Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Anti-obesity Effect of Gold Nanoparticles from Dendropanax morbifera Léveille by Suppression of Triglyceride Synthesis and Downregulation of PPARγ and CEBPα Signaling Pathways in 3T3-L1 Mature Adipocytes and HepG2 Cells

Author(s): Myoung Hi Yi, Shakina Yesmin Simu, Sungeun Ahn, Verónica Castro Aceituno, Chao Wang, Ramya Mathiyalagan, Joon Hurh, Indra Batjikh, Hashmoonah Ali, Yeon-Ju Kim, Sunoh Kim* and Deok-Chun Yang*

Volume 16, Issue 2, 2020

Page: [196 - 203] Pages: 8

DOI: 10.2174/1573413716666200116124822

Price: $65

Abstract

Background: Biosynthesis of gold nanoparticles from medicinal plants has become an interesting strategy in biomedical research due to its exclusive properties including less toxic cellular level through its ecofriendly biological function.

Objective: To examine the anti-lipid accumulation effect of spherical gold nanoparticles (size 10-20 nm) synthesized from Dendropanax morbifera Léveille (D-AuNPs) in both 3T3-L1 and HepG2 cells.

Methods: 3T3-L1 preadipocytes and HepG2 hepatocytes were stimulated with cocktail media to generate obese and fatty liver disease models. Cell cytotoxicity and cell proliferation assays were performed in adipocytes at different stages of growth. An anti-lipid accumulation assay was performed in 3T3-L1 obese and HepG2 fatty liver models using different doses of D-AuNPs. Expression of adipogenic genes of PPARγ, CEBPα, Jak2, STAT3, and ap2 and hepatogenic genes PPARα, FAS, and ACC was measured by real-time PCR. In addition, protein expression of PPARγ and CEBPα was evaluated by immunoblotting assay.

Results: We found that D-AuNPs (size 10–20 nm) at concentrations up to 100 µg/ml were nontoxic to 3T3-L1 and HepG2 at post-confluent and mature stages. In addition, pretreatment of D-AuNPs at post-confluent stage reduced triglyceride content. In addition, the adipogenesis process was negatively controlled by D-AuNPs, with downregulated PPARγ, CEBPα, Jak2, STAT3, and ap2 expression in 3T3-L1 cells and FAS and ACC levels in HepG2 cells.

Conclusion: These data indicated that D-AuNPs exert antiadipogenic properties. We hypothesize that Dendropanax contains a large amount of phenolic compound that coats the surface of gold nanoparticles and has the ability to reduce the excess amount of lipid in both cell lines.

Keywords: Gold nanoparticles, obesity, Dendropanax morbifera Léveille, PPARγ, 3T3-L1 and HepG2 cell lines.

Graphical Abstract
[1]
Kopelman, P.G. Obesity as a medical problem. Nature, 2000, 404(6778), 635-643.
[http://dx.doi.org/10.1038/35007508] [PMID: 10766250]
[2]
Cunningham, J.W.; Wiviott, S.D. Modern obesity pharmacotherapy: weighing cardiovascular risk and benefit. Clin. Cardiol., 2014, 37(11), 693-699.
[http://dx.doi.org/10.1002/clc.22304] [PMID: 25223901]
[3]
Dietrich, M.O.; Horvath, T.L. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nat. Rev. Drug Discov., 2012, 11(9), 675-691.
[http://dx.doi.org/10.1038/nrd3739] [PMID: 22858652]
[4]
Conde, J.; Doria, G.; Baptista, P. Noble metal nanoparticles applications in cancer. J. Drug Deliv., 2012, 2012, 751075
[http://dx.doi.org/10.1155/2012/751075] [PMID: 22007307]
[5]
Wang, C.; Mathiyalagan, R.; Kim, Y.J.; Castro-Aceituno, V.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int. J. Nanomedicine, 2016, 11, 3691-3701.
[http://dx.doi.org/10.2147/IJN.S97181] [PMID: 27570451]
[6]
de Ferranti, S.; Mozaffarian, D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin. Chem., 2008, 54(6), 945-955.
[http://dx.doi.org/10.1373/clinchem.2007.100156] [PMID: 18436717]
[7]
Fedorenko, A.; Lishko, P.V.; Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell, 2012, 151(2), 400-413.
[http://dx.doi.org/10.1016/j.cell.2012.09.010] [PMID: 23063128]
[8]
Rosen, E.D.; Spiegelman, B.M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 2006, 444(7121), 847-853.
[http://dx.doi.org/10.1038/nature05483] [PMID: 17167472]
[9]
Rosen, E.D.; Walkey, C.J.; Puigserver, P.; Spiegelman, B.M. Transcriptional regulation of adipogenesis. Genes Dev., 2000, 14(11), 1293-1307.
[PMID: 10837022]
[10]
Gibbons, G.F.; Khurana, R.; Odwell, A.; Seelaender, M.C. Lipid balance in HepG2 cells: active synthesis and impaired mobilization. J. Lipid Res., 1994, 35(10), 1801-1808.
[PMID: 7852857]
[11]
Cao, P.; Huang, G.; Yang, Q.; Guo, J.; Su, Z. The effect of chitooligosaccharides on oleic acid-induced lipid accumulation in HepG2 cells. Saudi Pharm. J., 2016, 24(3), 292-298.
[http://dx.doi.org/10.1016/j.jsps.2016.04.023] [PMID: 27275117]
[12]
Han, S.; Jung, Y.; Ko, M.; Oh, Y.; Koh, S.; Kim, M.; Oh, M. Phylogenetic relationships of the Dendropanax morbifera and D-trifidus based on PCR-RAPD. Korean J. Genet, 1998, 20, 173-181.
[13]
Chung, I-M.; Kim, M.Y.; Park, W-H.; Moon, H-I. Antiatherogenic activity of Dendropanax morbifera essential oil in rats. Pharmazie, 2009, 64(8), 547-549.
[PMID: 19746846]
[14]
Tan, X.; Ryu, H.K. Effects of Dendropanax morbifera leaf extracts on lipid profiles in mice fed a high-fat and high-cholesterol diet. J. Korean Soc. Food Sci. Nutr, 2015, 44, 641-648.
[http://dx.doi.org/10.3746/jkfn.2015.44.5.641]
[15]
Siddiqi, M.H.; Siddiqi, M.Z.; Kang, S.; Noh, H.Y.; Ahn, S.; Simu, S.Y.; Aziz, M.A.; Sathishkumar, N.; Jiménez Pérez, Z.E.; Yang, D.C. Inhibition of osteoclast differentiation by ginsenoside Rg3 in RAW264. 7 cells via RANKL, JNK and p38 MAPK pathways through a modulation of cathepsin K: An in silico and in vitro study. Phytother. Res., 2015, 29(9), 1286-1294.
[http://dx.doi.org/10.1002/ptr.5374] [PMID: 26059856]
[16]
Siraj, F.M. SathishKumar, N.; Kim, Y.J.; Kim, S.Y.; Yang, D.C. Ginsenoside F2 possesses anti-obesity activity via binding with PPARγ and inhibiting adipocyte differentiation in the 3T3-L1 cell line. J. Enzyme Inhib. Med. Chem., 2015, 30(1), 9-14.
[http://dx.doi.org/10.3109/14756366.2013.871006] [PMID: 24666293]
[17]
Dubon, M.J.; Park, K.S. Substance P enhances the proliferation and migration potential of murine bone marrow-derived mesenchymal stem cell-like cell lines. Exp. Ther. Med., 2015, 9(4), 1185-1191.
[http://dx.doi.org/10.3892/etm.2015.2291] [PMID: 25780407]
[18]
Kim, H-K.; Kim, J.N.; Han, S.N.; Nam, J-H.; Na, H-N.; Ha, T.J. Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutr. Res., 2012, 32(10), 770-777.
[http://dx.doi.org/10.1016/j.nutres.2012.06.008] [PMID: 23146774]
[19]
Wang, Y.; Li, P.; Kong, L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech, 2013, 14(2), 585-592.
[http://dx.doi.org/10.1208/s12249-013-9943-3] [PMID: 23463262]
[20]
Gunn, P.J.; Green, C.J.; Pramfalk, C.; Hodson, L. In vitro cellular models of human hepatic fatty acid metabolism: differences between Huh7 and HepG2 cell lines in human and fetal bovine culturing serum. Physiol. Rep., 2017, 5(24), e13532
[http://dx.doi.org/10.14814/phy2.13532] [PMID: 29263118]
[21]
Parkes, H.A.; Preston, E.; Wilks, D.; Ballesteros, M.; Carpenter, L.; Wood, L.; Kraegen, E.W.; Furler, S.M.; Cooney, G.J. Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo. Am. J. Physiol. Endocrinol. Metab., 2006, 291(4), E737-E744.
[http://dx.doi.org/10.1152/ajpendo.00112.2006] [PMID: 16705061]
[22]
Yan, F.; Wang, Q.; Xu, C.; Cao, M.; Zhou, X.; Wang, T.; Yu, C.; Jing, F.; Chen, W.; Gao, L.; Zhao, J. Peroxisome proliferator-activated receptor α activation induces hepatic steatosis, suggesting an adverse effect. PLoS One, 2014, 9(6), e99245
[http://dx.doi.org/10.1371/journal.pone.0099245] [PMID: 24926685]
[23]
Jiao, M.; Ren, F.; Zhou, L.; Zhang, X.; Zhang, L.; Wen, T.; Wei, L.; Wang, X.; Shi, H.; Bai, L.; Zhang, X.; Zheng, S.; Zhang, J.; Chen, Y.; Han, Y.; Zhao, C.; Duan, Z. Peroxisome proliferator-activated receptor α activation attenuates the inflammatory response to protect the liver from acute failure by promoting the autophagy pathway. Cell Death Dis., 2014, 5, e1397
[http://dx.doi.org/10.1038/cddis.2014.361] [PMID: 25165883]
[24]
Kalpana, D.; Pichiah, P.T.; Sankarganesh, A.; Park, W.S.; Lee, S.M.; Wahab, R.; Cha, Y.S.; Lee, Y.S. Biogenesis of gold nanoparticles using plant powders and assessment of in vitro cytotoxicity in 3T3-L1 cell line. J. Pharm. Innov., 2013, 8, 265-275.
[http://dx.doi.org/10.1007/s12247-013-9166-x]
[25]
Mironava, T.; Hadjiargyrou, M.; Simon, M.; Rafailovich, M.H. Gold nanoparticles cellular toxicity and recovery: adipose derived stromal cells. Nanotoxicology, 2014, 8(2), 189-201.
[http://dx.doi.org/10.3109/17435390.2013.769128] [PMID: 23330784]
[26]
Chen, H.; Ng, J.P.M.; Tan, Y.; McGrath, K.; Bishop, D.P.; Oliver, B.; Chan, Y.L.; Cortie, M.B.; Milthorpe, B.K.; Valenzuela, S.M. Gold nanoparticles improve metabolic profile of mice fed a high-fat diet. J. Nanobiotechnology, 2018, 16(1), 11.
[http://dx.doi.org/10.1186/s12951-018-0338-1] [PMID: 29409496]
[27]
Chen, H.; Ng, J.P.M.; Bishop, D.P.; Milthorpe, B.K.; Valenzuela, S.M. Gold nanoparticles as cell regulators: beneficial effects of gold nanoparticles on the metabolic profile of mice with pre-existing obesity. J. Nanobiotechnology, 2018, 16(1), 88.
[http://dx.doi.org/10.1186/s12951-018-0414-6] [PMID: 30390669]
[28]
Tang, Q-Q.; Otto, T.C.; Lane, M.D. CCAAT/enhancer-binding protein β is required for mitotic clonal expansion during adipogenesis. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 850-855.
[http://dx.doi.org/10.1073/pnas.0337434100] [PMID: 12525691]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy