applications. J. Biomater. Sci. Polym. Ed., 2000, 11(3), 225-243.
[http://dx.doi.org/10.1163/156856200743670] [PMID: 10841277]
[103]
Lee, J.B.; Peng, S.; Yang, D.; Roh, Y.H.; Funabashi, H.; Park, N.; Rice, E.J.; Chen, L.; Long, R.; Wu, M.; Luo, D. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol., 2012, 7(12), 816-820.
[http://dx.doi.org/10.1038/nnano.2012.211] [PMID: 23202472]
[104]
Park, J.H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater., 2009, 8(4), 331-336.
[http://dx.doi.org/10.1038/nmat2398] [PMID: 19234444]
[105]
Tomatsu, I.; Peng, K.; Kros, A. Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1257-1266.
[http://dx.doi.org/10.1016/j.addr.2011.06.009] [PMID: 21745509]
[106]
Harada, A. Supramolecular Hydrogels, Encyclopedia of Polymeric Nanomaterials; Springer, 2014.
[107]
Ang, K.L.; Venkatraman, S.; Ramanujan, R.V. Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater. Sci. Eng. C, 2007, 27, 347-351.
[108]
Iglesias, N.; Galbis, E.; Valencia, C.; De-Paz, M-V.; Galbis, J.A. Reversible pH-sensitive chitosan-based hydrogels. Influence of dispersion composition on rheological properties and sustained drug delivery. Polymers (Basel), 2018, 10(4), 392-309.
[http://dx.doi.org/10.3390/polym10040392] [PMID: 30966427]
[109]
Liu, L.; Gao, Q.; Lu, X.; Zhou, H. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J. Pharma. Sci., 2016, 11, 673-683.
[http://dx.doi.org/10.1016/j.ajps.2016.07.001]
[110]
Tsao, C-T.; Kievit, F.M.; Wang, K.; Erickson, A.E.; Ellenbogen, R.G.; Zhang, M. Chitosan-based thermoreversible hydrogel as an in vitro tumor microenvironment for testing breast cancer therapies. Mol. Pharm., 2014, 11(7), 2134-2142.
[http://dx.doi.org/10.1021/mp5002119] [PMID: 24779767]
[111]
Tondera, C.; Hauser, S.; Krüger-Genge, A.; Jung, F.; Neffe, A.T.; Lendlein, A.; Klopfleisch, R.; Steinbach, J.; Neuber, C.; Pietzsch, J. Gelatin-based hydrogel degradation and tissue interaction in vivo: Insights from multimodal preclinical imaging in immunocompetent nude mice. Theranostics, 2016, 6(12), 2114-2128.
[http://dx.doi.org/10.7150/thno.16614] [PMID: 27698944]
[112]
Kushibiki, T.; Matsumoto, K.; Nakamura, T.; Tabata, Y. Suppression of tumor metastasis by NK4 plasmid DNA released from cationized gelatin. Gene Ther., 2004, 11(15), 1205-1214.
[http://dx.doi.org/10.1038/sj.gt.3302285] [PMID: 15103321]
[113]
Satapathy, M.K.; Nyambat, B.; Chiang, C-W.; Chen, C-H.; Wong, P-C.; Ho, P-H.; Jheng, P-R.; Burnouf, T.C-L.; Tsengand, E-Y.; Chuang, A. Gelatin hydrogel-containing nano-organic PEI–Ppy with a photothermal responsive effect for tissue engineering applications. Molecules, 2018, 23, 1-17.
[http://dx.doi.org/10.3390/molecules23061256]
[114]
Wang, J.; Zhao, L.; Zhang, A.; Huang, Y.; Tavakoli, J.; Tang, Y. Novel bacterial cellulose/gelatin hydrogels as 3D scaffolds for tumor cell culture. Polymers (Basel), 2018, 10, 1-16.
[115]
Shahbazi, M-A.; Ramos, T.B.; Santos, H.A. DNA hydrogel assemblies: bridging synthesis principles to biomedical applications. Adv. Ther., 2018, 1, 1800042-1800064.
[http://dx.doi.org/10.1002/adtp.201800042]
[116]
Udomprasert, A.; Kangsamaksin, T. DNA origami applications in cancer therapy. Cancer Sci., 2017, 108(8), 1535-1543.
[117]
Song, J.; Hwang, S. Im, K.; Hur, J.; Nam, J.; Hwang, S.; Ahn, G.O.; Kim, S.; Park, N. Light-responsible DNA hydrogel-gold nanoparticle assembly forsynergistic cancer therapy. J. Mater. Chem. B, 2015, 3, 1537-1543.
[118]
Yu, P.; Yu, H.; Guo, C.; Cui, Z.; Chen, X.; Yin, Q.; Zhang, P.; Yang, X.; Cui, H.; Li, Y. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater., 2015, 14, 115-124.
[http://dx.doi.org/10.1016/j.actbio.2014.12.001] [PMID: 25498306]
[119]
Lv, S.N.; Cheng, C.J.; Song, Y.Y.; Zhao, Z.G. Temperature-switched controlled release nanosystems based on molecular recognition and polymer phase transition. RSC Advances, 2015, 5, 3248-3259.
[http://dx.doi.org/10.1039/C4RA11075G]
[120]
Mi, Y.; Wolfram, J.; Mu, C.; Liu, X.; Blanco, E.; Shen, H.; Ferrari, M. Enzyme-responsive multistage vector for drug delivery to tumor tissue. Pharmacol. Res., 2016, 113(Pt A), 92-99.
[http://dx.doi.org/10.1016/j.phrs.2016.08.024] [PMID: 27546164]
[121]
Ding, B.; Zhang, W.; Wu, X.; Wang, J.; Xie, C.; Huang, X.; Zhan, S.; Zheng, Y.; Huang, Y.; Xu, N.; Ding, X.; Gao, S. DR5 mAb-conjugated, DTIC-loaded immuno-nanoparticles effectively and specifically kill malignant melanoma cells in vivo. Oncotarget, 2016, 7(35), 57160-57170.
[http://dx.doi.org/10.18632/oncotarget.11014] [PMID: 27494835]
[122]
Basso, J.; Miranda, A.; Nunes, S.; Cova, T.; Sousa, J.; Vitorino, C.; Pais, A. Hydrogel-based drug delivery nanosystems for the treatment of brain tumors. Gels, 2018, 4(3), 62-90.
[http://dx.doi.org/10.3390/gels4030062] [PMID: 30674838]
[123]
Shin, D.S.; You, J.; Rahimian, A.; Vu, T.; Siltanen, C.; Ehsanipour, A.; Stybayeva, G.; Sutcliffe, J.; Revzin, A. Photodegradable hydrogels for capture, detection, and release of live cells. Angew. Chem. Int. Ed. Engl., 2014, 53(31), 8221-8224.
[http://dx.doi.org/10.1002/anie.201404323] [PMID: 24931301]
[124]
Liang, Y.; Li, L.; Scott, R.A.; Kiick, K.L. Polymeric biomaterials: diverse functions enabled by advances in macromolecular chemistry. Macromolecules, 2017, 50(2), 483-502.
[http://dx.doi.org/10.1021/acs.macromol.6b02389] [PMID: 29151616]
[125]
Saboktakin, M.R.; Tabatabaei, R.M. Supramolecular hydrogels as drug delivery systems. Int. J. Biol. Macromol., 2015, 75, 426-436.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.02.006] [PMID: 25687476]
[126]
Liu, X.; Li, Z.; Loh, X.J.; Chen, K.; Li, Z.; Wu, Y-L. Targeted and sustained corelease of chemotherapeutics and gene by injectable supramolecular hydrogel for drug-resistant cancer therapy. Macromol. Rapid Commun., 2019, 40(5), 1800117-1800125.
[PMID: 29992700]
[127]
Liu, X.; Chen, X.; Chua, M.X.; Li, Z.; Loh, X.J.; Wu, Y-L. Injectable supramolecular hydrogels as delivery agents of Bcl-2 conversion gene for the effective shrinkage of therapeutic resistant tumors. Adv. Healthc. Mater., 2017, 6, 1700159-1700169.
[http://dx.doi.org/10.1002/adhm.201700159]
[128]
Zhang, J.; Huang, Q.; Du, J. Recent advances in magnetic hydrogels. Polym. Int., 2016, 65, 1365-1372.
[http://dx.doi.org/10.1002/pi.5170]
[129]
Ramanujan, R.V.; Ang, K.L.; Venkatraman, S. Magnet-PNIPA hydrogels for bioengineering applications. J. Mater. Sci., 2009, 44, 1381-1387.
[http://dx.doi.org/10.1007/s10853-006-1064-x]]
[130]
Häring, M.; Schiller, J.; Mayr, J.; Grijalvo, S.; Eritja, R.; Díaz, D.D. Magnetic gel composites for hyperthermia cancer therapy. Gels, 2015, 1(2), 135-161.
[http://dx.doi.org/10.3390/gels1020135] [PMID: 30674170]
[131]
Wu, H.; Song, L.; Chen, L.; Zhang, W.; Chen, Y.; Zang, F.; Chen, H.; Ma, M.; Gu, N.; Zhang, Y. Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model. Acta Biomater., 2018, 74, 302-311.
[http://dx.doi.org/10.1016/j.actbio.2018.04.052] [PMID: 29729897]
[132]
Chauhan, S.; Harikumar, S.L. Kanupriya, Hydrogels: A smart drug delivery system. Int. J. Res. Pharm. Chem., 2012, 2(3), 603-614.
[133]
Lee, J.M.; Park, D.Y.; Yang, L.; Kim, E-J.; Ahrberg, C.D.; Lee, K-B.; Chung, B.G. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci. Rep., 2018, 8(1), 17145.
[http://dx.doi.org/10.1038/s41598-018-35216-7] [PMID: 30464248]
[134]
Bregenzer, M.E.; Horst, E.N.; Mehta, P.; Novak, C.M.; Raghavan, S.; Snyder, C.S.; Mehta, G. Integrated cancer tissue engineering models for precision medicine. PLoS One, 2019, 14(5), e0216564.
[http://dx.doi.org/10.1371/journal.pone.0216564] [PMID: 31075118]
[135]
Bertrand, N.; Leroux, J.C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control. Release, 2012, 161(2), 152-163.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.098] [PMID: 22001607]
[136]
Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50(1), 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4]] [PMID: 10840191]
[137]
Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 2016, 1(12), 1-31.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[138]
Hovgaard, L.; Brondsted, H. Dextran hydrogels for colon-specific drug delivery. J. Control. Release, 1995, 36, 159-166.
[http://dx.doi.org/10.1016/0168-3659(95)00049-E]
[139]
Vishnubhakthula, S.; Elupula, R.; Durán-Lara, E.F. Recent advances in hydrogel-based drug delivery for melanoma cancer therapy: A mini review. J. Drug Deliv., 2017, 2017, 7275985.
[http://dx.doi.org/10.1155/2017/7275985] [PMID: 28852576]
[140]
Schoener, C.A.; Hutson, H.N.; Peppas, N.A. pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. J. Biomed. Mater. Res. A, 2013, 101(8), 2229-2236.
[http://dx.doi.org/10.1002/jbm.a.34532] [PMID: 23281185]
[141]
Xiong, L.; Luo, Q.; Wang, Y.; Li, X.; Shen, Z.; Zhu, W. An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug. Chem. Commun. (Camb.), 2015, 51(78), 14644-14647.
[http://dx.doi.org/10.1039/C5CC06025G]] [PMID: 26290273]
[142]
Gil, M.S.; Thambi, T.; Phan, V.H.G.; Kim, S.H.; Lee, D.S. Injectable hydrogels incorporating cancer cell-specific cisplatin releasing nanogels for targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2017, 5, 7140-7152.
[http://dx.doi.org/10.1039/C7TB00873B]
[143]
Zahedi, P.; Lee, P.I. Solid molecular dispersions of poorly water-soluble drugs in poly(2-hydroxyethyl methacrylate) hydrogels. Eur. J. Pharm. Biopharm., 2007, 65(3), 320-328.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.025] [PMID: 17182231]
[144]
Dulong, V.; Mocanu, G.; Le, D.C. A novel amphiphilic pH-sensitive hydrogel based on pullulan. Colloid Polym. Sci., 2007, 285(10), 1085-1091.
[http://dx.doi.org/10.1007/s00396-007-1655-3]
[145]
Bhaskar, K.; Krishna Mohan, C.; Lingam, M.; Jagan Mohan, S.; Venkateswarlu, V.; Madhusudan Rao, Y.; Bhaskar, K.; Anbu, J.; Ravichandran, V. Development of SLN and NLC enriched hydrogels for transdermal delivery of nitrendipine: In vitro and in vivo characteristics. Drug Dev. Ind. Pharm., 2009, 35(1), 98-113.
[http://dx.doi.org/10.1080/03639040802192822] [PMID: 18665979]
[146]
Eckert, F.; Alloussi, S.; Paulsen, F.; Bamberg, M.; Zips, D.; Spillner, P.; Gani, C.; Kramer, U.; Thorwarth, D.; Schilling, D.; Muller, A.C. Prospective evaluation of a hydrogel spacer for rectal separation in dose-escalated intensity-modulated radiotherapy for clinically localized prostate cancer. BMC Cancer, 2013, 13, 1471-2407.
[http://dx.doi.org/10.1186/1471-2407-13-27]
[147]
Vashist, A.; Vashist, A.; Gupta, Y.K.; Ahmad, S. Recent advances in hydrogel based drug delivery systems for the human body. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 147-166.
[http://dx.doi.org/10.1039/C3TB21016B]
[148]
Langer, R.; Vacanti, J.P. Tissue engineering. Science, 1993, 260(5110), 920-926.
[http://dx.doi.org/10.1126/science.8493529] [PMID: 8493529]
[149]
Ballios, B.G.; Cooke, M.J.; Donaldson, L.; Coles, B.L.; Morshead, C.M.; van der Kooy, D.; Shoichet, M.S. A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Reports, 2015, 4(6), 1031-1045.
[http://dx.doi.org/10.1016/j.stemcr.2015.04.008] [PMID: 25981414]
[150]
Lee, J.H. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater. Res., 2018, 22(1), 27.
[http://dx.doi.org/10.1186/s40824-018-0138-6] [PMID: 30275970]
[151]
Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003, 24(24), 4337-4351.
[http://dx.doi.org/10.1016/S0142-9612(03)00340-5]] [PMID: 12922147]
[152]
Li, X.; Fan, D. Smart collagen hydrogels based on 1-ethyl-3-methylimidazolium acetate and microbial transglutaminase for potential applications in tissue engineering and cancer therapy. ACS Biomater. Sci. Eng., 2019, 5, 3523-3536.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00393]
[153]
Ono, K.; Saito, Y.; Yura, H.; Ishikawa, K.; Kurita, A.; Akaike, T.; Ishihara, M. Photocrosslinkable chitosan as a biological adhesive. J. Biomed. Mater. Res., 2000, 49(2), 289-295.
[http://dx.doi.org/10.1002/(SICI)1097-4636(200002)49:2<289:AID-JBM18>3.0.CO;2-M] [PMID: 10571917]
[154]
Zhao, X.; Kato, K.; Fukumoto, Y.; Nakamae, K. Synthesis of bioadhesive hydrogels from chitin derivatives. Int. J. Adhes. Adhes., 2001, 21(3), 227-232.
[http://dx.doi.org/10.1016/S0143-7496(01)00003-3]
[155]
Annabi, N.; Rana, D.; Shirzaei Sani, E.; Portillo-Lara, R.; Gifford, J.L.; Fares, M.M.; Mithieux, S.M.; Weiss, A.S. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials, 2017, 139, 229-243.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.011] [PMID: 28579065]
[156]
Grip, J.; Engstad, R.E.; Skjæveland, I.; Škalko-Basnet, N.; Holsæter, A.M. Sprayable carbopol hydrogel with soluble beta-1,3/1,6-glucan as an active ingredient for wound healing - Development and in-vivo evaluation. Eur. J. Pharm. Sci., 2017, 107, 24-31.
[http://dx.doi.org/10.1016/j.ejps.2017.06.029]] [PMID: 28645493]
[157]
Moghadas, B.; Dashtimoghadam, E.; Mirzadeh, H.; Seidi, F.; Hasani-Sadrabadi, M.M. Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Advances, 2016, 6(10), 7701-7711.
[http://dx.doi.org/10.1039/C5RA23875G]]
[158]
Gálvez-Montón, C.; Prat-Vidal, C.; Roura, S.; Soler-Botija, C.; Bayes-Genis, A. Update: Innovation in cardiology (IV). Cardiac tissue engineering and the bioartificial heart. Rev. Esp. Cardiol. (Engl. Ed.), 2013, 66(5), 391-399.
[http://dx.doi.org/10.1016/j.rec.2012.11.012] [PMID: 24775822]
[159]
Shu, Y.; Hao, T.; Yao, F.; Qian, Y.; Wang, Y.; Yang, B.; Li, J.; Wang, C. RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl. Mater. Interfaces, 2015, 7(12), 6505-6517.
[http://dx.doi.org/10.1021/acsami.5b01234] [PMID: 25756853]
[160]
Speidel, A.T.; Stuckey, D.J.; Chow, L.W.; Jackson, L.H.; Noseda, M.; Abreu Paiva, M.; Schneider, M.D.; Stevens, M.M. Multimodal hydrogel-based platform to deliver and monitor cardiac progenitor/stem cell engraftment. ACS Cent. Sci., 2017, 3(4), 338-348.
[http://dx.doi.org/10.1021/acscentsci.7b00039]] [PMID: 28470052]
[161]
Wang, X.; Chun, Y.W.; Zhong, L.; Chiusa, M.; Balikov, D.A.; Frist, A.Y.; Lim, C.C.; Maltais, S.; Bellan, L.; Hong, C.C.; Sung, H.J. A temperature-sensitive, self-adhesive hydrogel to deliver iPSC-derived cardiomyocytes for heart repair. Int. J. Cardiol., 2015, 190, 177-180.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.139] [PMID: 25918074]
[162]
Li, X.; Zhou, J.; Liu, Z.; Chen, J.; Lü, S.; Sun, H.; Li, J.; Lin, Q.; Yang, B.; Duan, C.; Xing, M.M.; Wang, C. A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials, 2014, 35(22), 5679-5688.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.067]] [PMID: 24746964]
[163]
Zhao, F.; Mc Garrigle, M.J.; Vaughan, T.J.; McNamara, L.M. In silico study of bone tissue regeneration in an idealised porous hydrogel scaffold using a mechano-regulation algorithm. Biomech. Model. Mechanobiol., 2018, 17(1), 5-18.
[http://dx.doi.org/10.1007/s10237-017-0941-3] [PMID: 28779266]
[164]
Zheng, Y.; Huang, K.; You, X.; Huang, B.; Wu, J.; Gu, Z. Hybrid hydrogels with high strength and biocompatibility for bone regeneration. Int. J. Biol. Macromol., 2017, 104(Pt A), 1143-1149.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.017] [PMID: 28687387]
[165]
Kon, E.; Muraglia, A.; Corsi, A.; Bianco, P.; Marcacci, M.; Martin, I.; Boyde, A.; Ruspantini, I.; Chistolini, P.; Rocca, M.; Giardino, R.; Cancedda, R.; Quarto, R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res., 2000, 49(3), 328-337.
[http://dx.doi.org/10.1002/(SICI)1097-4636(20000305)49:3<328: AID-JBM5>3.0.CO;2-Q] [PMID: 10602065]
[166]
Alsalameh, S.; Amin, R.; Gemba, T.; Lotz, M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum., 2004, 50(5), 1522-1532.
[http://dx.doi.org/10.1002/art.20269] [PMID: 15146422]
[167]
Nurlidar, F.; Yamane, K.; Kobayashi, M.; Terada, K.; Ando, T.; Tanihara, M. Calcium deposition in photocrosslinked poly(Pro-Hyp-Gly) hydrogels encapsulated rat bone marrow stromal cells. J. Tissue Eng. Regen. Med., 2018, 12(3), e1360-e1369.
[http://dx.doi.org/10.1002/term.2520] [PMID: 28715113]
[168]
Kim, M.H.; Park, W.H. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility. Int. J. Nanomedicine, 2016, 11, 2967-2978.
[PMID: 27382283]
[169]
Kim, M.H.; Kim, B.S.; Lee, J.; Cho, D.; Kwon, O.H.; Park, W.H. Silk fibroin/hydroxyapatite composite hydrogel induced by gamma-ray irradiation for bone tissue engineering. Biomater. Res., 2017, 21(1), 12.
[http://dx.doi.org/10.1186/s40824-017-0098-2] [PMID: 28652926]
[170]
Miguel, S.P.; Ribeiro, M.P.; Brancal, H.; Coutinho, P.; Correia, I.J. Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohydr. Polym., 2014, 111, 366-373.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.093] [PMID: 25037363]
[171]
Buckley, C.T.; Thorpe, S.D.; O’Brien, F.J.; Robinson, A.J.; Kelly, D.J. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J. Mech. Behav. Biomed. Mater., 2009, 2(5), 512-521.
[http://dx.doi.org/10.1016/j.jmbbm.2008.12.007] [PMID: 19627858]
[172]
Hashimoto, T.; Suzuki, Y.; Tanihara, M.; Kakimaru, Y.; Suzuki, K. Development of alginate wound dressings linked with hybrid peptides derived from laminin and elastin. Biomaterials, 2004, 25(7-8), 1407-1414.
[http://dx.doi.org/10.1016/j.biomaterials.2003.07.004]] [PMID: 14643615]
[173]
An, Y-H.; Yu, S.J.; Kim, I.S.; Kim, S-H.; Moon, J-M.; Kim, S.L.; Choi, Y.H.; Choi, J.S. Im, S.G.; Lee, K.E.; Hwang, N.S. Hydrogel functionalized Janus membrane for skin regeneration. Adv. Healthc. Mater., 2017, 6(5), 1600795.
[http://dx.doi.org/10.1002/adhm.201600795] [PMID: 27995759]
[174]
Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122, 34-47.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.011] [PMID: 28107663]
[175]
Li, X.; Su, X. Multifunctional smart hydrogels: Potential in tissue engineering and cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(29), 4714-4730.
[http://dx.doi.org/10.1039/C8TB01078A]
[176]
Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. Rep., 2015, 93, 1-49.
[http://dx.doi.org/10.1016/j.mser.2015.04.001] [PMID: 27134415]
[177]
Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U. Thin hydrogel films for optical biosensor applications. Membranes (Basel), 2012, 2(1), 40-69.
[http://dx.doi.org/10.3390/membranes2010040] [PMID: 24957962]
[178]
Bahram, M.; Mohseni, N.; Moghtader, M. An introduction to hydrogels and some recent applications. In: Emerging Concepts in Analysis and Applications of Hydrogels; Majee, S.B., Ed.; InTech Open, 2016.
[http://dx.doi.org/10.5772/64301]
[179]
Gao, Y.; Ren, F.; Ding, B.; Sun, N.; Liu, X.; Ding, X.; Gao, S. A thermo-sensitive PLGA-PEG-PLGA hydrogel for sustained release of docetaxel. J. Drug Target., 2011, 19(7), 516-527.
[http://dx.doi.org/10.3109/1061186X.2010.519031] [PMID: 20883085]
[180]
Kim, J.I.; Kim, B.; Chun, C.; Lee, S.H.; Song, S-C. MRI-monitored long-term therapeutic hydrogel system for brain tumors without surgical resection. Biomaterials, 2012, 33(19), 4836-4842.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.048] [PMID: 22483245]
[181]
Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A.; Cremophor, E.L. The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer, 2001, 37(13), 1590-1598.
[http://dx.doi.org/10.1016/S0959-8049(01)00171-X] [PMID: 11527683]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy