Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Design of Potential IKK-β Inhibitors using Molecular Docking and Molecular Dynamics Techniques for their Anti-cancer Potential

Author(s): Salam P. Singh*, Iftikar Hussain, Bolin K. Konwar, Ramesh C. Deka and Chingakham B. Singh

Volume 17, Issue 1, 2021

Published on: 02 January, 2020

Page: [83 - 94] Pages: 12

DOI: 10.2174/1573409916666200102121505

Price: $65

Abstract

Aim and Objective: To evaluate a set of seventy phytochemicals for their potential ability to bind the inhibitor of nuclear factor kappaB kinase beta (IKK-β) which is a prime target for cancer and inflammatory diseases.

Materials and Methods: Seventy phytochemicals were screened against IKK-β enzyme using DFT-based molecular docking technique and the top docking hits were carried forward for molecular dynamics (MD) simulation protocols. The ADME-Toxicity analysis was also carried out for the top docking hits.

Results: Sesamin, matairesinol and resveratrol were found to be the top docking hits with a total score of -413 kJ/mol, -398.11 kJ/mol and 266.73 kJ/mol, respectively. Glu100 and Gly102 were found to be the most common interacting residues. The result from MD simulation observed a stable trajectory with a binding free energy of -107.62 kJ/mol for matairesinol, -120.37 kJ/mol for sesamin and -40.56 kJ/mol for resveratrol. The ADME-Toxicity prediction observed that these compounds fall within the permissible area of Boiled-Egg and it does not violate any rule for pharmacological criteria, drug-likeness etc.

Conclusion: The study interprets that dietary phytochemicals are potent inhibitors of IKK-β enzyme with favorable binding affinity and less toxic effects. In fact, there is a gradual rise in the use of plant-derived molecules because of its lesser side effects compared to chemotherapy. The study has also provided an insight by which the phytochemicals inhibited the IKK-β enzyme. The investigation would also provide in understanding the inhibitory mode of certain dietary phytochemicals in treating cancer.

Keywords: IKK-β, MD simulation, docking, cancer, DFT, enzyme.

« Previous
Graphical Abstract
[1]
Israël, A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol., 2010, 2(3)a000158
[http://dx.doi.org/10.1101/cshperspect.a000158] [PMID: 20300203]
[2]
Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front. Mol. Neurosci., 2015, 8, 77.
[http://dx.doi.org/10.3389/fnmol.2015.00077] [PMID: 26733801]
[3]
Lee, D.F.; Hung, M.C. Advances in targeting IKK and IKK-related kinases for cancer therapy. Clin. Cancer Res., 2008, 14(18), 5656-5662.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0123] [PMID: 18794072]
[4]
Xu, G.; Lo, Y.C.; Li, Q.; Napolitano, G.; Wu, X.; Jiang, X.; Dreano, M.; Karin, M.; Wu, H. Crystal structure of inhibitor of κB kinase β. Nature, 2011, 472(7343), 325-330.
[http://dx.doi.org/10.1038/nature09853] [PMID: 21423167]
[5]
Chariot, A. The NF-kappaB-independent functions of IKK subunits in immunity and cancer. Trends Cell Biol., 2009, 19(8), 404-413.
[http://dx.doi.org/10.1016/j.tcb.2009.05.006] [PMID: 19648011]
[6]
Ghosh, S.; Hayden, M.S. New regulators of NF-kappaB in inflammation. Nat. Rev. Immunol., 2008, 8(11), 837-848.
[http://dx.doi.org/10.1038/nri2423] [PMID: 18927578]
[7]
Vallabhapurapu, S.; Karin, M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol., 2009, 27, 693-733.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132641] [PMID: 19302050]
[8]
Albensi, B.C.; Mattson, M.P. Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse, 2000, 35(2), 151-159.
[http://dx.doi.org/10.1002/(SICI)1098-2396(200002)35:2<151:AID-SYN8>3.0.CO;2-P] [PMID: 10611641]
[9]
Singh, A.K.; Sharma, N.; Ghosh, M.; Park, Y.H.; Jeong, D.K. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells. Crit. Rev. Food Sci. Nutr., 2017, 57(16), 3449-3463.
[http://dx.doi.org/10.1080/10408398.2015.1129310] [PMID: 26853447]
[10]
Veeraraghavan, J.; Natarajan, M.; Lagisetty, P.; Awasthi, V.; Herman, T.S.; Aravindan, N. Impact of curcumin, raspberry extract, and neem leaf extract on rel protein-regulated cell death/radiosensitization in pancreatic cancer cells. Pancreas, 2011, 40(7), 1107-1119.
[http://dx.doi.org/10.1097/MPA.0b013e31821f677d] [PMID: 21697760]
[11]
Sadeghnia, H.R.; Ghorbani Hesari, T.; Mortazavian, S.M.; Mousavi, S.H.; Tayarani-Najaran, Z.; Ghorbani, A. Viola tricolor induces apoptosis in cancer cells and exhibits antiangiogenic activity on chicken chorioallantoic membrane. BioMed Res. Int., 2014, 2014625792
[http://dx.doi.org/10.1155/2014/625792] [PMID: 25243166]
[12]
Tamrat, T.A. A review on traditionally used medicinal plants/herbs for cancer therapy in ethiopia: current status, challenge and future perspectives. Organic Chem. Curr. Res., 2018, 7, 192.
[13]
Wang, H.; Khor, T.O.; Shu, L.; Su, Z.Y.; Fuentes, F.; Lee, J.H.; Kong, A.N. Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem., 2012, 12(10), 1281-1305.
[http://dx.doi.org/10.2174/187152012803833026] [PMID: 22583408]
[14]
Weng, C.J.; Yen, G.C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev., 2012, 38(1), 76-87.
[http://dx.doi.org/10.1016/j.ctrv.2011.03.001] [PMID: 21481535]
[15]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[16]
Iczkowski, R.P.; Margrave, J.L. Electronegativity. J. Am. Chem. Soc., 1961, 83, 3547-3551.
[http://dx.doi.org/10.1021/ja01478a001]
[17]
Parr, R.G.; Pearson, R.G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 1983, 105, 7512-7516.
[http://dx.doi.org/10.1021/ja00364a005]
[18]
Koopmans, T.A. About the assignment of wave functions and eigenvalues to the individual electrons of an atom. Physica, 1934, 1, 104-113.
[http://dx.doi.org/10.1016/S0031-8914(34)90011-2]
[19]
Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc., 1999, 121, 1922-1924.
[http://dx.doi.org/10.1021/ja983494x]
[20]
Gamble, C.; McIntosh, K.; Scott, R.; Ho, K.H.; Plevin, R.; Paul, A. Inhibitory kappa B Kinases as targets for pharmacological regulation. Br. J. Pharmacol., 2012, 165(4), 802-819.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01608.x] [PMID: 21797846]
[21]
Prescott, J.A.; Cook, S.J. Targeting IKKβ in cancer: challenges and opportunities for the therapeutic utilisation of IKKβ inhibitors. Cells, 2018, 7(9)E115
[http://dx.doi.org/10.3390/cells7090115] [PMID: 30142927]
[22]
Matić, S.; Jadrijević-Mladar Takač, M.; Barbarić, M.; Lučić, B.; Gall Trošelj, K.; Stepanić, V. The influence of in vivo metabolic modifications on ADMET properties of green tea catechins-in silico analysis. J. Pharm. Sci., 2018, 107(11), 2957-2964.
[http://dx.doi.org/10.1016/j.xphs.2018.07.026] [PMID: 30077700]
[23]
Herrington, F.D.; Carmody, R.J.; Goodyear, C.S. Modulation of NF-κB signaling as a therapeutic target in autoimmunity. J. Biomol. Screen., 2016, 21(3), 223-242.
[http://dx.doi.org/10.1177/1087057115617456] [PMID: 26597958]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy