Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Emerging Role of Mitophagy in Inflammatory Diseases: Cellular and Molecular Episodes

Author(s): Mohamed Adil A.A., Shabnam Ameenudeen, Ashok Kumar, S. Hemalatha, Neesar Ahmed, Nemat Ali, Abdullah F. AlAsmari, Mohammad Aashique and Mohammad Waseem*

Volume 26, Issue 4, 2020

Page: [485 - 491] Pages: 7

DOI: 10.2174/1381612826666200107144810

Price: $65

Abstract

Mitochondria are the crucial regulators for the major source of ATP for different cellular events. Due to damage episodes, mitochondria have been established for a plethora ofalarming signals of stress that lead to cellular deterioration, thereby causing programmed cell death. Defects in mitochondria play a key role in arbitrating pathophysiological machinery with recent evince delineating a constructive role in mitophagy mediated mitochondrial injury. Mitophagy has been known for the eradication of damaged mitochondria via the autophagy process. Mitophagy has been investigated as an evolutionarily conserved mechanism for mitochondrial quality control and homeostasis. Impaired mitophagy has been critically linked with the pathogenesis of inflammatory diseases. Nevertheless, the exact mechanism is not quite revealed, and it is still debatable. The purpose of this review was to investigate the possible role of mitophagy and its associated mechanism in inflammation-mediated diseases at both the cellular and molecular levels.

Keywords: Mitochondria, Mitophagy, Oxidative Stress, Inflammation, Energy Homeostasis, Inflammasomes.

[1]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013 ] [PMID: 24987008]
[2]
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005; 39: 359-407.
[http://dx.doi.org/10.1146/annurev.genet.39.110304.095751] [PMID: 16285865]
[3]
Park CB, Larsson N-G. Mitochondrial DNA mutations in disease and aging. J Cell Biol 2011; 193(5): 809-18.
[http://dx.doi.org/10.1083/jcb.201010024] [PMID: 21606204]
[4]
Kotiadis VN, Duchen MR, Osellame LD. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 2014; 1840(4): 1254-65.
[http://dx.doi.org/10.1016/j.bbagen.2013.10.041] [PMID: 24211250]
[5]
Bohovych I, Chan SSL, Khalimonchuk O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid Redox Signal 2015; 22(12): 977-94.
[http://dx.doi.org/10.1089/ars.2014.6199] [PMID: 25546710]
[6]
Diot A, Morten K, Poulton J. Mitophagy plays a central role in mitochondrial ageing. Mammalian Genome Off J Inter Mammalian Genome Soc 2016; 27: 381-95.
[http://dx.doi.org/10.1007/s00335-016-9651-x]
[7]
Kissová I, Deffieu M, Manon S, Camougrand N. Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 2004; 279(37): 39068-74.
[http://dx.doi.org/10.1074/jbc.M406960200] [PMID: 15247238]
[8]
Kim I, Lemasters JJ. Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. Am J Physiol Cell Physiol 2011; 300(2): C308-17.
[http://dx.doi.org/10.1152/ajpcell.00056.2010] [PMID: 21106691]
[9]
Um J-H, Yun J. Emerging role of mitophagy in human diseases and physiology. BMB Rep 2017; 50(6): 299-307.
[http://dx.doi.org/10.5483/BMBRep.2017.50.6.056] [PMID: 28366191]
[10]
Kondapalli C, Kazlauskaite A, Zhang N, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2012; 2(5)120080
[http://dx.doi.org/10.1098/rsob.120080] [PMID: 22724072]
[11]
Lemasters JJ. Variants of mitochondrial autophagy: types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol 2014; 2: 749-54.
[http://dx.doi.org/10.1016/j.redox.2014.06.004] [PMID: 25009776]
[12]
Redmann M, Dodson M, Boyer-Guittaut M, Darley-Usmar V, Zhang J. Mitophagy mechanisms and role in human diseases. Int J Biochem Cell Biol 2014; 53: 127-33.
[http://dx.doi.org/10.1016/j.biocel.2014.05.010] [PMID: 24842106]
[13]
Gong C, Bauvy C, Tonelli G, et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stemlike/ progenitor cells. Oncogene 2013; 32(18): 2261-2272, 1-11
[http://dx.doi.org/10.1038/onc.2012.252] [PMID: 22733132]
[14]
Porporato PE, Payen VL, Pérez-Escuredo J, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep 2014; 8(3): 754-66.
[http://dx.doi.org/10.1016/j.celrep.2014.06.043] [PMID: 25066121]
[15]
Lubbe S. MHR. Recent advances in parkinson’s disease genetics. J Neurol 2014; 261: 259-66.
[16]
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015; 85(2): 257-73.
[http://dx.doi.org/10.1016/j.neuron.2014.12.007] [PMID: 25611507]
[17]
Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W. PINK1, parkin, and mitochondrial quality control: what can we learn about parkinson’s disease pathobiology? J Parkinsons Dis 2017; 7(1): 13-29.
[http://dx.doi.org/10.3233/JPD-160989] [PMID: 27911343]
[18]
Chen CZ, Ou CY, Wang RH, et al. Association of Egr-1 and autophagy-related gene polymorphism in men with chronic obstructive pulmonary disease. J Formos Med Assoc 2015; 114(8): 750-5.
[http://dx.doi.org/10.1016/j.jfma.2013.07.015] [PMID: 24012056]
[19]
Aggarwal S, Mannam P, Zhang J. Differential regulation of autophagy and mitophagy in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2016; 311(2): L433-52.
[http://dx.doi.org/10.1152/ajplung.00128.2016] [PMID: 27402690]
[20]
Huertas A, Palange P. COPD: a multifactorial systemic disease. Ther Adv Respir Dis 2011; 5(3): 217-24.
[http://dx.doi.org/10.1177/1753465811400490] [PMID: 21429981]
[21]
Zhao J, Li M, Wang Z, et al. Role of PM2.5 in the development and progression of COPD and its mechanisms. Respir Res 2019; 20(1): 120.
[http://dx.doi.org/10.1186/s12931-019-1081-3] [PMID: 31196090]
[22]
Arunachalam G, Sundar IK, Hwang JW, Yao H, Rahman I. Emphysema is associated with increased inflammation in lungs of atherosclerosis-prone mice by cigarette smoke: implications in comorbidities of COPD. J Inflamm (Lond) 2010; 7: 34.
[http://dx.doi.org/10.1186/1476-9255-7-34] [PMID: 20663150]
[23]
Araya J, Tsubouchi K, Sato N, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019; 15(3): 510-26.
[http://dx.doi.org/10.1080/15548627.2018.1532259] [PMID: 30290714]
[24]
Chen J, Dai L, Wang T, He J, Wang Y, Wen F. The elevated CXCL5 levels in circulation are associated with lung function decline in COPD patients and cigarette smoking-induced mouse model of COPD. Ann Med 2019; 51(5-6): 314-29.
[http://dx.doi.org/10.1080/07853890.2019.1639809] [PMID: 31269827]
[25]
Xie Y, He Q, Chen H, Lin Z, Xu Y, Yang C. Crocin ameliorates chronic obstructive pulmonary disease-induced depression via PI3K/Akt mediated suppression of inflammation. Eur J Pharmacol 2019; 862172640
[http://dx.doi.org/10.1016/j.ejphar.2019.172640] [PMID: 31491407]
[26]
Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2016; 138(1): 16-27.
[http://dx.doi.org/10.1016/j.jaci.2016.05.011] [PMID: 27373322]
[27]
Alwis KU, deCastro BR, Morrow JC, Blount BC. Acrolein exposure in U.S. tobacco smokers and non-tobacco users: NHANES 2005-2006. Environ Health Perspect 2015; 123(12): 1302-8.
[http://dx.doi.org/10.1289/ehp.1409251] [PMID: 26024353]
[28]
Wang C, Yang Y, Zhang Y, Liu J, Yao Z, Zhang C. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. Biosci Trends 2019; 12(6): 605-12.
[http://dx.doi.org/10.5582/bst.2018.01263] [PMID: 30584213]
[29]
Gkikas I, Palikaras K, Tavernarakis N. The Role of mitophagy in innate immunity. Front Immunol 2018; 9: 1283.
[http://dx.doi.org/10.3389/fimmu.2018.01283] [PMID: 29951054 ]
[30]
Baldanta S, Fernández-Escobar M, Acín-Perez R, et al. ISG15 governs mitochondrial function in macrophages following vaccinia virus infection. PLoS Pathog 2017; 13(10)e1006651
[http://dx.doi.org/10.1371/journal.ppat.1006651] [PMID: 29077752]
[31]
Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol 2017; 18(5): 488-98.
[http://dx.doi.org/10.1038/ni.3704] [PMID: 28418387]
[32]
Shi R, Guberman M, Kirshenbaum LA. Mitochondrial quality control: the role of mitophagy in aging. Trends Cardiovasc Med 2018; 28(4): 246-60.
[http://dx.doi.org/10.1016/j.tcm.2017.11.008] [PMID: 29287956]
[33]
Markaki M, Palikaras K, Tavernarakis N. Chapter five - novel insights into the anti-aging role of mitophagy international review of cell and molecular biology 340. Academic Press 2018; pp. 169-208.
[34]
Gump JM, Staskiewicz L, Morgan MJ, Bamberg A, Riches DWH, Thorburn A. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol 2014; 16(1): 47-54.
[http://dx.doi.org/10.1038/ncb2886] [PMID: 24316673]
[35]
Song Y, Ding W, Xiao Y, Lu KJ. The progress of mitophagy and related pathogenic mechanisms of the neurodegenerative diseases and tumor. Neurosci J 2015; 2015543758
[http://dx.doi.org/10.1155/2015/543758] [PMID: 26779531]
[36]
Khalil B, El Fissi N, Aouane A, Cabirol-Pol MJ, Rival T, Liévens JC. PINK1-induced mitophagy promotes neuroprotection in Huntington’s disease. Cell Death Dis 2015; 6e1617
[http://dx.doi.org/10.1038/cddis.2014.581] [PMID: 25611391]
[37]
Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res 2012; 110(8): 1125-38.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.246108] [PMID: 22499902]
[38]
Chen Y, Dorn GW II. PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria. Science 2013; 340(6131): 471-5.
[http://dx.doi.org/10.1126/science.1231031] [PMID: 23620051]
[39]
Bhansali S, Bhansali A, Walia R, Saikia UN, Dhawan V. Alterations in mitochondrial oxidative stress and mitophagy in subjects with prediabetes and type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2017; 8: 347.
[http://dx.doi.org/10.3389/fendo.2017.00347] [PMID: 29326655]
[40]
Mercuri LG. Osteoarthritis, osteoarthrosis, and idiopathic condylar resorption Oral Maxillofac Surg Clin North Am 2008; 20(2): 169- 183, v-vi
[http://dx.doi.org/10.1016/j.coms.2007.12.007] [PMID: 18343323]
[41]
Ansari MY, Khan NM, Ahmad I, Haqqi TM. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes. Osteoarthritis Cartilage 2018; 26(8): 1087-97.
[http://dx.doi.org/10.1016/j.joca.2017.07.020] [PMID: 28801211]
[42]
Pandurangan AK, Mohebali N, Hasanpourghadi M, Looi CY, Mustafa MR, Mohd Esa N. Boldine suppresses dextran sulfate sodium-induced mouse experimental colitis: NF-κB and IL-6/STAT3 as potential targets. Biofactors 2016; 42(3): 247-58.
[PMID: 26891685]
[43]
Liu C, Wang J, Yang Y, et al. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochem Pharmacol 2018; 155: 366-79.
[http://dx.doi.org/10.1016/j.bcp.2018.07.010] [PMID: 30012462]
[44]
Zhong Z, Umemura A, Sanchez-Lopez E, et al. NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria. Cell 2016; 164(5): 896-910.
[http://dx.doi.org/10.1016/j.cell.2015.12.057] [PMID: 26919428]
[45]
Mai CT, Wu MM, Wang CL, Su ZR, Cheng YY, Zhang XJ. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Mol Immunol 2019; 105: 76-85.
[http://dx.doi.org/10.1016/j.molimm.2018.10.015] [PMID: 30496979]
[46]
Kepp O, Galluzzi L, Kroemer G. Mitochondrial control of the NLRP3 inflammasome. Nat Immunol 2011; 12(3): 199-200.
[http://dx.doi.org/10.1038/ni0311-199] [PMID: 21321591]
[47]
Callejas BE, Mendoza-Rodríguez MG, Villamar-Cruz O, et al. Helminth-derived molecules inhibit colitis-associated colon cancer development through NF-κB and STAT3 regulation. Int J Cancer 2019; 145(11): 3126-39.
[http://dx.doi.org/10.1002/ijc.32626] [PMID: 31407335]
[48]
Barfeh ZS, Beigoli S, Marouzi S, Rad AS, Asoodeh A, Chamani J. Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: binary and ternary systems. J Solution Chem 2017; 46(2): 488-504.
[http://dx.doi.org/10.1007/s10953-017-0590-2]
[49]
Yao D, Dong M, Dai C, Wu S. Inflammation and inflammatory cytokine contribute to the initiation and development of ulcerative colitis and its associated cancer. Inflamm Bowel Dis 2019; 25(10): 1595-602.
[http://dx.doi.org/10.1093/ibd/izz149] [PMID: 31287863]
[50]
Zolfagharzadeh M, Pirouzi M, Asoodeh A, Saberi MR, Chamani J. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. J Biomol Struct Dyn 2014; 32(12): 1936-52.
[http://dx.doi.org/10.1080/07391102.2013.843062] [PMID: 24125112]
[51]
Sanee H, Asoodeh A, Toosi S, Chamani J. Multi-spectroscopic Investigations of aspirin and colchicine interactions with human hemoglobin: binary and ternary systems. J Solution Chem 2011; 40: 1905-31.
[http://dx.doi.org/10.1007/s10953-011-9766-3]
[52]
Guo W, Sun Y, Liu W, et al. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy 2014; 10(6): 972-85.
[http://dx.doi.org/10.4161/auto.28374] [PMID: 24879148]
[53]
Mokaberi P, Reyhani V, Amiri-Tehranizadeh Z, Saberi MR, Beigoli S. New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: binary and ternary approaches. New J Chem 2019; 43: 8132-45.
[http://dx.doi.org/10.1039/C9NJ01048C]
[54]
Allen IC, TeKippe EM, Woodford RM, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 2010; 207(5): 1045-56.
[http://dx.doi.org/10.1084/jem.20100050] [PMID: 20385749]
[55]
Kamshad M, Jahanshah Talab M, Beigoli S, Sharifirad A, Chamani J. Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. J Biomol Struct Dyn 2019; 37(8): 2030-40.
[http://dx.doi.org/10.1080/07391102.2018.1475258] [PMID: 29757090]
[56]
Sattar Z, Saberi MR, Chamani J. Determination of LMF binding site on a HSA-PPIX complex in the presence of human holo transferrin from the viewpoint of drug loading on proteins. PLoS One 2014; 9(1) e84045
[http://dx.doi.org/10.1371/journal.pone.0084045] [PMID: 24392106]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy