Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Gel-based Microemulsion Design and Evaluation for Topical Application of Rivastigmine

Author(s): Chih-Wen Fang, Ling-Chun Tsai , Yaw-Syan Fu, Ting-Yu Cheng and Pao-Chu Wu*

Volume 21, Issue 4, 2020

Page: [298 - 304] Pages: 7

DOI: 10.2174/1389201020666191113144636

Price: $65

Abstract

Objective: The aim of the present study was to design nanocarriers for the topical application of rivastigmine.

Methods: The effect of cosurfactants, hydrophilic gel and loading amount on the permeability of rivastigmine through rat skin was evaluated. Skin irritation tests and stability tests were performed to evaluate the utility of tested formulations.

Results: The results showed that the microemulsion formation and characteristics of drug-loaded formulations were related to many parameters of the components. When using microemulsion systems as a vehicle, the permeation rate remarkably increased about 13.2~24.3-fold and the lag time was significantly shortened from 24 h to 4.7 h. Formulations containing a cosurfactant of Diethylene Glycol Monobutyl Ether (DEGBE) showed higher enhancement effect, while increasing the loading dose from 0.5% to 5% further increased the flux about 2.1-fold and shortened the lag time.

Conclusion: The drug-loaded experimental formulation did not cause skin irritation and had good stability at 20ºC and 40ºC storage for at least 3 months. The result showed that gel-based microemulsion formulation could be a promising approach for topical administration.

Keywords: Rivastigmine, microemulsion, stability, skin irritation, diethylene glycol monobutyl ether, hydrophilic gel.

Graphical Abstract
[1]
Polinsky, R.J. Clinical pharmacology of rivastigmine: A new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin. Ther., 1998, 20(4), 634-647.
[http://dx.doi.org/10.1016/S0149-2918(98)80127-6] [PMID: 9737824]
[2]
Hossain, M.; Jhee, S.S.; Shiovitz, T.; McDonald, C.; Sedek, G.; Pommier, F.; Cutler, N.R. Estimation of the absolute bioavailability of rivastigmine in patients with mild to moderate dementia of the Alzheimer’s type. Clin. Pharmacokinet., 2002, 41(3), 225-234.
[http://dx.doi.org/10.2165/00003088-200241030-00006] [PMID: 11929322]
[3]
Jann, M.W. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. Pharmacotherapy, 2000, 20(1), 1-12.
[http://dx.doi.org/10.1592/phco.20.1.1.34664] [PMID: 10641971]
[4]
Calatayud-Pascual, M.A.; Balaguer-Fernández, C.; Serna-Jiménez, C.E.; Del Rio-Sancho, S.; Femenía-Font, A.; Merino, V.; López-Castellano, A. Effect of iontophoresis on in vitro transdermal absorption of almotriptan. Int. J. Pharm., 2011, 416(1), 189-194.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.039] [PMID: 21736929]
[5]
Donnelly, R.F.; Morrow, D.I.; McCarron, P.A.; Woolfson, A.D.; Morrissey, A.; Juzenas, P.; Juzeniene, A.; Iani, V.; McCarthy, H.O.; Moan, J. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy. J. Control. Release, 2008, 129, 154-162.
[6]
Femenía-Font, A.; Balaguer-Fernández, C.; Merino, V.; López-Castellano, A. Iontophoretic transdermal delivery of sumatriptan: Effect of current density and ionic strength. J. Pharm. Sci., 2005, 94(10), 2183-2186.
[http://dx.doi.org/10.1002/jps.20447] [PMID: 16136550]
[7]
Lim, D.J.; Vines, J.B.; Park, H.; Lee, S.H. Microneedles: A versatile strategy for transdermal delivery of biological molecules. Int. J. Biologic. Macromol, 2017, S0141-8130, 33217-33218.
[8]
Pandita, D.; Kumar, S.; Poonia, N.; Lather, V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int., 2014, 62, 1165-1174.
[http://dx.doi.org/10.1016/j.foodres.2014.05.059]
[9]
Qumbar, M.; Ameeduzzafar, S.S.; Imam, S.S.; Ali, J.; Ahmad, J.; Ali, A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity. Biomed. Pharmacother., 2017, 93, 255-266.
[http://dx.doi.org/10.1016/j.biopha.2017.06.043] [PMID: 28738502]
[10]
Scognamiglio, I.; De Stefano, D.; Campani, V.; Mayol, L.; Carnuccio, R.; Fabbrocini, G.; Ayala, F.; La Rotonda, M.I.; De Rosa, G. Nanocarriers for topical administration of resveratrol: A comparative study. Int. J. Pharm., 2013, 440(2), 179-187.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.009] [PMID: 22909994]
[11]
Azeem, A.; Ahmad, F.J.; Khar, R.K.; Talegaonkar, S. Nanocarrier for the transdermal delivery of an antiparkinsonian drug. AAPS PharmSciTech, 2009, 10(4), 1093-1103.
[http://dx.doi.org/10.1208/s12249-009-9306-2] [PMID: 19757079]
[12]
Craparo, E.F.; Pitarresi, G.; Bondì, M.L.; Casaletto, M.P.; Licciardi, M.; Giammona, G. A nanoparticulate drug-delivery system for rivastigmine: Physico-chemical and in vitro biological characterization. Macromol. Biosci., 2008, 8(3), 247-259.
[http://dx.doi.org/10.1002/mabi.200700165] [PMID: 18041108]
[13]
Pagar, K.; Vavia, P. Rivastigmine-loaded L-lactide-depsipeptide polymeric nanoparticles: Decisive formulation variable optimization. Sci. Pharm., 2013, 81(3), 865-885.
[http://dx.doi.org/10.3797/scipharm.1211-20] [PMID: 24106679]
[14]
Tsai, M.J.; Huang, Y.B.; Fang, J.W.; Fu, Y.S.; Wu, P.C. Preparation and evaluation of submicron-carriers for naringenin topical application. Int. J. Pharm., 2015, 481(1-2), 84-90.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.034] [PMID: 25615985]
[15]
Tsai, M.J.; Huang, Y.B.; Fang, J.W.; Fu, Y.S.; Wu, P.C. preparation and characterization of naringenin-loaded elastic liposomes for topical application. PLoS One, 2015, 10(7), e0131026
[http://dx.doi.org/10.1371/journal.pone.0131026] [PMID: 26158639]
[16]
Li, H.; Pan, T.; Cui, Y.; Li, X.; Gao, J.; Yang, W.; Shen, S. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique. Int. J. Nanomedicine, 2016, 11, 3777-3788.
[http://dx.doi.org/10.2147/IJN.S105419] [PMID: 27540291]
[17]
Sharma, G.; Dhankar, G.; Thakur, K.; Raza, K.; Katare, O.P. Benzyl benzoate-loaded microemulsion for topical applications: Enhanced dermatokinetic profile and better delivery promises. AAPS PharmSciTech, 2016, 17(5), 1221-1231.
[http://dx.doi.org/10.1208/s12249-015-0464-0] [PMID: 26669889]
[18]
Ita, K. Progress in the use of microemulsions for transdermal and dermal drug delivery. Pharm. Dev. Technol., 2016, 1-9.
[PMID: 26931453]
[19]
Ghate, V.M.; Lewis, S.A.; Prabhu, P.; Dubey, A.; Patel, N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur. J. Pharm. Biopharm., 2016, 108, 253-261.https://www.sciencedirect.com/science/article/pii/S0939641116303861?via%3Dihub
[PMID: 27519827]
[20]
Thakkar, P.J.; Madan, P.; Lin, S. Transdermal delivery of diclofenac using water-in-oil microemulsion: Formulation and mechanistic approach of drug skin permeation. Pharm. Dev. Technol., 2014, 19(3), 373-384.
[http://dx.doi.org/10.3109/10837450.2013.788658] [PMID: 23634780]
[21]
Kumar, R.; Sinha, V.R. Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf. B Biointerfaces, 2014, 117, 82-88.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.007] [PMID: 24632034]
[22]
Shinde, U.A.; Modani, S.H.; Singh, K.H. Design and development of repaglinide microemulsion gel for transdermal delivery. AAPS PharmSciTech, 2018, 19(1), 315-325.
[http://dx.doi.org/10.1208/s12249-017-0811-4] [PMID: 28717973]
[23]
Amini, H.; Ahmadiani, A. High-performance liquid chromatographic determination of rivastigmine in human plasma for application in pharmacokinetic studies. Iran. J. Pharm. Res., 2010, 9(2), 115-121.
[PMID: 24363716]
[24]
Frankfort, S.V.; Ouwehand, M.; van Maanen, M.J.; Rosing, H.; Tulner, L.R.; Beijnen, J.H. A simple and sensitive assay for the quantitative analysis of rivastigmine and its metabolite NAP 226-90 in human EDTA plasma using coupled liquid chromatography and tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2006, 20(22), 3330-3336.
[http://dx.doi.org/10.1002/rcm.2737] [PMID: 17044120]
[25]
Kibbe, A.H. Handbook of pharmaceutical excipients, 3rd ed; Pharmaceutical Press: London, 2000.
[26]
Tsai, M.J.; Fu, Y.S.; Lin, Y.H.; Huang, Y.B.; Wu, P.C. The effect of nanoemulsion as a carrier of hydrophilic compound for transdermal delivery. PLoS One, 2014, 9(7), e102850
[http://dx.doi.org/10.1371/journal.pone.0102850] [PMID: 25068531]
[27]
Zhang, J.; Michniak-Kohn, B.B. Investigation of microemulsion and microemulsion gel formulations for dermal delivery of clotrimazole. Int. J. Pharm., 2018, 536(1), 345-352.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.041] [PMID: 29170117]
[28]
Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev., 2000, 45(1), 89-121.
[http://dx.doi.org/10.1016/S0169-409X(00)00103-4] [PMID: 11104900]
[29]
Huang, C.Y.; Ting, W.J.; Huang, C.Y.; Yang, J.Y.; Lin, W.T. Resveratrol attenuated hydrogen peroxide-induced myocardial apoptosis by autophagic flux. Food Nutr. Res., 2016, 60, 30511.
[http://dx.doi.org/10.3402/fnr.v60.30511] [PMID: 27211317]
[30]
Kohli, A.K.; Alpar, H.O. Potential use of nanoparticles for transcutaneous vaccine delivery: Effect of particle size and charge. Int. J. Pharm., 2004, 275(1-2), 13-17.
[http://dx.doi.org/10.1016/j.ijpharm.2003.10.038] [PMID: 15081134]
[31]
Zhang, Y.T.; Li, Z.; Zhang, K.; Zhang, H.Y.; He, Z.H.; Xia, Q.; Zhao, J.H.; Feng, N.P. Co-delivery of evodiamine and rutaecarpine in a microemulsion-based hyaluronic acid hydrogel for enhanced analgesic effects on mouse pain models. Int. J. Pharm., 2017, 528(1-2), 100-106.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.064] [PMID: 28571904]
[32]
Chen, H.; Chang, X.; Weng, T.; Zhao, X.; Gao, Z.; Yang, Y.; Xu, H.; Yang, X. A study of microemulsion systems for transdermal delivery of triptolide. J. Control. Release, 2004, 98, 427-436.
[33]
Azeem, A.; Talegaonkar, S.; Negi, L.M.; Ahmad, F.J.; Khar, R.K.; Iqbal, Z. Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation. Int. J. Pharm., 2012, 422(1-2), 436-444.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.039] [PMID: 22057087]
[34]
Tsai, M.J.; Lu, I.J.; Fu, Y.S.; Fang, Y.P.; Huang, Y.B.; Wu, P.C. Nanocarriers enhance the transdermal bioavailability of resveratrol: In-vitro and in-vivo study. Colloids Surf. B Biointerfaces, 2016, 148, 650-656.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.045] [PMID: 27697739]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy