Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Adhesion Molecules as Potential Novel Biomarkers for Opioid Dependence

Author(s): Yu-Li Liu*, Hsiang-Wei Kuo, Chiu-Ping Fang, Jieh-Hen Tsung and Andrew C.H. Chen

Volume 26 , Issue 2 , 2020

Page: [253 - 259] Pages: 7

DOI: 10.2174/1381612826666200116144147

Price: $65

Abstract

Background: Cell-cell adhesion is essential in maintaining the structure and function of an organ. Several adhesion molecules have recently been identified as associated with heroin dependence in both genetic and peripheral plasma studies.

Methods and Results: We reviewed literature concerning studies on adhesion molecules in opioid addictions in rodents and human, including human genetic associations in different ethnic groups, and treatment responses to methadone maintenance treatment in heroin-dependent patients.

Conclusion: Some important and novel findings were summarized and discussed. Adhesion molecules in the peripheral plasma, e.g., cadherin-2 (CDH2), may be biomarkers for both methadone treatment outcome and nectin 4 may be an indicator for continued opioid use. Neural cell adhesion molecule (NCAM) in the central nervous system may regulate opioid withdrawal and analgesic responses. Future studies to uncover the mechanisms underlying the involvement of adhesion molecules in the pathological process of addictions will be an important research direction in the field.

Keywords: Opioid, adhesion, cadherin-2, nectin 4, NCAM-1, Nr-CAM, PSA-NCAM, ADGRV1.

[1]
Chan YY, Yang SN, Lin JC, Chang JL, Lin JG, Lo WY. Inflammatory response in heroin addicts undergoing methadone maintenance treatment. Psychiatry Res 2015; 226(1): 230-4.
[http://dx.doi.org/10.1016/j.psychres.2014.12.053] [PMID: 25660662]
[2]
Yang SN, Liu CA, Chung MY, et al. Alterations of postsynaptic density proteins in the hippocampus of rat offspring from the morphine-addicted mother: beneficial effect of dextromethorphan. Hippocampus 2006; 16(6): 521-30.
[http://dx.doi.org/10.1002/hipo.20179] [PMID: 16598705]
[3]
Cheng GL, Zeng H, Leung MK, et al. Heroin abuse accelerates biological aging: a novel insight from telomerase and brain imaging interaction. Transl Psychiatry 2013; 3, e260
[http://dx.doi.org/10.1038/tp.2013.36] [PMID: 23695235]
[4]
Kovacs GG, Horvath MC, Majtenyi K, Lutz MI, Hurd YL, Keller E. Heroin abuse exaggerates age-related deposition of hyperphosphorylated tau and p62-positive inclusions. Neurobiol Aging 2015; 36(11): 3100-7.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.07.018] [PMID: 26254956]
[5]
Saleme DM, Kluwe-Schiavon B, Soliman A, Misiak B, Frydecka D, Moustafa AA. Factors underlying risk taking in heroin-dependent individuals: feedback processing and environmental contingencies. Behav Brain Res 2018; 350: 23-30.
[http://dx.doi.org/10.1016/j.bbr.2018.04.052] [PMID: 29778626]
[6]
Kowalczyk WJ, Phillips KA, Jobes ML, et al. Clonidine maintenance prolongs opioid abstinence and decouples stress from craving in daily life: a randomized controlled trial with ecological momentary assessment. Am J Psychiatry 2015; 172(8): 760-7.
[http://dx.doi.org/10.1176/appi.ajp.2014.14081014] [PMID: 25783757]
[7]
Moeini M, Omidi A, Sehat M, Banafshe HR. The effects of oxytocin on withdrawal, craving and stress response in heroin-dependent patients: a randomized, double-blind clinical trial. Eur Addict Res 2019; 25(1): 41-7.
[http://dx.doi.org/10.1159/000496194] [PMID: 30630161]
[8]
Hogarth L, Hardy L, Bakou A, et al. Negative mood induction increases choice of heroin versus food pictures in opiate-dependent individuals: correlation with self-medication coping motives and subjective reactivity. Front Psychiatry 2019; 10: 274.
[http://dx.doi.org/10.3389/fpsyt.2019.00274] [PMID: 31156470]
[9]
Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011; 115(6): 1363-81.
[http://dx.doi.org/10.1097/ALN.0b013e318238bba6] [PMID: 22020140]
[10]
Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The mechanisms involved in morphine addiction: an overview. Int J Mol Sci 2019; 20(17): 4302.
[http://dx.doi.org/10.3390/ijms20174302] [PMID: 31484312]
[11]
Kuo HW, Shih CL, Tsung JH, et al. Pharmacogenomics study on cadherin 2 network with regard to HIV infection and methadone treatment outcome. PLoS One 2017; 12(3), e0174647
[http://dx.doi.org/10.1371/journal.pone.0174647] [PMID: 28358908]
[12]
Hua S. Neuroimmune interaction in the regulation of peripheral opioid-mediated analgesia in inflammation. Front Immunol 2016; 7: 293.
[http://dx.doi.org/10.3389/fimmu.2016.00293] [PMID: 27532001]
[13]
Sherva R, Wang Q, Kranzler H, et al. Genome-wide association study of cannabis dependence severity, novel risk variants, and shared genetic risks. JAMA Psychiatry 2016; 73(5): 472-80.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.0036] [PMID: 27028160]
[14]
Cheng Z, Zhou H, Sherva R, Farrer LA, Kranzler HR, Gelernter J. Genome-wide association study identifies a regulatory variant of RGMA associated with opioid dependence in European Americans. Biol Psychiatry 2018; 84(10): 762-70.
[http://dx.doi.org/10.1016/j.biopsych.2017.12.016] [PMID: 29478698]
[15]
Montalvo-Ortiz JL, Cheng Z, Kranzler HR, Zhang H, Gelernter J. Genomewide study of epigenetic biomarkers of opioid dependence in European- American women. Sci Rep 2019; 9(1): 4660.
[http://dx.doi.org/10.1038/s41598-019-41110-7] [PMID: 30874594]
[16]
Wang JC, Kapoor M, Goate AM. Association of genes involved in calcium and potassium pathways with opioid dependence. Biol Psychiatry 2014; 76(1): 6-7.
[http://dx.doi.org/10.1016/j.biopsych.2014.04.012] [PMID: 24925890]
[17]
Lodish H, Berk A, Matsudaira P, et al. Integrating cells into tissues Mol cell biology. 5th ed. New York: W.H. Freeman 2003.
[18]
Lodish H, Berk A, Zipursky SL, et al. Integrating cells into tissues Molecular cell biology. 4th ed. New York: W.H. Freeman 2000.
[19]
Muskiewicz DE, Uhl GR, Hall FS. The role of cell adhesion molecule genes regulating neuroplasticity in addiction. Neural Plast 2018; 2018, 9803764
[http://dx.doi.org/10.1155/2018/9803764] [PMID: 29675039]
[20]
Chothia C, Jones EY. The molecular structure of cell adhesion molecules. Annu Rev Biochem 1997; 66: 823-62.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.823] [PMID: 9242926]
[21]
Weber M, Modemann S, Schipper P, et al. Increased polysialic acid neural cell adhesion molecule expression in human hippocampus of heroin addicts. Neuroscience 2006; 138(4): 1215-23.
[http://dx.doi.org/10.1016/j.neuroscience.2005.11.059] [PMID: 16431029]
[22]
Kahn L, Alonso G, Normand E, Manzoni OJ. Repeated morphine treatment alters polysialylated neural cell adhesion molecule, glutamate decarboxylase-67 expression and cell proliferation in the adult rat hippocampus. Eur J Neurosci 2005; 21(2): 493-500.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03883.x] [PMID: 15673448]
[23]
El Maarouf A, Kolesnikov Y, Pasternak G, Rutishauser U. Removal of polysialylated neural cell adhesion molecule increases morphine analgesia and interferes with tolerance in mice. Brain Res 2011; 1404: 55-62.
[http://dx.doi.org/10.1016/j.brainres.2011.06.021] [PMID: 21704981]
[24]
Suzuki M, Narita M, Narita M, Niikura K, Suzuki T. Chronic morphine treatment increases the expression of the neural cell adhesion molecule in the dorsal horn of the mouse spinal cord. Neurosci Lett 2006; 399(3): 202-5.
[http://dx.doi.org/10.1016/j.neulet.2006.01.066] [PMID: 16510246]
[25]
Fujita-Hamabe W, Nakamoto K, Tokuyama S. Involvement of NCAM and FGF receptor signaling in the development of analgesic tolerance to morphine. Eur J Pharmacol 2011; 672(1-3): 77-82.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.029] [PMID: 21549695]
[26]
Cao JP, Wang HJ, Li L, Zhang SM. The effects of morphine treatment on the NCAM and its signaling in the MLDS of rats. Drug Chem Toxicol 2016; 39(4): 418-23.
[http://dx.doi.org/10.3109/01480545.2015.1137302] [PMID: 26821693]
[27]
Li L, Cao J, Zhang S, et al. NCAM signaling mediates the effects of GDNF on chronic morphine-induced neuroadaptations. J Mol Neurosci 2014; 53(4): 580-9.
[http://dx.doi.org/10.1007/s12031-013-0224-0] [PMID: 24399412]
[28]
Ishiguro H, Liu QR, Gong JP, et al. NrCAM in addiction vulnerability: positional cloning, drug-regulation, haplotype-specific expression, and altered drug reward in knockout mice. Neuropsychopharmacology 2006; 31(3): 572-84.
[http://dx.doi.org/10.1038/sj.npp.1300855] [PMID: 16123759]
[29]
Moretti M, Belli G, Morini L, Monti MC, Osculati AMM, Visonà SD. Drug abuse-related neuroinflammation in human postmortem brains: an immunohistochemical approach. J Neuropathol Exp Neurol 2019; 78(11): 1059-65.
[http://dx.doi.org/10.1093/jnen/nlz084] [PMID: 31559425]
[30]
Zhou Q, Bai M, Zou S. Intercellular adhension molecule-1 in the pathogenesis of heroin-induced acute lung injury in rats. J Huazhong Univ Sci Technolog Med Sci 2004; 24(5): 430-2.
[http://dx.doi.org/10.1007/BF02831100] [PMID: 15641684]
[31]
Nair MP, Mahajan SD, Reynolds JL. Opiates upregulate adhesion molecule expression in brain microVascular endothelial. Am J Infect Dis 2006; 2: 58-66.
[http://dx.doi.org/10.3844/ajidsp.2006.58.66]
[32]
Strazza M, Pirrone V, Wigdahl B, et al. Prolonged morphine exposure induces increased firm adhesion in an in vitro model of the blood-brain barrier. Int J Mol Sci 2016; 17(6): 17.
[http://dx.doi.org/10.3390/ijms17060916] [PMID: 27294916]
[33]
Hatta K, Okada TS, Takeichi M. A monoclonal antibody disrupting calcium-dependent cell-cell adhesion of brain tissues: possible role of its target antigen in animal pattern formation. Proc Natl Acad Sci USA 1985; 82(9): 2789-93.
[http://dx.doi.org/10.1073/pnas.82.9.2789] [PMID: 3857614]
[34]
Yagi T, Takeichi M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev 2000; 14(10): 1169-80.
[PMID: 10817752]
[35]
Shapiro L, Fannon AM, Kwong PD, et al. Structural basis of cell-cell adhesion by cadherins. Nature 1995; 374(6520): 327-37.
[http://dx.doi.org/10.1038/374327a0] [PMID: 7885471]
[36]
Ozaki C, Obata S, Yamanaka H, Tominaga S, Suzuki ST. The extracellular domains of E- and N-cadherin determine the scattered punctate localization in epithelial cells and the cytoplasmic domains modulate the localization. J Biochem 2010; 147(3): 415-25.
[http://dx.doi.org/10.1093/jb/mvp192] [PMID: 19919954]
[37]
Derycke L, Morbidelli L, Ziche M, De Wever O, Bracke M, Van Aken E. Soluble N-cadherin fragment promotes angiogenesis. Clin Exp Metastasis 2006; 23(3-4): 187-201.
[http://dx.doi.org/10.1007/s10585-006-9029-7] [PMID: 17028923]
[38]
Kohutek ZA, diPierro CG, Redpath GT, Hussaini IM. ADAM-10-mediated N-cadherin cleavage is protein kinase C-alpha dependent and promotes glioblastoma cell migration. J Neurosci 2009; 29(14): 4605-15.
[http://dx.doi.org/10.1523/JNEUROSCI.5126-08.2009] [PMID: 19357285]
[39]
Musumeci G, Coleman R, Imbesi R, et al. ADAM-10 could mediate cleavage of N-cadherin promoting apoptosis in human atherosclerotic lesions leading to vulnerable plaque: a morphological and immunohistochemical study. Acta Histochem 2014; 116(7): 1148-58.
[http://dx.doi.org/10.1016/j.acthis.2014.06.002] [PMID: 24985126]
[40]
Saitoh H, Leopold PL, Harvey BG, et al. Emphysema mediated by lung overexpression of ADAM10. Clin Transl Sci 2009; 2(1): 50-6.
[http://dx.doi.org/10.1111/j.1752-8062.2008.00085.x] [PMID: 20443867]
[41]
Yang WS, Kim HW, Lee JM, Han NJ, Lee MJ, Park SK. 1,25-dihydroxyvitamin D3 causes ADAM10-dependent ectodomain shedding of tumor necrosis factor receptor 1 in vascular smooth muscle cells. Mol Pharmacol 2015; 87(3): 533-42.
[http://dx.doi.org/10.1124/mol.114.097147] [PMID: 25556238]
[42]
Liu YL, Fang CP, Liu TH, et al. PVRL4 is associated with methadone dose and skin irritation in methadone treatment heroin dependent patients. 8th mind-body interface international symposium. Taichung, Taiwan 2018.
[43]
Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 2008; 9(8): 603-15.
[http://dx.doi.org/10.1038/nrm2457] [PMID: 18648374]
[44]
Rikitake Y, Mandai K, Takai Y. The role of nectins in different types of cell-cell adhesion. J Cell Sci 2012; 125(Pt 16): 3713-22.
[http://dx.doi.org/10.1242/jcs.099572] [PMID: 23027581]
[45]
Buchanan PC, Boylan KLM, Walcheck B, et al. Ectodomain shedding of the cell adhesion molecule Nectin-4 in ovarian cancer is mediated by ADAM10 and ADAM17. J Biol Chem 2017; 292(15): 6339-51.
[http://dx.doi.org/10.1074/jbc.M116.746859] [PMID: 28232483]
[46]
Brancati F, Fortugno P, Bottillo I, et al. Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome. Am J Hum Genet 2010; 87(2): 265-73.
[http://dx.doi.org/10.1016/j.ajhg.2010.07.003] [PMID: 20691405]
[47]
Florian R, Gruber R, Volc-Platzer B. A novel homozygous mutation in PVRL4 causes ectodermal dysplasia-syndactyly syndrome 1. Int J Dermatol 2018; 57(2): 223-6.
[http://dx.doi.org/10.1111/ijd.13862] [PMID: 29265343]
[48]
Jelani M, Chishti MS, Ahmad W. Mutation in PVRL4 gene encoding nectin-4 underlies ectodermal-dysplasia-syndactyly syndrome (EDSS1). J Hum Genet 2011; 56(5): 352-7.
[http://dx.doi.org/10.1038/jhg.2011.18] [PMID: 21346770]
[49]
Liu QR, Drgon T, Johnson C, Walther D, Hess J, Uhl GR. Addiction molecular genetics: 639,401 SNP whole genome association identifies many “cell adhesion” genes. Am J Med Genet B Neuropsychiatr Genet 2006; 141B(8): 918-25.
[http://dx.doi.org/10.1002/ajmg.b.30436] [PMID: 17099884]
[50]
Nelson EC, Lynskey MT, Heath AC, et al. ANKK1, TTC12, and NCAM1 polymorphisms and heroin dependence: importance of considering drug exposure. JAMA Psychiatry 2013; 70(3): 325-33.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.282] [PMID: 23303482]
[51]
Pasman JA, Verweij KJH, Gerring Z, et al. 23andMe Research Team; Substance Use Disorders Working Group of the Psychiatric Genomics Consortium; International Cannabis Consortium. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nat Neurosci 2018; 21(9): 1161-70.
[http://dx.doi.org/10.1038/s41593-018-0206-1] [PMID: 30150663]
[52]
Robbins EM, Krupp AJ, Perez de Arce K, et al. SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning. Neuron 2010; 68(5): 894-906.
[http://dx.doi.org/10.1016/j.neuron.2010.11.003] [PMID: 21145003]
[53]
Gelernter J, Kranzler HR, Sherva R, et al. Genome-wide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol Psychiatry 2014; 76(1): 66-74.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.034] [PMID: 24143882]
[54]
Smith AH, Jensen KP, Li J, et al. Genome-wide association study of therapeutic opioid dosing identifies a novel locus upstream of OPRM1. Mol Psychiatry 2017; 22(3): 346-52.
[http://dx.doi.org/10.1038/mp.2016.257] [PMID: 28115739]
[55]
Kalsi G, Euesden J, Coleman JR, et al. Genome-wide association of heroin dependence in Han Chinese. PLoS One 2016; 11(12), e0167388
[http://dx.doi.org/10.1371/journal.pone.0167388] [PMID: 27936112]
[56]
Yang BZ, Zhou H, Cheng Z, et al. Genomewide gene-by-sex interaction scans identify ADGRV1 for sex differences in opioid dependent African Americans. Sci Rep 2019; 9(1): 18070.
[http://dx.doi.org/10.1038/s41598-019-53560-0] [PMID: 31792237] [PMCID: PMC6889277]
[57]
McMillan DR, White PC. Studies on the very large G protein-coupled receptor: from initial discovery to determining its role in sensorineural deafness in higher animals. Adv Exp Med Biol 2010; 706: 76-86.
[http://dx.doi.org/10.1007/978-1-4419-7913-1_6] [PMID: 21618827]
[58]
Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008; 7(4): 339-57.
[http://dx.doi.org/10.1038/nrd2518] [PMID: 18382464]
[59]
Chen Q, Zou J, Shen Z, Zhang W, Yang J. Whirlin and PDZ domain-containing 7 (PDZD7) proteins are both required to form the quaternary protein complex associated with Usher syndrome type 2. J Biol Chem 2014; 289(52): 36070-88.
[http://dx.doi.org/10.1074/jbc.M114.610535] [PMID: 25406310]
[60]
Reiners J, van Wijk E, Märker T, et al. Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum Mol Genet 2005; 14(24): 3933-43.
[http://dx.doi.org/10.1093/hmg/ddi417] [PMID: 16301216]
[61]
Ehrlich AT, Maroteaux G, Robe A, et al. Expression map of 78 brain-expressed mouse orphan GPCRs provides a translational resource for neuropsychiatric research. Commun Biol 2018; 1: 102.
[http://dx.doi.org/10.1038/s42003-018-0106-7] [PMID: 30271982]
[62]
Biederer T, Sara Y, Mozhayeva M, et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 2002; 297(5586): 1525-31.
[http://dx.doi.org/10.1126/science.1072356] [PMID: 12202822]
[63]
Fogel AI, Akins MR, Krupp AJ, Stagi M, Stein V, Biederer T. SynCAMs organize synapses through heterophilic adhesion. J Neurosci 2007; 27(46): 12516-30.
[http://dx.doi.org/10.1523/JNEUROSCI.2739-07.2007] [PMID: 18003830]
[64]
Frei JA, Stoeckli ET. SynCAMs - from axon guidance to neurodevelopmental disorders. Mol Cell Neurosci 2017; 81: 41-8.
[http://dx.doi.org/10.1016/j.mcn.2016.08.012] [PMID: 27594578]
[65]
Galuska SP, Rollenhagen M, Kaup M, et al. Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci USA 2010; 107(22): 10250-5.
[http://dx.doi.org/10.1073/pnas.0912103107] [PMID: 20479255]
[66]
Stagi M, Fogel AI, Biederer T. SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones. Proc Natl Acad Sci USA 2010; 107(16): 7568-73.
[http://dx.doi.org/10.1073/pnas.0911798107] [PMID: 20368431]
[67]
Thomas LA, Akins MR, Biederer T. Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. J Comp Neurol 2008; 510(1): 47-67.
[http://dx.doi.org/10.1002/cne.21773] [PMID: 18615557]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy