Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry


ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Radio-thermo-sensitivity Induced by Gold Magnetic Nanoparticles in the Monolayer Culture of Human Prostate Carcinoma Cell Line DU145

Author(s): Zhila Rajaee, Samideh Khoei*, Alireza Mahdavian, Sakine Shirvalilou*, Seied R. Mahdavi and Marzieh Ebrahimi

Volume 20 , Issue 3 , 2020

Page: [315 - 324] Pages: 10

DOI: 10.2174/1871520620666191216113052

Price: $65


Background and Objective: Prostate cancer is the second cause of death in men worldwide. In this study, the cytotoxic effects of PLGA polymer-coated gold Magnetic Nanoparticles (MGNPs), as a novel treatment to enhance radiation and thermal sensitivity in the presence of hyperthermia (43°C) and electron beam, on DU145 prostate cancer cells were investigated.

Methods: Nanoparticles were characterized using TEM, DLS, XRD and SAED methods. MGNPs entrance into the cells was determined using Prussian blue staining and TEM. Furthermore, the cytotoxic effects of combinatorial treatment modalities were assessed by applying colony and sphere formation assay.

Results: Our results revealed that the decrease of colony and sphere numbers after combinatorial treatment of hyperthermia and radiation in the presence of nanoparticles was significantly higher than the other treatment groups (P<0.05). This treatment method proved that it has the capability of eliminating most of the DU145 cells (80-100%), and increased the value of the linear parameter (α) to 4.86 times.

Conclusion: According to the study, magnetic gold nanoparticles, in addition to having a high atomic number, can effectively transmit heat produced inside them to the adjacent regions under hyperthermia, which increases the effects of radio-thermosensitivity, respectively.

Keywords: Prostate cancer, gold magnetite nanoparticles, electron radiation, hyperthermia, sphere formation assay, LQ model.

Graphical Abstract
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[] [PMID: 26742998]
Fan, X.; Liu, S.; Su, F.; Pan, Q.; Lin, T. Effective enrichment of prostate cancer stem cells from spheres in a suspension culture system. Urol. Oncol., 2012, 30(3), 314-318.
[] [PMID: 20843707]
Jafarian Dehkordi, F.; Shakeri-Zadeh, A.; Khoei, S.; Ghadiri, H.; Shiran, M-B. Thermal distribution of ultrasound waves in prostate tumor: Comparison of computational modeling with in vivo experiments. ISRN Biomathematics., 2013, 2013 Article ID 428659
Su, B.; Shi, B.; Tang, Y.; Guo, Z.; Yu, X.; He, X.; Li, X.; Gao, X.; Zhou, L. HMGN5 knockdown sensitizes prostate cancer cells to ionizing radiation. Prostate, 2015, 75(1), 33-44.
[] [PMID: 25307178]
Mazur, C.M.; Tate, J.A.; Strawbridge, R.R.; Gladstone, D.J.; Hoopes, P.J. Iron oxide nanoparticle enhancement of radiation cytotoxicity. Proc. SPIE-Int. Soc. Opt. Eng., 2013, 8584, p. 85840J..
[] [PMID: 25301998]
Woodward, W.A.; Bristow, R.G. Radiosensitivity of cancer-initiating cells and normal stem cells (or what the Heisenberg uncertainly principle has to do with biology). Semin. Radiat. Oncol., 2009, 19(2), 87-95.
[] [PMID: 19249646]
Babaei, M.; Ganjalikhani, M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. Bioimpacts, 2014, 4(1), 15-20.
[PMID: 24790894]
Autorino, R.; Di Lorenzo, G.; Damiano, R.; De Placido, S.; D’Armiento, M. Role of chemotherapy in hormone-refractory prostate cancer. Old issues, recent advances and new perspectives. Urol. Int., 2003, 70(1), 1-14.
[] [PMID: 12566808]
Lehmann, J.; Natarajan, A.; Denardo, G.L.; Ivkov, R.; Foreman, A.R.; Catapano, C.; Mirick, G.; Quang, T.; Gruettner, C.; Denardo, S.J. Short communication: Nanoparticle thermotherapy and external beam radiation therapy for human prostate cancer cells. Cancer Biother. Radiopharm., 2008, 23(2), 265-271.
[] [PMID: 18454696]
Asadi, L.; Shirvalilou, S.; Khoee, S.; Khoei, S. Cytotoxic effect of 5-fluorouracil-loaded polymer-coated magnetite nanographene oxide combined with radiofrequency. Anticancer. Agents Med. Chem., 2018, 18(8), 1148-1155.
Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859), 105.
Su, X.Y.; Liu, P.D.; Wu, H.; Gu, N. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol. Med., 2014, 11(2), 86-91.
[PMID: 25009750]
Kargar, S.; Khoei, S.; Khoee, S.; Shirvalilou, S.; Mahdavi, S.R. Evaluation of the combined effect of NIR laser and ionizing radiation on cellular damages induced by IUdR-loaded PLGA-coated Nano-graphene oxide. Photodiagn. Photodyn. Ther., 2018, 21, 91-97.
[] [PMID: 29155336]
Burger, N.; Biswas, A.; Barzan, D.; Kirchner, A.; Hosser, H.; Hausmann, M.; Hildenbrand, G.; Herskind, C.; Wenz, F.; Veldwijk, M.R. A method for the efficient cellular uptake and retention of small modified gold nanoparticles for the radiosensitization of cells. Nanomedicine (Lond.), 2014, 10(6), 1365-1373.
[] [PMID: 24674970]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[] [PMID: 22010024]
Her, S.; Jaffray, D.A.; Allen, C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev., 2017, 109, 84-101.
[] [PMID: 26712711]
Lin, Y.; McMahon, S.J.; Scarpelli, M.; Paganetti, H.; Schuemann, J. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: A Monte Carlo simulation. Phys. Med. Biol., 2014, 59(24), 7675-7689.
[] [PMID: 25415297]
Rezaie, P.; Khoei, S.; Khoee, S.; Shirvalilou, S.; Mahdavi, S.R. Evaluation of combined effect of hyperthermia and ionizing radiation on cytotoxic damages induced by IUdR-loaded PCL-PEG-coated magnetic nanoparticles in spheroid culture of U87MG glioblastoma cell line. Int. J. Radiat. Biol., 2018, 94(11), 1027-1037.
[] [PMID: 29985733]
Thomas, L.A.; Dekker, L.; Kallumadil, M.; Southern, P.; Wilson, M.; Nair, S.P.; Pankhurst, Q.A.; Parkin, I.P. Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J. Mater. Chem., 2009, 19(36), 6529-6535.
Jia, T-T.; Yang, G.; Mo, S-J.; Wang, Z-Y.; Li, B-J.; Ma, W.; Guo, Y-X.; Chen, X.; Zhao, X.; Liu, J-Q.; Zang, S.Q. Atomically precise gold-levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy. ACS Nano, 2019, 13(7), 8320-8328.
[] [PMID: 31241895]
Chen, S.F.; Chang, Y.C.; Nieh, S.; Liu, C.L.; Yang, C.Y.; Lin, Y.S. Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PLoS One, 2012, 7(2) e31864
[] [PMID: 22359637]
Rajaee, Z.; Khoei, S.; Mahdavi, S.R.; Ebrahimi, M.; Shirvalilou, S.; Mahdavian, A. Evaluation of the effect of hyperthermia and electron radiation on prostate cancer stem cells. Radiat. Environ. Biophys., 2018, 57(2), 133-142.
[] [PMID: 29453555]
Mahdavian, A.R.; Mirrahimi, M.A-S. Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem. Eng. J., 2010, 159(1-3), 264-271.
Ashjari, M.; Khoee, S.; Mahdavian, A.R. A multiple emulsion method for loading 5-fluorouracil into a magnetite-loaded nanocapsule: a physicochemical investigation. Polym. Int., 2012, 61(5), 850-859.
Franken, N.A.; Barendsen, G.W. Enhancement of radiation effectiveness by hyperthermia and incorporation of halogenated pyrimidines at low radiation doses as compared with high doses: Implications for mechanisms. Int. J. Radiat. Biol., 2014, 90(4), 313-317.
[] [PMID: 24460134]
Shirvalilou, S.; Khoei, S.; Khoee, S.; Raoufi, N.J.; Karimi, M.R.; Shakeri-Zadeh, A. Development of a magnetic nano-graphene oxide carrier for improved glioma-targeted drug delivery and imaging: In vitro and in vivo evaluations. Chem. Biol. Interact., 2018, 295, 97-108.
[] [PMID: 30170108]
Mohammadi, S.; Khoei, S.; Mahdavi, S.R. The combination effect of poly (lactic-co-glycolic acid) coated iron oxide nanoparticles as 5-fluorouracil carrier and X-ray on the level of DNA damages in the DU 145 human prostate carcinoma cell line. J. Bionanosci., 2012, 6(1), 23-27.
Strojan, K.; Leonardi, A.; Bregar, V.B.; Križaj, I.; Svete, J.; Pavlin, M. Dispersion of nanoparticles in different media importantly determines the composition of their protein corona. PLoS One, 2017, 12(1) e0169552
[]] [PMID: 28052135]
Chithrani, D.B.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.; Bristow, R.G.; Hill, R.P.; Jaffray, D.A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res., 2010, 173(6), 719-728.
[] [PMID: 20518651]
Mohammad, F.; Balaji, G.; Weber, A.; Uppu, R.M.; Kumar, C.S. Influence of gold nanoshell on hyperthermia of superparamagnetic iron oxide nanoparticles. J. Phys. Chem. C Nanomater. Interfaces, 2010, 114(45), 19194-19201.
[] [PMID: 21103390]
Chung, R-J.; Wang, H-Y.; Wu, K-T. Preparation and characterization of Fe-Au alloy nanoparticles for hyperthermia application. J. Med. Biol. Eng., 2014, 34(3), 251-255.
Neshastehriz, A.; Khosravi, Z.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold-coated iron oxide nanoparticles trigger apoptosis in the process of thermo-radiotherapy of U87-MG human glioma cells. Radiat. Environ. Biophys., 2018, 57(4), 405-418.
[] [PMID: 30203233]
Wang, C.; Jiang, Y.; Li, X.; Hu, L. Thioglucose-bound gold nanoparticles increase the radiosensitivity of a triple-negative breast cancer cell line (MDA-MB-231). Breast Cancer, 2015, 22(4), 413-420.
[] [PMID: 24114595]
Mousavi, M.; Nedaei, H.A.; Khoei, S.; Eynali, S.; Khoshgard, K.; Robatjazi, M.; Iraji Rad, R. Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons. Int. J. Radiat. Biol., 2017, 93(2), 214-221.
[] [PMID: 27705054]
Coulter, J.A.; Jain, S.; Butterworth, K.T.; Taggart, L.E.; Dickson, G.R.; McMahon, S.J.; Hyland, W.B.; Muir, M.F.; Trainor, C.; Hounsell, A.R.; O’Sullivan, J.M.; Schettino, G.; Currell, F.J.; Hirst, D.G.; Prise, K.M. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int. J. Nanomed, 2012, 7, 2673-2685.
[] [PMID: 22701316]
Lin, Y.; McMahon, S.J.; Paganetti, H.; Schuemann, J. Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Phys. Med. Biol., 2015, 60(10), 4149-4168.
[] [PMID: 25953956]
Khoei, S.; Mahdavi, S.R.; Fakhimikabir, H.; Shakeri-Zadeh, A.; Hashemian, A. The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int. J. Radiat. Biol., 2014, 90(5), 351-356.
[] [PMID: 24475739]
Azzam, E.I.; Jay-Gerin, J-P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett., 2012, 327(1-2), 48-60.
[] [PMID: 22182453]
Geng, F.; Song, K.; Xing, J.Z.; Yuan, C.; Yan, S.; Yang, Q.; Chen, J.; Kong, B. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology, 2011, 22(28) 285101
[] [PMID: 21654036]
Xu, W.; Luo, T.; Pang, B.; Li, P.; Zhou, C.; Huang, P.; Zhang, C.; Ren, Q.; Hu, W.; Fu, S. The radiosensitization of melanoma cells by gold nanorods irradiated with MV X-ray. Nano Biomed. Eng., 2012, 4(1), 6-11.
Esmaelbeygi, E.; Khoei, S.; Khoee, S.; Eynali, S. Role of iron oxide core of polymeric nanoparticles in the thermosensitivity of colon cancer cell line HT-29. Int. J. Hyperthermia, 2015, 31(5), 489-497.
[] [PMID: 25960148]
Jordan, A.; Wust, P.; Scholz, R.; Tesche, B.; Fähling, H.; Mitrovics, T.; Vogl, T.; Cervós-Navarro, J.; Felix, R. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int. J. Hyperthermia, 1996, 12(6), 705-722.
[] [PMID: 8950152]
Havemann, J.; Luinenburg, M.; Wondergem, J.; Hart, A.A. Effects of hyperthermia on the linear and quadratic parameters of the radiation survival curve of mammalian cells: influence of thermotolerance. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1987, 51(3), 561-565.
[] [PMID: 3494704]
Prasad, B.; Kim, S.; Cho, W.; Kim, J.K.; Kim, Y.A.; Kim, S.; Wu, H.G. Quantitative estimation of the equivalent radiation dose escalation using radiofrequency hyperthermia in mouse xenograft models of human lung cancer. Sci. Rep., 2019, 9(1), 3942.
[] [PMID: 30850669]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy